#![deny(unsafe_op_in_unsafe_fn)] #[cfg(test)] mod tests; use crate::ascii; use crate::borrow::{Borrow, Cow}; use crate::cmp::Ordering; use crate::error::Error; use crate::fmt::{self, Write}; use crate::io; use crate::mem; use crate::memchr; use crate::num::NonZeroU8; use crate::ops; use crate::os::raw::c_char; use crate::ptr; use crate::rc::Rc; use crate::slice; use crate::str::{self, Utf8Error}; use crate::sync::Arc; use crate::sys; /// A type representing an owned, C-compatible, nul-terminated string with no nul bytes in the /// middle. /// /// This type serves the purpose of being able to safely generate a /// C-compatible string from a Rust byte slice or vector. An instance of this /// type is a static guarantee that the underlying bytes contain no interior 0 /// bytes ("nul characters") and that the final byte is 0 ("nul terminator"). /// /// `CString` is to [`&CStr`] as [`String`] is to [`&str`]: the former /// in each pair are owned strings; the latter are borrowed /// references. /// /// # Creating a `CString` /// /// A `CString` is created from either a byte slice or a byte vector, /// or anything that implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>` (for /// example, you can build a `CString` straight out of a [`String`] or /// a [`&str`], since both implement that trait). /// /// The [`CString::new`] method will actually check that the provided `&[u8]` /// does not have 0 bytes in the middle, and return an error if it /// finds one. /// /// # Extracting a raw pointer to the whole C string /// /// `CString` implements a [`as_ptr`][`CStr::as_ptr`] method through the [`Deref`] /// trait. This method will give you a `*const c_char` which you can /// feed directly to extern functions that expect a nul-terminated /// string, like C's `strdup()`. Notice that [`as_ptr`][`CStr::as_ptr`] returns a /// read-only pointer; if the C code writes to it, that causes /// undefined behavior. /// /// # Extracting a slice of the whole C string /// /// Alternatively, you can obtain a `&[`[`u8`]`]` slice from a /// `CString` with the [`CString::as_bytes`] method. Slices produced in this /// way do *not* contain the trailing nul terminator. This is useful /// when you will be calling an extern function that takes a `*const /// u8` argument which is not necessarily nul-terminated, plus another /// argument with the length of the string — like C's `strndup()`. /// You can of course get the slice's length with its /// [`len`][slice.len] method. /// /// If you need a `&[`[`u8`]`]` slice *with* the nul terminator, you /// can use [`CString::as_bytes_with_nul`] instead. /// /// Once you have the kind of slice you need (with or without a nul /// terminator), you can call the slice's own /// [`as_ptr`][slice.as_ptr] method to get a read-only raw pointer to pass to /// extern functions. See the documentation for that function for a /// discussion on ensuring the lifetime of the raw pointer. /// /// [`&str`]: prim@str /// [slice.as_ptr]: ../primitive.slice.html#method.as_ptr /// [slice.len]: ../primitive.slice.html#method.len /// [`Deref`]: ops::Deref /// [`&CStr`]: CStr /// /// # Examples /// /// ```ignore (extern-declaration) /// # fn main() { /// use std::ffi::CString; /// use std::os::raw::c_char; /// /// extern { /// fn my_printer(s: *const c_char); /// } /// /// // We are certain that our string doesn't have 0 bytes in the middle, /// // so we can .expect() /// let c_to_print = CString::new("Hello, world!").expect("CString::new failed"); /// unsafe { /// my_printer(c_to_print.as_ptr()); /// } /// # } /// ``` /// /// # Safety /// /// `CString` is intended for working with traditional C-style strings /// (a sequence of non-nul bytes terminated by a single nul byte); the /// primary use case for these kinds of strings is interoperating with C-like /// code. Often you will need to transfer ownership to/from that external /// code. It is strongly recommended that you thoroughly read through the /// documentation of `CString` before use, as improper ownership management /// of `CString` instances can lead to invalid memory accesses, memory leaks, /// and other memory errors. #[derive(PartialEq, PartialOrd, Eq, Ord, Hash, Clone)] #[cfg_attr(not(test), rustc_diagnostic_item = "cstring_type")] #[stable(feature = "rust1", since = "1.0.0")] pub struct CString { // Invariant 1: the slice ends with a zero byte and has a length of at least one. // Invariant 2: the slice contains only one zero byte. // Improper usage of unsafe function can break Invariant 2, but not Invariant 1. inner: Box<[u8]>, } /// Representation of a borrowed C string. /// /// This type represents a borrowed reference to a nul-terminated /// array of bytes. It can be constructed safely from a `&[`[`u8`]`]` /// slice, or unsafely from a raw `*const c_char`. It can then be /// converted to a Rust [`&str`] by performing UTF-8 validation, or /// into an owned [`CString`]. /// /// `&CStr` is to [`CString`] as [`&str`] is to [`String`]: the former /// in each pair are borrowed references; the latter are owned /// strings. /// /// Note that this structure is **not** `repr(C)` and is not recommended to be /// placed in the signatures of FFI functions. Instead, safe wrappers of FFI /// functions may leverage the unsafe [`CStr::from_ptr`] constructor to provide /// a safe interface to other consumers. /// /// # Examples /// /// Inspecting a foreign C string: /// /// ```ignore (extern-declaration) /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { fn my_string() -> *const c_char; } /// /// unsafe { /// let slice = CStr::from_ptr(my_string()); /// println!