//! Diagnostics creation and emission for `rustc`. //! //! This module contains the code for creating and emitting diagnostics. // tidy-alphabetical-start #![allow(incomplete_features)] #![allow(internal_features)] #![allow(rustc::diagnostic_outside_of_impl)] #![allow(rustc::untranslatable_diagnostic)] #![cfg_attr(bootstrap, feature(min_specialization))] #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] #![doc(rust_logo)] #![feature(array_windows)] #![feature(associated_type_defaults)] #![feature(box_into_inner)] #![feature(box_patterns)] #![feature(error_reporter)] #![feature(extract_if)] #![feature(generic_nonzero)] #![feature(let_chains)] #![feature(negative_impls)] #![feature(never_type)] #![feature(rustc_attrs)] #![feature(rustdoc_internals)] #![feature(trait_alias)] #![feature(try_blocks)] #![feature(yeet_expr)] // tidy-alphabetical-end #[macro_use] extern crate rustc_macros; #[macro_use] extern crate tracing; extern crate self as rustc_errors; pub use codes::*; pub use diagnostic::{ AddToDiagnostic, BugAbort, DecorateLint, Diag, DiagArg, DiagArgMap, DiagArgName, DiagArgValue, DiagInner, DiagStyledString, EmissionGuarantee, FatalAbort, IntoDiagnostic, IntoDiagnosticArg, StringPart, Subdiag, SubdiagnosticMessageOp, }; pub use diagnostic_impls::{ DiagArgFromDisplay, DiagSymbolList, ExpectedLifetimeParameter, IndicateAnonymousLifetime, SingleLabelManySpans, }; pub use emitter::ColorConfig; pub use rustc_error_messages::{ fallback_fluent_bundle, fluent_bundle, DelayDm, DiagnosticMessage, FluentBundle, LanguageIdentifier, LazyFallbackBundle, MultiSpan, SpanLabel, SubdiagnosticMessage, }; pub use rustc_lint_defs::{pluralize, Applicability}; pub use rustc_span::fatal_error::{FatalError, FatalErrorMarker}; pub use rustc_span::ErrorGuaranteed; pub use snippet::Style; // Used by external projects such as `rust-gpu`. // See https://github.com/rust-lang/rust/pull/115393. pub use termcolor::{Color, ColorSpec, WriteColor}; use emitter::{is_case_difference, DynEmitter, Emitter, HumanEmitter}; use registry::Registry; use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet}; use rustc_data_structures::stable_hasher::{Hash128, StableHasher}; use rustc_data_structures::sync::{Lock, Lrc}; use rustc_data_structures::AtomicRef; use rustc_lint_defs::LintExpectationId; use rustc_span::source_map::SourceMap; use rustc_span::{Loc, Span, DUMMY_SP}; use std::backtrace::{Backtrace, BacktraceStatus}; use std::borrow::Cow; use std::error::Report; use std::fmt; use std::hash::Hash; use std::io::Write; use std::num::NonZero; use std::ops::DerefMut; use std::panic; use std::path::{Path, PathBuf}; use Level::*; pub mod annotate_snippet_emitter_writer; pub mod codes; mod diagnostic; mod diagnostic_impls; pub mod emitter; pub mod error; pub mod json; mod lock; pub mod markdown; pub mod registry; mod snippet; mod styled_buffer; #[cfg(test)] mod tests; pub mod translation; pub type PErr<'a> = Diag<'a>; pub type PResult<'a, T> = Result>; rustc_fluent_macro::fluent_messages! { "../messages.ftl" } // `PResult` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] rustc_data_structures::static_assert_size!(PResult<'_, ()>, 16); #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] rustc_data_structures::static_assert_size!(PResult<'_, bool>, 16); #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, Encodable, Decodable)] pub enum SuggestionStyle { /// Hide the suggested code when displaying this suggestion inline. HideCodeInline, /// Always hide the suggested code but display the message. HideCodeAlways, /// Do not display this suggestion in the cli output, it is only meant for tools. CompletelyHidden, /// Always show the suggested code. /// This will *not* show the code if the suggestion is inline *and* the suggested code is /// empty. ShowCode, /// Always show the suggested code independently. ShowAlways, } impl SuggestionStyle { fn hide_inline(&self) -> bool { !matches!