//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to //! fields. This file defines types that represent patterns in this way. use std::cell::Cell; use std::fmt; use smallvec::{smallvec, SmallVec}; use crate::constructor::{Constructor, Slice, SliceKind}; use crate::usefulness::PlaceCtxt; use crate::{Captures, TypeCx}; use self::Constructor::*; /// Values and patterns can be represented as a constructor applied to some fields. This represents /// a pattern in this form. /// This also uses interior mutability to keep track of whether the pattern has been found reachable /// during analysis. For this reason they cannot be cloned. /// A `DeconstructedPat` will almost always come from user input; the only exception are some /// `Wildcard`s introduced during specialization. /// /// Note that the number of fields may not match the fields declared in the original struct/variant. /// This happens if a private or `non_exhaustive` field is uninhabited, because the code mustn't /// observe that it is uninhabited. In that case that field is not included in `fields`. Care must /// be taken when converting to/from `thir::Pat`. pub struct DeconstructedPat<'p, Cx: TypeCx> { ctor: Constructor, fields: &'p [DeconstructedPat<'p, Cx>], ty: Cx::Ty, /// Extra data to store in a pattern. `None` if the pattern is a wildcard that does not /// correspond to a user-supplied pattern. data: Option, /// Whether removing this arm would change the behavior of the match expression. useful: Cell, } impl<'p, Cx: TypeCx> DeconstructedPat<'p, Cx> { pub fn wildcard(ty: Cx::Ty) -> Self { DeconstructedPat { ctor: Wildcard, fields: &[], ty, data: None, useful: Cell::new(false) } } pub fn new( ctor: Constructor, fields: &'p [DeconstructedPat<'p, Cx>], ty: Cx::Ty, data: Cx::PatData, ) -> Self { DeconstructedPat { ctor, fields, ty, data: Some(data), useful: Cell::new(false) } } pub(crate) fn is_or_pat(&self) -> bool { matches!(self.ctor, Or) } /// Expand this (possibly-nested) or-pattern into its alternatives. pub(crate) fn flatten_or_pat(&self) -> SmallVec<[&Self; 1]> { if self.is_or_pat() { self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect() } else { smallvec![self] } } pub fn ctor(&self) -> &Constructor { &self.ctor } pub fn ty(&self) -> Cx::Ty { self.ty } /// Returns the extra data stored in a pattern. Returns `None` if the pattern is a wildcard that /// does not correspond to a user-supplied pattern. pub fn data(&self) -> Option<&Cx::PatData> { self.data.as_ref() } pub fn iter_fields<'a>( &'a self, ) -> impl Iterator> + Captures<'a> { self.fields.iter() } /// Specialize this pattern with a constructor. /// `other_ctor` can be different from `self.ctor`, but must be covered by it. pub(crate) fn specialize<'a>( &self, pcx: &PlaceCtxt<'a, 'p, Cx>, other_ctor: &Constructor, ) -> SmallVec<[&'p DeconstructedPat<'p, Cx>; 2]> { let wildcard_sub_tys = || { let tys = pcx.ctor_sub_tys(other_ctor); tys.iter() .map(|ty| DeconstructedPat::wildcard(*ty)) .map(|pat| pcx.mcx.wildcard_arena.alloc(pat) as &_) .collect() }; match (&self.ctor, other_ctor) { // Return a wildcard for each field of `other_ctor`. (Wildcard, _) => wildcard_sub_tys(), // The only non-trivial case: two slices of different arity. `other_slice` is // guaranteed to have a larger arity, so we fill the middle part with enough // wildcards to reach the length of the new, larger slice. ( &Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }), &Slice(other_slice), ) if self_slice.arity() != other_slice.arity() => { // Start with a slice of wildcards of the appropriate length. let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys(); // Fill in the fields from both ends. let new_arity = fields.len(); for i in 0..prefix { fields[i] = &self.fields[i]; } for i in 0..suffix { fields[new_arity - 1 - i] = &self.fields[self.fields.len() - 1 - i]; } fields } _ => self.fields.iter().collect(), } } /// We keep track for each pattern if it was ever useful during the analysis. This is used with /// `redundant_subpatterns` to report redundant subpatterns arising from or patterns. pub(crate) fn set_useful(&self) { self.useful.set(true) } pub(crate) fn is_useful(&self) -> bool { if self.useful.get() { true } else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) { // We always expand or patterns in the matrix, so we will never see the actual // or-pattern (the one with constructor `Or`) in the column. As such, it will not be // marked as useful itself, only its children will. We recover this information here. self.set_useful(); true } else { false } } /// Report the subpatterns that were not useful, if any. pub(crate) fn redundant_subpatterns(&self) -> Vec<&Self> { let mut subpats = Vec::new(); self.collect_redundant_subpatterns(&mut subpats); subpats } fn collect_redundant_subpatterns<'a>(&'a self, subpats: &mut Vec<&'a Self>) { // We don't look at subpatterns if we already reported the whole pattern as redundant. if !self.is_useful() { subpats.push(self); } else { for p in self.iter_fields() { p.collect_redundant_subpatterns(subpats); } } } } /// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a /// `Display` impl. impl<'p, Cx: TypeCx> fmt::Debug for DeconstructedPat<'p, Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { Cx::debug_pat(f, self) } } /// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics /// purposes. As such they don't use interning and can be cloned. #[derive(derivative::Derivative)] #[derivative(Debug(bound = ""), Clone(bound = ""))] pub struct WitnessPat { ctor: Constructor, pub(crate) fields: Vec>, ty: Cx::Ty, } impl WitnessPat { pub(crate) fn new(ctor: Constructor, fields: Vec, ty: Cx::Ty) -> Self { Self { ctor, fields, ty } } pub(crate) fn wildcard(ty: Cx::Ty) -> Self { Self::new(Wildcard, Vec::new(), ty) } /// Construct a pattern that matches everything that starts with this constructor. /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern /// `Some(_)`. pub(crate) fn wild_from_ctor(pcx: &PlaceCtxt<'_, '_, Cx>, ctor: Constructor) -> Self { let field_tys = pcx.ctor_sub_tys(&ctor); let fields = field_tys.iter().map(|ty| Self::wildcard(*ty)).collect(); Self::new(ctor, fields, pcx.ty) } pub fn ctor(&self) -> &Constructor { &self.ctor } pub fn ty(&self) -> Cx::Ty { self.ty } pub fn iter_fields<'a>(&'a self) -> impl Iterator> { self.fields.iter() } }