("string buffer size without nul terminator: {}", slice.to_bytes().len()); /// } /// ``` /// /// Passing a Rust-originating C string: /// /// ```ignore (extern-declaration) /// use std::ffi::{CString, CStr}; /// use std::os::raw::c_char; /// /// fn work(data: &CStr) { /// extern { fn work_with(data: *const c_char); } /// /// unsafe { work_with(data.as_ptr()) } /// } /// /// let s = CString::new("data data data data").expect("CString::new failed"); /// work(&s); /// ``` /// /// Converting a foreign C string into a Rust [`String`]: /// /// ```ignore (extern-declaration) /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { fn my_string() -> *const c_char; } /// /// fn my_string_safe() -> String { /// unsafe { /// CStr::from_ptr(my_string()).to_string_lossy().into_owned() /// } /// } /// /// println!("string: {}", my_string_safe()); /// ``` /// /// [`&str`]: prim@str #[derive(Hash)] #[stable(feature = "rust1", since = "1.0.0")] // FIXME: // `fn from` in `impl From<&CStr> for Box` current implementation relies // on `CStr` being layout-compatible with `[u8]`. // When attribute privacy is implemented, `CStr` should be annotated as `#[repr(transparent)]`. // Anyway, `CStr` representation and layout are considered implementation detail, are // not documented and must not be relied upon. pub struct CStr { // FIXME: this should not be represented with a DST slice but rather with // just a raw `c_char` along with some form of marker to make // this an unsized type. Essentially `sizeof(&CStr)` should be the // same as `sizeof(&c_char)` but `CStr` should be an unsized type. inner: [c_char], } /// An error indicating that an interior nul byte was found. /// /// While Rust strings may contain nul bytes in the middle, C strings /// can't, as that byte would effectively truncate the string. /// /// This error is created by the [`new`][`CString::new`] method on /// [`CString`]. See its documentation for more. /// /// # Examples /// /// ``` /// use std::ffi::{CString, NulError}; /// /// let _: NulError = CString::new(b"f\0oo".to_vec()).unwrap_err(); /// ``` #[derive(Clone, PartialEq, Eq, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct NulError(usize, Vec); /// An error indicating that a nul byte was not in the expected position. /// /// The slice used to create a [`CStr`] must have one and only one nul byte, /// positioned at the end. /// /// This error is created by the [`CStr::from_bytes_with_nul`] method. /// See its documentation for more. /// /// # Examples /// /// ``` /// use std::ffi::{CStr, FromBytesWithNulError}; /// /// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err(); /// ``` #[derive(Clone, PartialEq, Eq, Debug)] #[stable(feature = "cstr_from_bytes", since = "1.10.0")] pub struct FromBytesWithNulError { kind: FromBytesWithNulErrorKind, } /// An error indicating that a nul byte was not in the expected position. /// /// The vector used to create a [`CString`] must have one and only one nul byte, /// positioned at the end. /// /// This error is created by the [`CString::from_vec_with_nul`] method. /// See its documentation for more. /// /// # Examples /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::{CString, FromVecWithNulError}; /// /// let _: FromVecWithNulError = CString::from_vec_with_nul(b"f\0oo".to_vec()).unwrap_err(); /// ``` #[derive(Clone, PartialEq, Eq, Debug)] #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] pub struct FromVecWithNulError { error_kind: FromBytesWithNulErrorKind, bytes: Vec, } #[derive(Clone, PartialEq, Eq, Debug)] enum FromBytesWithNulErrorKind { InteriorNul(usize), NotNulTerminated, } impl FromBytesWithNulError { fn interior_nul(pos: usize) -> FromBytesWithNulError { FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) } } fn not_nul_terminated() -> FromBytesWithNulError { FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated } } } #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] impl FromVecWithNulError { /// Returns a slice of [`u8`]s bytes that were attempted to convert to a [`CString`]. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::CString; /// /// // Some invalid bytes in a vector /// let bytes = b"f\0oo".to_vec(); /// /// let value = CString::from_vec_with_nul(bytes.clone()); /// /// assert_eq!(&bytes[..], value.unwrap_err().as_bytes()); /// ``` pub fn as_bytes(&self) -> &[u8] { &self.bytes[..] } /// Returns the bytes that were attempted to convert to a [`CString`]. /// /// This method is carefully constructed to avoid allocation. It will /// consume the error, moving out the bytes, so that a copy of the bytes /// does not need to be made. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::CString; /// /// // Some invalid bytes in a vector /// let bytes = b"f\0oo".to_vec(); /// /// let value = CString::from_vec_with_nul(bytes.clone()); /// /// assert_eq!