(*self, SuggestionStyle::ShowCode) } } #[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)] pub struct CodeSuggestion { /// Each substitute can have multiple variants due to multiple /// applicable suggestions /// /// `foo.bar` might be replaced with `a.b` or `x.y` by replacing /// `foo` and `bar` on their own: /// /// ```ignore (illustrative) /// vec![ /// Substitution { parts: vec![(0..3, "a"), (4..7, "b")] }, /// Substitution { parts: vec![(0..3, "x"), (4..7, "y")] }, /// ] /// ``` /// /// or by replacing the entire span: /// /// ```ignore (illustrative) /// vec![ /// Substitution { parts: vec![(0..7, "a.b")] }, /// Substitution { parts: vec![(0..7, "x.y")] }, /// ] /// ``` pub substitutions: Vec, pub msg: DiagnosticMessage, /// Visual representation of this suggestion. pub style: SuggestionStyle, /// Whether or not the suggestion is approximate /// /// Sometimes we may show suggestions with placeholders, /// which are useful for users but not useful for /// tools like rustfix pub applicability: Applicability, } #[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)] /// See the docs on `CodeSuggestion::substitutions` pub struct Substitution { pub parts: Vec, } #[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)] pub struct SubstitutionPart { pub span: Span, pub snippet: String, } /// Used to translate between `Span`s and byte positions within a single output line in highlighted /// code of structured suggestions. #[derive(Debug, Clone, Copy)] pub(crate) struct SubstitutionHighlight { start: usize, end: usize, } impl SubstitutionPart { pub fn is_addition(&self, sm: &SourceMap) -> bool { !self.snippet.is_empty() && !self.replaces_meaningful_content(sm) } pub fn is_deletion(&self, sm: &SourceMap) -> bool { self.snippet.trim().is_empty() && self.replaces_meaningful_content(sm) } pub fn is_replacement(&self, sm: &SourceMap) -> bool { !self.snippet.is_empty() && self.replaces_meaningful_content(sm) } fn replaces_meaningful_content(&self, sm: &SourceMap) -> bool { sm.span_to_snippet(self.span) .map_or(!self.span.is_empty(), |snippet| !snippet.trim().is_empty()) } } impl CodeSuggestion { /// Returns the assembled code suggestions, whether they should be shown with an underline /// and whether the substitution only differs in capitalization. pub(crate) fn splice_lines( &self, sm: &SourceMap, ) -> Vec<(String, Vec, Vec>, bool)> { // For the `Vec>` value, the first level of the vector // corresponds to the output snippet's lines, while the second level corresponds to the // substrings within that line that should be highlighted. use rustc_span::{CharPos, Pos}; /// Extracts a substring from the provided `line_opt` based on the specified low and high indices, /// appends it to the given buffer `buf`, and returns the count of newline characters in the substring /// for accurate highlighting. /// If `line_opt` is `None`, a newline character is appended to the buffer, and 0 is returned. /// /// ## Returns /// /// The count of newline characters in the extracted substring. fn push_trailing( buf: &mut String, line_opt: Option<&Cow<'_, str>>, lo: &Loc, hi_opt: Option<&Loc>, ) -> usize { let mut line_count = 0; // Convert CharPos to Usize, as CharPose is character offset // Extract low index and high index let (lo, hi_opt) = (lo.col.to_usize(), hi_opt.map(|hi| hi.col.to_usize())); if let Some(line) = line_opt { if let Some(lo) = line.char_indices().map(|(i, _)| i).nth(lo) { // Get high index while account for rare unicode and emoji with char_indices let hi_opt = hi_opt.and_then(|hi| line.char_indices().map(|(i, _)| i).nth(hi)); match hi_opt { // If high index exist, take string from low to high index Some(hi) if hi > lo => { // count how many '\n' exist line_count = line[lo..hi].matches('\n').count(); buf.push_str(&line[lo..hi]) } Some(_) => (), // If high index absence, take string from low index till end string.len None => { // count how many '\n' exist line_count = line[lo..].matches('\n').count(); buf.push_str(&line[lo..]) } } } // If high index is None if hi_opt.is_none() { buf.push('\n'); } } line_count } assert!(!self.substitutions.is_empty()); self.substitutions .iter() .filter(|subst| { // Suggestions coming from macros can have malformed spans. This is a heavy // handed approach to avoid ICEs by ignoring the suggestion outright. let invalid = subst.parts.iter().any(|item| sm.is_valid_span(item.span).is_err()); if invalid { debug!("splice_lines: suggestion contains an invalid span: {:?}", subst); } !invalid }) .cloned() .filter_map(|mut substitution| { // Assumption: all spans are in the same file, and all spans // are disjoint. Sort in ascending order. substitution.parts.sort_by_key(|part| part.span.lo()); // Find the bounding span. let lo = substitution.parts.iter().map(|part| part.span.lo()).min()?; let hi = substitution.parts.iter().map(|part| part.span.hi()).max()?; let bounding_span = Span::with_root_ctxt(lo, hi); // The different spans might belong to different contexts, if so ignore suggestion. let lines = sm.span_to_lines(bounding_span).ok()?; assert!(!lines.lines.is_empty() || bounding_span.is_dummy()); // We can't splice anything if the source is unavailable. if !sm.ensure_source_file_source_present(&lines.file) { return None; } let mut highlights = vec![]; // To build up the result, we do this for each span: // - push the line segment trailing the previous span // (at the beginning a "phantom" span pointing at the start of the line) // - push lines between the previous and current span (if any) // - if the previous and current span are not on the same line // push the line segment leading up to the current span // - splice in the span substitution // // Finally push the trailing line segment of the last span let sf = &lines.file; let mut prev_hi = sm.lookup_char_pos(bounding_span.lo()); prev_hi.col = CharPos::from_usize(0); let mut prev_line = lines.lines.get(0).and_then(|line0| sf.get_line(line0.line_index)); let mut buf = String::new(); let mut line_highlight = vec![]; // We need to keep track of the difference between the existing code and the added // or deleted code in order to point at the correct column *after* substitution. let mut acc = 0; let mut only_capitalization = false; for part in &substitution.parts { only_capitalization |= is_case_difference(sm, &part.snippet, part.span); let cur_lo = sm.lookup_char_pos(part.span.lo()); if prev_hi.line == cur_lo.line { let mut count = push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, Some(&cur_lo)); while count > 0 { highlights.push(std::mem::take(&mut line_highlight)); acc = 0; count -= 1; } } else { acc = 0; highlights.push(std::mem::take(&mut line_highlight)); let mut count = push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, None); while count > 0 { highlights.push(std::mem::take(&mut line_highlight)); count -= 1; } // push lines between the previous and current span (if any) for idx in prev_hi.line..(cur_lo.line - 1) { if let Some(line) = sf.get_line(idx) { buf.push_str(line.as_ref()); buf.push('\n'); highlights.push(std::mem::take(&mut line_highlight)); } } if let Some(cur_line) = sf.get_line(cur_lo.line - 1) { let end = match cur_line.char_indices().nth(cur_lo.col.to_usize()) { Some((i, _)) => i, None => cur_line.len(), }; buf.push_str(&cur_line[..end]); } } // Add a whole line highlight per line in the snippet. let len: isize = part .snippet .split('\n') .next() .unwrap_or(&part.snippet) .chars() .map(|c| match c { '\t' => 4, _ => 1, }) .sum(); line_highlight.push(SubstitutionHighlight { start: (cur_lo.col.0 as isize + acc) as usize, end: (cur_lo.col.0 as isize + acc + len) as usize, }); buf.push_str(&part.snippet); let cur_hi = sm.lookup_char_pos(part.span.hi()); // Account for the difference between the width of the current code and the // snippet being suggested, so that the *later* suggestions are correctly // aligned on the screen. Note that cur_hi and cur_lo can be on different // lines, so cur_hi.col can be smaller than cur_lo.col acc += len - (cur_hi.col.0 as isize - cur_lo.col.0 as isize); prev_hi = cur_hi; prev_line = sf.get_line(prev_hi.line - 1); for line in part.snippet.split('\n').skip(1) { acc = 0; highlights.push(std::mem::take(&mut line_highlight)); let end: usize = line .chars() .map(|c| match c { '\t' => 4, _ => 1, }) .sum(); line_highlight.push(SubstitutionHighlight { start: 0, end }); } } highlights.push(std::mem::take(&mut line_highlight)); // if the replacement already ends with a newline, don't print the next line if !buf.ends_with('\n') { push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, None); } // remove