(bytes, value.unwrap_err().into_bytes()); /// ``` pub fn into_bytes(self) -> Vec { self.bytes } } /// An error indicating invalid UTF-8 when converting a [`CString`] into a [`String`]. /// /// `CString` is just a wrapper over a buffer of bytes with a nul terminator; /// [`CString::into_string`] performs UTF-8 validation on those bytes and may /// return this error. /// /// This `struct` is created by [`CString::into_string()`]. See /// its documentation for more. #[derive(Clone, PartialEq, Eq, Debug)] #[stable(feature = "cstring_into", since = "1.7.0")] pub struct IntoStringError { inner: CString, error: Utf8Error, } impl CString { /// Creates a new C-compatible string from a container of bytes. /// /// This function will consume the provided data and use the /// underlying bytes to construct a new string, ensuring that /// there is a trailing 0 byte. This trailing 0 byte will be /// appended by this function; the provided data should *not* /// contain any 0 bytes in it. /// /// # Examples /// /// ```ignore (extern-declaration) /// use std::ffi::CString; /// use std::os::raw::c_char; /// /// extern { fn puts(s: *const c_char); } /// /// let to_print = CString::new("Hello!").expect("CString::new failed"); /// unsafe { /// puts(to_print.as_ptr()); /// } /// ``` /// /// # Errors /// /// This function will return an error if the supplied bytes contain an /// internal 0 byte. The [`NulError`] returned will contain the bytes as well as /// the position of the nul byte. #[stable(feature = "rust1", since = "1.0.0")] pub fn new>>(t: T) -> Result { trait SpecIntoVec { fn into_vec(self) -> Vec; } impl>> SpecIntoVec for T { default fn into_vec(self) -> Vec { self.into() } } // Specialization for avoiding reallocation. impl SpecIntoVec for &'_ [u8] { fn into_vec(self) -> Vec { let mut v = Vec::with_capacity(self.len() + 1); v.extend(self); v } } impl SpecIntoVec for &'_ str { fn into_vec(self) -> Vec { let mut v = Vec::with_capacity(self.len() + 1); v.extend(self.as_bytes()); v } } Self::_new(SpecIntoVec::into_vec(t)) } fn _new(bytes: Vec) -> Result { match memchr::memchr(0, &bytes) { Some(i) => Err(NulError(i, bytes)), None => Ok(unsafe { CString::from_vec_unchecked(bytes) }), } } /// Creates a C-compatible string by consuming a byte vector, /// without checking for interior 0 bytes. /// /// This method is equivalent to [`CString::new`] except that no runtime /// assertion is made that `v` contains no 0 bytes, and it requires an /// actual byte vector, not anything that can be converted to one with Into. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let raw = b"foo".to_vec(); /// unsafe { /// let c_string = CString::from_vec_unchecked(raw); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_vec_unchecked(mut v: Vec) -> CString { v.reserve_exact(1); v.push(0); CString { inner: v.into_boxed_slice() } } /// Retakes ownership of a `CString` that was transferred to C via /// [`CString::into_raw`]. /// /// Additionally, the length of the string will be recalculated from the pointer. /// /// # Safety /// /// This should only ever be called with a pointer that was earlier /// obtained by calling [`CString::into_raw`]. Other usage (e.g., trying to take /// ownership of a string that was allocated by foreign code) is likely to lead /// to undefined behavior or allocator corruption. /// /// It should be noted that the length isn't just "recomputed," but that /// the recomputed length must match the original length from the /// [`CString::into_raw`] call. This means the [`CString::into_raw`]/`from_raw` /// methods should not be used when passing the string to C functions that can /// modify the string's length. /// /// > **Note:** If you need to borrow a string that was allocated by /// > foreign code, use [`CStr`]. If you need to take ownership of /// > a string that was allocated by foreign code, you will need to /// > make your own provisions for freeing it appropriately, likely /// > with the foreign code's API to do that. /// /// # Examples /// /// Creates a `CString`, pass ownership to an `extern` function (via raw pointer), then retake /// ownership with `from_raw`: /// /// ```ignore (extern-declaration) /// use std::ffi::CString; /// use std::os::raw::c_char; /// /// extern { /// fn some_extern_function(s: *mut c_char); /// } /// /// let c_string = CString::new("Hello!").expect("CString::new failed"); /// let raw = c_string.into_raw(); /// unsafe { /// some_extern_function(raw); /// let c_string = CString::from_raw(raw); /// } /// ``` #[stable(feature = "cstr_memory", since = "1.4.0")] pub unsafe fn from_raw(ptr: *mut c_char) -> CString { // SAFETY: This is called with a pointer that was obtained from a call // to `CString::into_raw` and the length has not been modified. As such, // we know there is a NUL byte (and only one) at the end and that the // information about the size of the allocation is correct on Rust's // side. unsafe { let len = sys::strlen(ptr) + 1; // Including the NUL byte let slice = slice::from_raw_parts_mut(ptr, len as usize); CString { inner: Box::from_raw(slice as *mut [c_char] as *mut [u8]) } } } /// Consumes the `CString` and transfers ownership of the string to a C caller. /// /// The pointer which this function returns must be returned to Rust and reconstituted using /// [`CString::from_raw`] to be properly deallocated. Specifically, one /// should *not* use the standard C `free()` function to deallocate /// this string. /// /// Failure to call [`CString::from_raw`] will lead to a memory leak. /// /// The C side must **not** modify the length of the string (by writing a /// `NULL` somewhere inside the string or removing the final one) before /// it makes it back into Rust using [`CString::from_raw`]. See the safety section /// in [`CString::from_raw`]. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new("foo").expect("CString::new failed"); /// /// let ptr = c_string.into_raw(); /// /// unsafe { /// assert_eq!(b'f', *ptr as u8); /// assert_eq!(b'o', *ptr.offset(1) as u8); /// assert_eq!(b'o', *ptr.offset(2) as u8); /// assert_eq!