trailing newlines while buf.ends_with('\n') { buf.pop(); } Some((buf, substitution.parts, highlights, only_capitalization)) }) .collect() } } /// Signifies that the compiler died with an explicit call to `.bug` /// or `.span_bug` rather than a failed assertion, etc. pub struct ExplicitBug; /// Signifies that the compiler died due to a delayed bug rather than a failed /// assertion, etc. pub struct DelayedBugPanic; /// A `DiagCtxt` deals with errors and other compiler output. /// Certain errors (fatal, bug, unimpl) may cause immediate exit, /// others log errors for later reporting. pub struct DiagCtxt { inner: Lock, } /// This inner struct exists to keep it all behind a single lock; /// this is done to prevent possible deadlocks in a multi-threaded compiler, /// as well as inconsistent state observation. struct DiagCtxtInner { flags: DiagCtxtFlags, /// The error guarantees from all emitted errors. The length gives the error count. err_guars: Vec, /// The error guarantee from all emitted lint errors. The length gives the /// lint error count. lint_err_guars: Vec, /// The delayed bugs and their error guarantees. delayed_bugs: Vec<(DelayedDiagInner, ErrorGuaranteed)>, /// The number of stashed errors. Unlike the other counts, this can go up /// and down, so it doesn't guarantee anything. stashed_err_count: usize, /// The error count shown to the user at the end. deduplicated_err_count: usize, /// The warning count shown to the user at the end. deduplicated_warn_count: usize, emitter: Box, /// Must we produce a diagnostic to justify the use of the expensive /// `trimmed_def_paths` function? must_produce_diag: bool, /// Has this diagnostic context printed any diagnostics? (I.e. has /// `self.emitter.emit_diagnostic()` been called? has_printed: bool, /// This flag indicates that an expected diagnostic was emitted and suppressed. /// This is used for the `must_produce_diag` check. suppressed_expected_diag: bool, /// This set contains the code of all emitted diagnostics to avoid /// emitting the same diagnostic with extended help (`--teach`) twice, which /// would be unnecessary repetition. taught_diagnostics: FxHashSet, /// Used to suggest rustc --explain `` emitted_diagnostic_codes: FxIndexSet, /// This set contains a hash of every diagnostic that has been emitted by /// this `DiagCtxt`. These hashes is used to avoid emitting the same error /// twice. emitted_diagnostics: FxHashSet, /// Stashed diagnostics emitted in one stage of the compiler that may be /// stolen and emitted/cancelled by other stages (e.g. to improve them and /// add more information). All stashed diagnostics must be emitted with /// `emit_stashed_diagnostics` by the time the `DiagCtxtInner` is dropped, /// otherwise an assertion failure will occur. stashed_diagnostics: FxIndexMap<(Span, StashKey), DiagInner>, future_breakage_diagnostics: Vec, /// The [`Self::unstable_expect_diagnostics`] should be empty when this struct is /// dropped. However, it can have values if the compilation is stopped early /// or is only partially executed. To avoid ICEs, like in rust#94953 we only /// check if [`Self::unstable_expect_diagnostics`] is empty, if the expectation ids /// have been converted. check_unstable_expect_diagnostics: bool, /// Expected [`DiagInner`][struct@diagnostic::DiagInner]s store a [`LintExpectationId`] as part of /// the lint level. [`LintExpectationId`]s created early during the compilation /// (before `HirId`s have been defined) are not stable and can therefore not be /// stored on disk. This buffer stores these diagnostics until the ID has been /// replaced by a stable [`LintExpectationId`]. The [`DiagInner`][struct@diagnostic::DiagInner]s /// are submitted for storage and added to the list of fulfilled expectations. unstable_expect_diagnostics: Vec, /// expected diagnostic will have the level `Expect` which additionally /// carries the [`LintExpectationId`] of the expectation that can be /// marked as fulfilled. This is a collection of all [`LintExpectationId`]s /// that have been marked as fulfilled this way. /// /// [RFC-2383]: https://rust-lang.github.io/rfcs/2383-lint-reasons.html fulfilled_expectations: FxHashSet, /// The file where the ICE information is stored. This allows delayed_span_bug backtraces to be /// stored along side the main panic backtrace. ice_file: Option, } /// A key denoting where from a diagnostic was stashed. #[derive(Copy, Clone, PartialEq, Eq, Hash)] pub enum StashKey { ItemNoType, UnderscoreForArrayLengths, EarlySyntaxWarning, CallIntoMethod, /// When an invalid lifetime e.g. `'2` should be reinterpreted /// as a char literal in the parser LifetimeIsChar, /// Maybe there was a typo where a comma was forgotten before /// FRU syntax MaybeFruTypo, CallAssocMethod, TraitMissingMethod, AssociatedTypeSuggestion, OpaqueHiddenTypeMismatch, MaybeForgetReturn, /// Query cycle detected, stashing in favor of a better error. Cycle, UndeterminedMacroResolution, } fn default_track_diagnostic(diag: DiagInner, f: &mut dyn FnMut(DiagInner)) { (*f)(diag) } pub static TRACK_DIAGNOSTIC: AtomicRef = AtomicRef::new(&(default_track_diagnostic as _)); #[derive(Copy, Clone, Default)] pub struct DiagCtxtFlags { /// If false, warning-level lints are suppressed. /// (rustc: see `--allow warnings` and `--cap-lints`) pub can_emit_warnings: bool, /// If Some, the Nth error-level diagnostic is upgraded to bug-level. /// (rustc: see `-Z treat-err-as-bug`) pub treat_err_as_bug: Option>, /// Eagerly emit delayed bugs as errors, so that the compiler debugger may /// see all of the errors being emitted at once. pub eagerly_emit_delayed_bugs: bool, /// Show macro backtraces. /// (rustc: see `-Z macro-backtrace`) pub macro_backtrace: bool, /// If true, identical diagnostics are reported only once. pub deduplicate_diagnostics: bool, /// Track where errors are created. Enabled with `-Ztrack-diagnostics`. pub track_diagnostics: bool, } impl Drop for DiagCtxtInner { fn drop(&mut self) { // Any stashed diagnostics should have been handled by // `emit_stashed_diagnostics` by now. assert!(self.stashed_diagnostics.is_empty()); if self.err_guars.is_empty() { self.flush_delayed() } if !self.has_printed && !self.suppressed_expected_diag && !std::thread::panicking() { if self.must_produce_diag { panic!( "must_produce_diag: trimmed_def_paths called but no diagnostics emitted; \ use `DelayDm` for lints or `with_no_trimmed_paths` for debugging" ); } } if self.check_unstable_expect_diagnostics { assert!( self.unstable_expect_diagnostics.is_empty(), "all diagnostics with unstable expectations should have been converted", ); } } } impl DiagCtxt { pub fn with_tty_emitter( sm: Option>, fallback_bundle: LazyFallbackBundle, ) -> Self { let emitter = Box::new(HumanEmitter::stderr(ColorConfig::Auto, fallback_bundle).sm(sm)); Self::with_emitter(emitter) } pub fn disable_warnings(mut self) -> Self { self.inner.get_mut().flags.can_emit_warnings = false; self } pub fn with_flags(mut self, flags: DiagCtxtFlags) -> Self { self.inner.get_mut().flags = flags; self } pub fn with_ice_file(mut self, ice_file: PathBuf) -> Self { self.inner.get_mut().ice_file = Some(ice_file); self } pub fn with_emitter(emitter: Box) -> Self { Self { inner: Lock::new(DiagCtxtInner { flags: DiagCtxtFlags { can_emit_warnings: true, ..Default::default() }, err_guars: Vec::new(), lint_err_guars: Vec::new(), delayed_bugs: Vec::new(), stashed_err_count: 0, deduplicated_err_count: 0, deduplicated_warn_count: 0, emitter, must_produce_diag: false, has_printed: false, suppressed_expected_diag: false, taught_diagnostics: Default::default(), emitted_diagnostic_codes: Default::default(), emitted_diagnostics: Default::default(), stashed_diagnostics: Default::default(), future_breakage_diagnostics: Vec::new(), check_unstable_expect_diagnostics: false, unstable_expect_diagnostics: Vec::new(), fulfilled_expectations: Default::default(), ice_file: None, }), } } /// Translate `message` eagerly with `args` to `SubdiagnosticMessage::Eager`. pub fn eagerly_translate<'a>( &self, message: DiagnosticMessage, args: impl Iterator>, ) -> SubdiagnosticMessage { let inner = self.inner.borrow(); inner.eagerly_translate(message, args) } /// Translate `message` eagerly with `args` to `String`. pub fn eagerly_translate_to_string<'a>( &self, message: DiagnosticMessage, args: impl Iterator>, ) -> String { let inner = self.inner.borrow(); inner.eagerly_translate_to_string(message, args) } // This is here to not allow mutation of flags; // as of this writing it's used in Session::consider_optimizing and // in tests in rustc_interface. pub fn can_emit_warnings(&self) -> bool { self.inner.borrow_mut().flags.can_emit_warnings } /// Resets the diagnostic error count as well as the cached emitted diagnostics. /// /// NOTE: *do not* call this function from rustc. It is only meant to be called from external /// tools that want to reuse a `Parser` cleaning the previously emitted diagnostics as well as /// the overall count of emitted error diagnostics. pub fn reset_err_count(&self) { // Use destructuring so that if a field gets added to `DiagCtxtInner`, it's impossible to // fail to update this method as well. let mut inner = self.inner.borrow_mut(); let DiagCtxtInner { flags: _, err_guars, lint_err_guars, delayed_bugs, stashed_err_count, deduplicated_err_count, deduplicated_warn_count, emitter: _, must_produce_diag, has_printed, suppressed_expected_diag, taught_diagnostics, emitted_diagnostic_codes, emitted_diagnostics, stashed_diagnostics, future_breakage_diagnostics, check_unstable_expect_diagnostics, unstable_expect_diagnostics, fulfilled_expectations, ice_file: _, } = inner.deref_mut(); // For the `Vec`s and `HashMap`s, we overwrite with an empty container to free the // underlying memory (which `clear` would not do). *err_guars = Default::default(); *lint_err_guars = Default::default(); *delayed_bugs = Default::default(); *stashed_err_count = 0; *deduplicated_err_count = 0; *deduplicated_warn_count = 0; *must_produce_diag = false; *has_printed = false; *suppressed_expected_diag = false; *taught_diagnostics = Default::default(); *emitted_diagnostic_codes = Default::default(); *emitted_diagnostics = Default::default(); *stashed_diagnostics = Default::default(); *future_breakage_diagnostics = Default::default(); *check_unstable_expect_diagnostics = false; *unstable_expect_diagnostics = Default::default(); *fulfilled_expectations = Default::default(); } /// Stash a given diagnostic with the given `Span` and [`StashKey`] as the key. /// Retrieve a stashed diagnostic with `steal_diagnostic`. pub fn stash_diagnostic(&self, span: Span, key: StashKey, diag: DiagInner) { let mut inner = self.inner.borrow_mut(); let key = (span.with_parent(None), key); if diag.is_error() { if diag.is_lint.is_none() { inner.stashed_err_count += 1; } } // FIXME(Centril, #69537): Consider reintroducing panic on overwriting a stashed diagnostic // if/when we have a more robust macro-friendly replacement for `(span, key)` as a key. // See the PR for a discussion. inner.stashed_diagnostics.insert(key, diag); } /// Steal a previously stashed diagnostic with the given `Span` and [`StashKey`] as the key. pub fn steal_diagnostic(&self, span: Span, key: StashKey) -> Option> { let mut inner = self.inner.borrow_mut(); let key = (span.with_parent(None), key); // FIXME(#120456) - is `swap_remove` correct? let diag = inner.stashed_diagnostics.swap_remove(&key)?; if diag.is_error() { if diag.is_lint.is_none() { inner.stashed_err_count -= 1; } } Some(Diag::new_diagnostic(self, diag)) } pub fn has_stashed_diagnostic(&self, span: Span, key: StashKey) -> bool { self.inner.borrow().stashed_diagnostics.get(&(span.with_parent(None), key)).is_some() } /// Emit all stashed diagnostics. pub fn emit_stashed_diagnostics(&self) -> Option { self.inner.borrow_mut().emit_stashed_diagnostics() } /// This excludes lint errors, delayed bugs and stashed errors. #[inline] pub fn err_count_excluding_lint_errs(&self) -> usize { self.inner.borrow().err_guars.len() } /// This excludes delayed bugs and stashed errors. #[inline] pub fn err_count(&self) -> usize { let inner = self.inner.borrow(); inner.err_guars.len() + inner.lint_err_guars.len() } /// This excludes normal errors, lint errors, and delayed bugs. Unless /// absolutely necessary, avoid using this. It's dubious because stashed /// errors can later be cancelled, so the presence of a stashed error at /// some point of time doesn't guarantee anything -- there are no /// `ErrorGuaranteed`s here. pub fn