(b'\0', *ptr.offset(3) as u8); /// /// // retake pointer to free memory /// let _ = CString::from_raw(ptr); /// } /// ``` #[inline] #[stable(feature = "cstr_memory", since = "1.4.0")] pub fn into_raw(self) -> *mut c_char { Box::into_raw(self.into_inner()) as *mut c_char } /// Converts the `CString` into a [`String`] if it contains valid UTF-8 data. /// /// On failure, ownership of the original `CString` is returned. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let valid_utf8 = vec![b'f', b'o', b'o']; /// let cstring = CString::new(valid_utf8).expect("CString::new failed"); /// assert_eq!(cstring.into_string().expect("into_string() call failed"), "foo"); /// /// let invalid_utf8 = vec![b'f', 0xff, b'o', b'o']; /// let cstring = CString::new(invalid_utf8).expect("CString::new failed"); /// let err = cstring.into_string().err().expect("into_string().err() failed"); /// assert_eq!(err.utf8_error().valid_up_to(), 1); /// ``` #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_string(self) -> Result { String::from_utf8(self.into_bytes()).map_err(|e| IntoStringError { error: e.utf8_error(), inner: unsafe { CString::from_vec_unchecked(e.into_bytes()) }, }) } /// Consumes the `CString` and returns the underlying byte buffer. /// /// The returned buffer does **not** contain the trailing nul /// terminator, and it is guaranteed to not have any interior nul /// bytes. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new("foo").expect("CString::new failed"); /// let bytes = c_string.into_bytes(); /// assert_eq!(bytes, vec![b'f', b'o', b'o']); /// ``` #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_bytes(self) -> Vec { let mut vec = self.into_inner().into_vec(); let _nul = vec.pop(); debug_assert_eq!(_nul, Some(0u8)); vec } /// Equivalent to [`CString::into_bytes()`] except that the /// returned vector includes the trailing nul terminator. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new("foo").expect("CString::new failed"); /// let bytes = c_string.into_bytes_with_nul(); /// assert_eq!(bytes, vec![b'f', b'o', b'o', b'\0']); /// ``` #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_bytes_with_nul(self) -> Vec { self.into_inner().into_vec() } /// Returns the contents of this `CString` as a slice of bytes. /// /// The returned slice does **not** contain the trailing nul /// terminator, and it is guaranteed to not have any interior nul /// bytes. If you need the nul terminator, use /// [`CString::as_bytes_with_nul`] instead. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new("foo").expect("CString::new failed"); /// let bytes = c_string.as_bytes(); /// assert_eq!(bytes, &[b'f', b'o', b'o']); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn as_bytes(&self) -> &[u8] { &self.inner[..self.inner.len() - 1] } /// Equivalent to [`CString::as_bytes()`] except that the /// returned slice includes the trailing nul terminator. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new("foo").expect("CString::new failed"); /// let bytes = c_string.as_bytes_with_nul(); /// assert_eq!(bytes, &[b'f', b'o', b'o', b'\0']); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn as_bytes_with_nul(&self) -> &[u8] { &self.inner } /// Extracts a [`CStr`] slice containing the entire string. /// /// # Examples /// /// ``` /// use std::ffi::{CString, CStr}; /// /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed"); /// let cstr = c_string.as_c_str(); /// assert_eq!(cstr, /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed")); /// ``` #[inline] #[stable(feature = "as_c_str", since = "1.20.0")] pub fn as_c_str(&self) -> &CStr { &*self } /// Converts this `CString` into a boxed [`CStr`]. /// /// # Examples /// /// ``` /// use std::ffi::{CString, CStr}; /// /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed"); /// let boxed = c_string.into_boxed_c_str(); /// assert_eq!(&*boxed, /// CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed")); /// ``` #[stable(feature = "into_boxed_c_str", since = "1.20.0")] pub fn into_boxed_c_str(self) -> Box { unsafe { Box::from_raw(Box::into_raw(self.into_inner()) as *mut CStr) } } /// Bypass "move out of struct which implements [`Drop`] trait" restriction. fn into_inner(self) -> Box<[u8]> { // Rationale: `mem::forget(self)` invalidates the previous call to `ptr::read(&self.inner)` // so we use `ManuallyDrop` to ensure `self` is not dropped. // Then we can return the box directly without invalidating it. // See https://github.com/rust-lang/rust/issues/62553. let this = mem::ManuallyDrop::new(self); unsafe { ptr::read(&this.inner) } } /// Converts a [`Vec`]`` to a [`CString`] without checking the /// invariants on the given [`Vec`]. /// /// # Safety /// /// The given [`Vec`] **must** have one nul byte as its last element. /// This means it cannot be empty nor have any other nul byte anywhere else. /// /// # Example /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::CString; /// assert_eq!( /// unsafe { CString::from_vec_with_nul_unchecked(b"abc\0".to_vec()) }, /// unsafe { CString::from_vec_unchecked(b"abc".to_vec()) } /// ); /// ``` #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] pub unsafe fn from_vec_with_nul_unchecked(v: Vec) -> Self { Self { inner: v.into_boxed_slice() } } /// Attempts to converts a [`Vec`]`` to a [`CString`]. /// /// Runtime checks are present to ensure there is only one nul byte in the /// [`Vec`], its last element. /// /// # Errors /// /// If a nul byte is present and not the last element or no nul bytes /// is present, an error will be returned. /// /// # Examples /// /// A successful conversion will produce the same result as [`CString::new`] /// when called without the ending nul byte. /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::CString; /// assert_eq!( /// CString::from_vec_with_nul(b"abc\0".to_vec()) /// .expect("CString::from_vec_with_nul failed"), /// CString::new(b"abc".to_vec()).expect("CString::new failed") /// ); /// ``` /// /// A incorrectly formatted [`Vec`] will produce an error. /// /// ``` /// #![feature(cstring_from_vec_with_nul)] /// use std::ffi::{CString, FromVecWithNulError}; /// // Interior nul byte /// let _: FromVecWithNulError = CString::from_vec_with_nul(b"a\0bc".to_vec()).unwrap_err(); /// // No nul byte /// let _: FromVecWithNulError = CString::from_vec_with_nul(b"abc".to_vec()).unwrap_err(); /// ``` #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] pub fn from_vec_with_nul(v: Vec) -> Result { let nul_pos = memchr::memchr(0, &v); match nul_pos { Some(nul_pos) if nul_pos + 1 == v.len() => { // SAFETY: We know there is only one nul byte, at the end // of the vec. Ok(unsafe { Self::from_vec_with_nul_unchecked(v) }) } Some(nul_pos) => Err(FromVecWithNulError { error_kind: FromBytesWithNulErrorKind::InteriorNul(nul_pos), bytes: v, }), None => Err(FromVecWithNulError { error_kind: FromBytesWithNulErrorKind::NotNulTerminated, bytes: v, }), } } } // Turns this `CString` into an empty string to prevent // memory-unsafe code from working by accident. Inline // to prevent LLVM from optimizing it away in debug builds. #[stable(feature = "cstring_drop", since = "1.13.0")] impl Drop for CString { #[inline] fn drop(&mut self) { unsafe { *self.inner.get_unchecked_mut(0) = 0; } } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Deref for CString { type Target = CStr; #[inline] fn deref(&self) -> &CStr { unsafe { CStr::from_bytes_with_nul_unchecked(self.as_bytes_with_nul()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for CString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "cstring_into", since = "1.7.0")] impl From for Vec { /// Converts a [`CString`] into a [`Vec`]``. /// /// The conversion consumes the [`CString`], and removes the terminating NUL byte. #[inline] fn from(s: CString) -> Vec { s.into_bytes() } } #[stable(feature = "cstr_debug", since = "1.3.0")] impl fmt::Debug for CStr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "\"")?; for byte in self.to_bytes().iter().flat_map(|&b| ascii::escape_default(b)) { f.write_char(byte as char)?; } write!(f, "\"") } } #[stable(feature = "cstr_default", since = "1.10.0")] impl Default for &CStr { fn default() -> Self { const SLICE: &[c_char] = &[0]; unsafe { CStr::from_ptr(SLICE.as_ptr()) } } } #[stable(feature = "cstr_default", since = "1.10.0")] impl Default for CString { /// Creates an empty `CString`. fn default() -> CString { let a: &CStr = Default::default(); a.to_owned() } } #[stable(feature = "cstr_borrow", since = "1.3.0")] impl Borrow for CString { #[inline] fn borrow(&self) -> &CStr { self } } #[stable(feature = "cstring_from_cow_cstr", since = "1.28.0")] impl<'a> From> for CString { #[inline] fn from(s: Cow<'a, CStr>) -> Self { s.into_owned() } } #[stable(feature = "box_from_c_str", since = "1.17.0")] impl From<&CStr> for Box { fn from(s: &CStr) -> Box { let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul()); unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) } } } #[stable(feature = "box_from_cow", since = "1.45.0")] impl From> for Box { #[inline] fn from(cow: Cow<'_, CStr>) -> Box { match cow { Cow::Borrowed(s) => Box::from(s), Cow::Owned(s) => Box::from(s), } } } #[stable(feature = "c_string_from_box", since = "1.18.0")] impl From> for CString { /// Converts a [`Box`]`` into a [`CString`] without copying or allocating. #[inline] fn from(s: Box) -> CString { s.into_c_string() } } #[stable(feature = "cstring_from_vec_of_nonzerou8", since = "1.43.0")] impl From> for CString { /// Converts a [`Vec`]`<`[`NonZeroU8`]`>` into a [`CString`] without /// copying nor checking for inner null bytes. #[inline] fn from(v: Vec) -> CString { unsafe { // Transmute `Vec` to `Vec`. let v: Vec = { // SAFETY: // - transmuting between `NonZeroU8` and `u8` is sound; // - `alloc::Layout == alloc::Layout`. let (ptr, len, cap): (*mut NonZeroU8, _, _) = Vec::into_raw_parts(v); Vec::from_raw_parts(ptr.cast::(), len, cap) }; // SAFETY: `v` cannot contain null bytes, given the type-level // invariant of `NonZeroU8`. CString::from_vec_unchecked(v) } } } #[stable(feature = "more_box_slice_clone", since = "1.29.0")] impl Clone for Box { #[inline] fn clone(&self) -> Self { (**self).into() } } #[stable(feature = "box_from_c_string", since = "1.20.0")] impl From for Box { /// Converts a [`CString`] into a [`Box`]`` without copying or allocating. #[inline] fn from(s: CString) -> Box { s.into_boxed_c_str() } } #[stable(feature = "cow_from_cstr", since = "1.28.0")] impl<'a> From for Cow<'a, CStr> { #[inline] fn from(s: CString) -> Cow<'a, CStr> { Cow::Owned(s) } } #[stable(feature = "cow_from_cstr", since = "1.28.0")] impl<'a> From<&'a CStr> for Cow<'a, CStr> { #[inline] fn from(s: &'a CStr) -> Cow<'a, CStr> { Cow::Borrowed(s) } } #[stable(feature = "cow_from_cstr", since = "1.28.0")] impl<'a> From<&'a CString> for Cow<'a, CStr> { #[inline] fn from(s: &'a CString) -> Cow<'a, CStr> { Cow::Borrowed(s.as_c_str()) } } #[stable(feature = "shared_from_slice2", since = "1.24.0")] impl From for Arc { /// Converts a [`CString`] into a [`Arc`]`` without copying or allocating. #[inline] fn from(s: CString) -> Arc { let arc: Arc<[u8]> = Arc::from(s.into_inner()); unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) } } } #[stable(feature = "shared_from_slice2", since = "1.24.0")] impl From<&CStr> for Arc { #[inline] fn from(s: &CStr) -> Arc { let arc: Arc<[u8]> = Arc::from(s.to_bytes_with_nul()); unsafe { Arc::from_raw(Arc::into_raw(arc) as *const CStr) } } } #[stable(feature = "shared_from_slice2", since = "1.24.0")] impl From for Rc { /// Converts a [`CString`] into a [`Rc`]`` without copying or allocating. #[inline] fn from(s: CString) -> Rc { let rc: Rc<[u8]> = Rc::from(s.into_inner()); unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) } } } #[stable(feature = "shared_from_slice2", since = "1.24.0")] impl From<&CStr> for Rc { #[inline] fn from(s: &CStr) -> Rc { let rc: Rc<[u8]> = Rc::from(s.to_bytes_with_nul()); unsafe { Rc::from_raw(Rc::into_raw(rc) as *const CStr) } } } #[stable(feature = "default_box_extra", since = "1.17.0")] impl Default for Box { fn default() -> Box { let boxed: Box<[u8]> = Box::from([0]); unsafe { Box::from_raw(Box::into_raw(boxed) as *mut CStr) } } } impl NulError { /// Returns the position of the nul byte in the slice that caused /// [`CString::new`] to fail. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let nul_error = CString::new("foo\0bar").unwrap_err(); /// assert_eq!(nul_error.nul_position(), 3); /// /// let nul_error = CString::new("foo bar\0").unwrap_err(); /// assert_eq!(nul_error.nul_position(), 7); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn nul_position(&self) -> usize { self.0 } /// Consumes this error, returning the underlying vector of bytes which /// generated the error in the first place. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let nul_error = CString::new("foo\0bar").unwrap_err(); /// assert_eq!(nul_error.into_vec(), b"foo\0bar"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn into_vec(self) -> Vec { self.1 } } #[stable(feature = "rust1", since = "1.0.0")] impl Error for NulError { #[allow(deprecated)] fn description(&self) -> &str { "nul byte found in data" } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for NulError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "nul byte found in provided data at position: {}", self.0) } } #[stable(feature = "rust1", since = "1.0.0")] impl From for io::Error { /// Converts a [`NulError`] into a [`io::Error`]. fn from(_: NulError) -> io::Error { io::Error::new(io::ErrorKind::InvalidInput, "data provided contains a nul byte") } } #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")] impl Error for FromBytesWithNulError { #[allow(deprecated)] fn description(&self) -> &str { match self.kind { FromBytesWithNulErrorKind::InteriorNul(..) => { "data provided contains an interior nul byte" } FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated", } } } #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")] impl fmt::Display for FromBytesWithNulError { #[allow(deprecated, deprecated_in_future)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(self.description())?; if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind { write!(f, " at byte pos {}", pos)?; } Ok(()) } } #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] impl Error for FromVecWithNulError {} #[unstable(feature = "cstring_from_vec_with_nul", issue = "73179")] impl fmt::Display for FromVecWithNulError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.error_kind { FromBytesWithNulErrorKind::InteriorNul(pos) => { write!(f, "data provided contains an interior nul byte at pos {}", pos) } FromBytesWithNulErrorKind::NotNulTerminated => { write!(f, "data provided is not nul terminated") } } } } impl IntoStringError { /// Consumes this error, returning original [`CString`] which generated the /// error. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn into_cstring(self) -> CString { self.inner } /// Access the underlying UTF-8 error that was the cause of this error. #[stable(feature = "cstring_into", since = "1.7.0")] pub fn utf8_error(&self) -> Utf8Error { self.error } } #[stable(feature = "cstring_into", since = "1.7.0")] impl Error for IntoStringError { #[allow(deprecated)] fn description(&self) -> &str { "C string contained non-utf8 bytes" } fn source(&self) -> Option<&(dyn Error + 'static)> { Some(&self.error) } } #[stable(feature = "cstring_into", since = "1.7.0")] impl fmt::Display for IntoStringError { #[allow(deprecated, deprecated_in_future)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.description().fmt(f) } } impl CStr { /// Wraps a raw C string with a safe C string wrapper. /// /// This function will wrap the provided `ptr` with a `CStr` wrapper, which /// allows inspection and interoperation of non-owned C strings. The total /// size of the raw C string must be smaller than `isize::MAX` **bytes** /// in memory due to calling the `slice::from_raw_parts` function. /// This method is unsafe for a number of reasons: /// /// * There is no guarantee to the validity of `ptr`. /// * The returned lifetime is not guaranteed to be the actual lifetime of /// `ptr`. /// * There is no guarantee that the memory pointed to by `ptr` contains a /// valid nul terminator byte at the end of the string. /// * It is not guaranteed that the memory pointed by `ptr` won't change /// before the `CStr` has been destroyed. /// /// > **Note**: This operation is intended to be a 0-cost cast but it is /// > currently implemented with an up-front calculation of the length of /// > the string. This is not guaranteed to always be the case. /// /// # Examples /// /// ```ignore (extern-declaration) /// # fn main() { /// use std::ffi::CStr; /// use std::os::raw::c_char; /// /// extern { /// fn my_string() -> *const c_char; /// } /// /// unsafe { /// let slice = CStr::from_ptr(my_string()); /// println!("string returned: {}", slice.to_str().unwrap()); /// } /// # } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr { // SAFETY: The caller has provided a pointer that points to a valid C // string with a NUL terminator of size less than `isize::MAX`, whose // content remain valid and doesn't change for the lifetime of the // returned `CStr`. // // Thus computing the length is fine (a NUL byte exists), the call to // from_raw_parts is safe because we know the length is at most `isize::MAX`, meaning // the call to `from_bytes_with_nul_unchecked` is correct. // // The cast from c_char to u8 is ok because a c_char is always one byte. unsafe { let len = sys::strlen(ptr); let ptr = ptr as *const u8; CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1)) } } /// Creates a C string wrapper from a byte slice. /// /// This function will cast the provided `bytes` to a `CStr` /// wrapper after ensuring that the byte slice is nul-terminated /// and does not contain any interior nul bytes. /// /// # Examples /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"hello\0"); /// assert!(cstr.is_ok()); /// ``` /// /// Creating a `CStr` without a trailing nul terminator is an error: /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"hello"); /// assert!(cstr.is_err()); /// ``` /// /// Creating a `CStr` with an interior nul byte is an error: /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0"); /// assert!(cstr.is_err()); /// ``` #[stable(feature = "cstr_from_bytes", since = "1.10.0")] pub fn from_bytes_with_nul(bytes: &[u8]) -> Result<&CStr, FromBytesWithNulError> { let nul_pos = memchr::memchr(0, bytes); if let Some(nul_pos) = nul_pos { if nul_pos + 1 != bytes.len() { return Err(FromBytesWithNulError::interior_nul(nul_pos)); } Ok(unsafe { CStr::from_bytes_with_nul_unchecked(bytes) }) } else { Err(FromBytesWithNulError::not_nul_terminated()) } } /// Unsafely creates a C string wrapper from a byte slice. /// /// This function will cast the provided `bytes` to a `CStr` wrapper without /// performing any sanity checks. The provided slice **must** be nul-terminated /// and not contain any interior nul bytes. /// /// # Examples /// /// ``` /// use std::ffi::{CStr, CString}; /// /// unsafe { /// let cstring = CString::new("hello").expect("CString::new failed"); /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul()); /// assert_eq!(cstr, &*cstring); /// } /// ``` #[inline] #[stable(feature = "cstr_from_bytes", since = "1.10.0")] #[rustc_const_unstable(feature = "const_cstr_unchecked", issue = "none")] pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { // SAFETY: Casting to CStr is safe because its internal representation // is a [u8] too (safe only inside std). // Dereferencing the obtained pointer is safe because it comes from a // reference. Making a reference is then safe because its lifetime // is bound by the lifetime of the given `bytes`. unsafe { &*(bytes as *const [u8] as *const CStr) } } /// Returns the inner pointer to this C string. /// /// The returned pointer will be valid for as long as `self` is, and points /// to a contiguous region of memory terminated with a 0 byte to represent /// the end of the string. /// /// **WARNING** /// /// The returned pointer is read-only; writing to it (including passing it /// to C code that writes to it) causes undefined behavior. /// /// It is your responsibility to make sure that the underlying memory is not /// freed too early. For example, the following code will cause undefined /// behavior when `ptr` is used inside the `unsafe` block: /// /// ```no_run /// # #![allow(unused_must_use, temporary_cstring_as_ptr)] /// use std::ffi::CString; /// /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr(); /// unsafe { /// // `ptr` is dangling /// *ptr; /// } /// ``` /// /// This happens because the pointer returned by `as_ptr` does not carry any /// lifetime information and the [`CString`] is deallocated immediately after /// the `CString::new("Hello").expect("CString::new failed").as_ptr()` /// expression is evaluated. /// To fix the problem, bind the `CString` to a local variable: /// /// ```no_run /// # #![allow(unused_must_use)] /// use std::ffi::CString; /// /// let hello = CString::new("Hello").expect("CString::new failed"); /// let ptr = hello.as_ptr(); /// unsafe { /// // `ptr` is valid because `hello` is in scope /// *ptr; /// } /// ``` /// /// This way, the lifetime of the [`CString`] in `hello` encompasses /// the lifetime of `ptr` and the `unsafe` block. #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")] pub const fn as_ptr(&self) -> *const c_char { self.inner.as_ptr() } /// Converts this C string to a byte slice. /// /// The returned slice will **not** contain the trailing nul terminator that this C /// string has. /// /// > **Note**: This method is currently implemented as a constant-time /// > cast, but it is planned to alter its definition in the future to /// > perform the length calculation whenever this method is called. /// /// # Examples /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); /// assert_eq!(cstr.to_bytes(), b"foo"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn to_bytes(&self) -> &[u8] { let bytes = self.to_bytes_with_nul(); &bytes[..bytes.len() - 1] } /// Converts this C string to a byte slice containing the trailing 0 byte. /// /// This function is the equivalent of [`CStr::to_bytes`] except that it /// will retain the trailing nul terminator instead of chopping it off. /// /// > **Note**: This method is currently implemented as a 0-cost cast, but /// > it is planned to alter its definition in the future to perform the /// > length calculation whenever this method is called. /// /// # Examples /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn to_bytes_with_nul(&self) -> &[u8] { unsafe { &*(&self.inner as *const [c_char] as *const [u8]) } } /// Yields a [`&str`] slice if the `CStr` contains valid UTF-8. /// /// If the contents of the `CStr` are valid UTF-8 data, this /// function will return the corresponding [`&str`] slice. Otherwise, /// it will return an error with details of where UTF-8 validation failed. /// /// [`&str`]: prim@str /// /// # Examples /// /// ``` /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); /// assert_eq!(cstr.to_str(), Ok("foo")); /// ``` #[stable(feature = "cstr_to_str", since = "1.4.0")] pub fn to_str(&self) -> Result<&str, str::Utf8Error> { // N.B., when `CStr` is changed to perform the length check in `.to_bytes()` // instead of in `from_ptr()`, it may be worth considering if this should // be rewritten to do the UTF-8 check inline with the length calculation // instead of doing it afterwards. str::from_utf8(self.to_bytes()) } /// Converts a `CStr` into a [`Cow`]`<`[`str`]`>`. /// /// If the contents of the `CStr` are valid UTF-8 data, this /// function will return a [`Cow`]`::`[`Borrowed`]`(`[`&str`]`)` /// with the corresponding [`&str`] slice. Otherwise, it will /// replace any invalid UTF-8 sequences with /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD] and return a /// [`Cow`]`::`[`Owned`]`(`[`String`]`)` with the result. /// /// [`str`]: primitive@str /// [`&str`]: primitive@str /// [`Borrowed`]: Cow::Borrowed /// [`Owned`]: Cow::Owned /// [U+FFFD]: crate::char::REPLACEMENT_CHARACTER /// /// # Examples /// /// Calling `to_string_lossy` on a `CStr` containing valid UTF-8: /// /// ``` /// use std::borrow::Cow; /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"Hello World\0") /// .expect("CStr::from_bytes_with_nul failed"); /// assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World")); /// ``` /// /// Calling `to_string_lossy` on a `CStr` containing invalid UTF-8: /// /// ``` /// use std::borrow::Cow; /// use std::ffi::CStr; /// /// let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0") /// .expect("CStr::from_bytes_with_nul failed"); /// assert_eq!( /// cstr.to_string_lossy(), /// Cow::Owned(String::from("Hello �World")) as Cow<'_, str> /// ); /// ``` #[stable(feature = "cstr_to_str", since = "1.4.0")] pub fn to_string_lossy(&self) -> Cow<'_, str> { String::from_utf8_lossy(self.to_bytes()) } /// Converts a [`Box`]`` into a [`CString`] without copying or allocating. /// /// # Examples /// /// ``` /// use std::ffi::CString; /// /// let c_string = CString::new(b"foo".to_vec()).expect("CString::new failed"); /// let boxed = c_string.into_boxed_c_str(); /// assert_eq!(boxed.into_c_string(), CString::new("foo").expect("CString::new failed")); /// ``` #[stable(feature = "into_boxed_c_str", since = "1.20.0")] pub fn into_c_string(self: Box) -> CString { let raw = Box::into_raw(self) as *mut [u8]; CString { inner: unsafe { Box::from_raw(raw) } } } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for CStr { fn eq(&self, other: &CStr) -> bool { self.to_bytes().eq(other.to_bytes()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for CStr {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for CStr { fn partial_cmp(&self, other: &CStr) -> Option { self.to_bytes().partial_cmp(&other.to_bytes()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for CStr { fn cmp(&self, other: &CStr) -> Ordering { self.to_bytes().cmp(&other.to_bytes()) } } #[stable(feature = "cstr_borrow", since = "1.3.0")] impl ToOwned for CStr { type Owned = CString; fn to_owned(&self) -> CString { CString { inner: self.to_bytes_with_nul().into() } } fn clone_into(&self, target: &mut CString) { let mut b = Vec::from(mem::take(&mut target.inner)); self.to_bytes_with_nul().clone_into(&mut b); target.inner = b.into_boxed_slice(); } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl From<&CStr> for CString { fn from(s: &CStr) -> CString { s.to_owned() } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl ops::Index for CString { type Output = CStr; #[inline] fn index(&self, _index: ops::RangeFull) -> &CStr { self } } #[stable(feature = "cstr_range_from", since = "1.47.0")] impl ops::Index> for CStr { type Output = CStr; fn index(&self, index: ops::RangeFrom) -> &CStr { let bytes = self.to_bytes_with_nul(); // we need to manually check the starting index to account for the null // byte, since otherwise we could get an empty string that doesn't end // in a null. if index.start < bytes.len() { unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) } } else { panic!( "index out of bounds: the len is {} but the index is {}", bytes.len(), index.start ); } } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl AsRef for CStr { #[inline] fn as_ref(&self) -> &CStr { self } } #[stable(feature = "cstring_asref", since = "1.7.0")] impl AsRef for CString { #[inline] fn as_ref(&self) -> &CStr { self } }