stashed_err_count(&self) -> usize { self.inner.borrow().stashed_err_count } /// This excludes lint errors, delayed bugs, and stashed errors. Unless /// absolutely necessary, prefer `has_errors` to this method. pub fn has_errors_excluding_lint_errors(&self) -> Option { self.inner.borrow().has_errors_excluding_lint_errors() } /// This excludes delayed bugs and stashed errors. pub fn has_errors(&self) -> Option { self.inner.borrow().has_errors() } /// This excludes stashed errors. Unless absolutely necessary, prefer /// `has_errors` to this method. pub fn has_errors_or_delayed_bugs(&self) -> Option { self.inner.borrow().has_errors_or_delayed_bugs() } pub fn print_error_count(&self, registry: &Registry) { let mut inner = self.inner.borrow_mut(); // Any stashed diagnostics should have been handled by // `emit_stashed_diagnostics` by now. assert!(inner.stashed_diagnostics.is_empty()); if inner.treat_err_as_bug() { return; } let warnings = match inner.deduplicated_warn_count { 0 => Cow::from(""), 1 => Cow::from("1 warning emitted"), count => Cow::from(format!("{count} warnings emitted")), }; let errors = match inner.deduplicated_err_count { 0 => Cow::from(""), 1 => Cow::from("aborting due to 1 previous error"), count => Cow::from(format!("aborting due to {count} previous errors")), }; match (errors.len(), warnings.len()) { (0, 0) => return, (0, _) => { // Use `ForceWarning` rather than `Warning` to guarantee emission, e.g. with a // configuration like `--cap-lints allow --force-warn bare_trait_objects`. inner.emit_diagnostic(DiagInner::new( ForceWarning(None), DiagnosticMessage::Str(warnings), )); } (_, 0) => { inner.emit_diagnostic(DiagInner::new(Error, errors)); } (_, _) => { inner.emit_diagnostic(DiagInner::new(Error, format!("{errors}; {warnings}"))); } } let can_show_explain = inner.emitter.should_show_explain(); let are_there_diagnostics = !inner.emitted_diagnostic_codes.is_empty(); if can_show_explain && are_there_diagnostics { let mut error_codes = inner .emitted_diagnostic_codes .iter() .filter_map(|&code| { if registry.try_find_description(code).is_ok() { Some(code.to_string()) } else { None } }) .collect::>(); if !error_codes.is_empty() { error_codes.sort(); if error_codes.len() > 1 { let limit = if error_codes.len() > 9 { 9 } else { error_codes.len() }; let msg1 = format!( "Some errors have detailed explanations: {}{}", error_codes[..limit].join(", "), if error_codes.len() > 9 { "..." } else { "." } ); let msg2 = format!( "For more information about an error, try `rustc --explain {}`.", &error_codes[0] ); inner.emit_diagnostic(DiagInner::new(FailureNote, msg1)); inner.emit_diagnostic(DiagInner::new(FailureNote, msg2)); } else { let msg = format!( "For more information about this error, try `rustc --explain {}`.", &error_codes[0] ); inner.emit_diagnostic(DiagInner::new(FailureNote, msg)); } } } } /// This excludes delayed bugs and stashed errors. Used for early aborts /// after errors occurred -- e.g. because continuing in the face of errors is /// likely to lead to bad results, such as spurious/uninteresting /// additional errors -- when returning an error `Result` is difficult. pub fn abort_if_errors(&self) { if self.has_errors().is_some() { FatalError.raise(); } } /// `true` if we haven't taught a diagnostic with this code already. /// The caller must then teach the user about such a diagnostic. /// /// Used to suppress emitting the same error multiple times with extended explanation when /// calling `-Zteach`. pub fn must_teach(&self, code: ErrCode) -> bool { self.inner.borrow_mut().taught_diagnostics.insert(code) } pub fn emit_diagnostic(&self, diagnostic: DiagInner) -> Option { self.inner.borrow_mut().emit_diagnostic(diagnostic) } pub fn emit_artifact_notification(&self, path: &Path, artifact_type: &str) { self.inner.borrow_mut().emitter.emit_artifact_notification(path, artifact_type); } pub fn emit_future_breakage_report(&self) { let mut inner = self.inner.borrow_mut(); let diags = std::mem::take(&mut inner.future_breakage_diagnostics); if !diags.is_empty() { inner.emitter.emit_future_breakage_report(diags); } } pub fn emit_unused_externs( &self, lint_level: rustc_lint_defs::Level, loud: bool, unused_externs: &[&str], ) { let mut inner = self.inner.borrow_mut(); // This "error" is an odd duck. // - It's only produce with JSON output. // - It's not emitted the usual way, via `emit_diagnostic`. // - The `$message_type` field is "unused_externs" rather than the usual // "diagnosic". // // We count it as a lint error because it has a lint level. The value // of `loud` (which comes from "unused-externs" or // "unused-externs-silent"), also affects whether it's treated like a // hard error or not. if loud && lint_level.is_error() { // This `unchecked_error_guaranteed` is valid. It is where the // `ErrorGuaranteed` for unused_extern errors originates. #[allow(deprecated)] inner.lint_err_guars.push(ErrorGuaranteed::unchecked_error_guaranteed()); inner.panic_if_treat_err_as_bug(); } inner.emitter.emit_unused_externs(lint_level, unused_externs) } pub fn update_unstable_expectation_id( &self, unstable_to_stable: &FxIndexMap, ) { let mut inner = self.inner.borrow_mut(); let diags = std::mem::take(&mut inner.unstable_expect_diagnostics); inner.check_unstable_expect_diagnostics = true; if !diags.is_empty() { inner.suppressed_expected_diag = true; for mut diag in diags.into_iter() { diag.update_unstable_expectation_id(unstable_to_stable); // Here the diagnostic is given back to `emit_diagnostic` where it was first // intercepted. Now it should be processed as usual, since the unstable expectation // id is now stable. inner.emit_diagnostic(diag); } } inner .stashed_diagnostics .values_mut() .for_each(|diag| diag.update_unstable_expectation_id(unstable_to_stable)); inner .future_breakage_diagnostics .iter_mut() .for_each(|diag| diag.update_unstable_expectation_id(unstable_to_stable)); } /// This methods steals all [`LintExpectationId`]s that are stored inside /// [`DiagCtxtInner`] and indicate that the linked expectation has been fulfilled. #[must_use] pub fn steal_fulfilled_expectation_ids(&self) -> FxHashSet { assert!( self.inner.borrow().unstable_expect_diagnostics.is_empty(), "`DiagCtxtInner::unstable_expect_diagnostics` should be empty at this point", ); std::mem::take(&mut self.inner.borrow_mut().fulfilled_expectations) } pub fn flush_delayed(&self) { self.inner.borrow_mut().flush_delayed(); } /// Used when trimmed_def_paths is called and we must produce a diagnostic /// to justify its cost. pub fn set_must_produce_diag(&self) { self.inner.borrow_mut().must_produce_diag = true; } } // This `impl` block contains only the public diagnostic creation/emission API. // // Functions beginning with `struct_`/`create_` create a diagnostic. Other // functions create and emit a diagnostic all in one go. impl DiagCtxt { // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn struct_bug(&self, msg: impl Into) -> Diag<'_, BugAbort> { Diag::new(self, Bug, msg) } // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn bug(&self, msg: impl Into) -> ! { self.struct_bug(msg).emit() } // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn struct_span_bug( &self, span: impl Into, msg: impl Into, ) -> Diag<'_, BugAbort> { self.struct_bug(msg).with_span(span) } // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn span_bug(&self, span: impl Into, msg: impl Into) -> ! { self.struct_span_bug(span, msg).emit() } #[track_caller] pub fn create_bug<'a>(&'a self, bug: impl IntoDiagnostic<'a, BugAbort>) -> Diag<'a, BugAbort> { bug.into_diagnostic(self, Bug) } #[track_caller] pub fn emit_bug<'a>(&'a self, bug: impl IntoDiagnostic<'a, BugAbort>) -> ! { self.create_bug(bug).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_fatal(&self, msg: impl Into) -> Diag<'_, FatalAbort> { Diag::new(self, Fatal, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn fatal(&self, msg: impl Into) -> ! { self.struct_fatal(msg).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_span_fatal( &self, span: impl Into, msg: impl Into, ) -> Diag<'_, FatalAbort> { self.struct_fatal(msg).with_span(span) } #[rustc_lint_diagnostics] #[track_caller] pub fn span_fatal(&self, span: impl Into, msg: impl Into) -> ! { self.struct_span_fatal(span, msg).emit() } #[track_caller] pub fn create_fatal<'a>( &'a self, fatal: impl IntoDiagnostic<'a, FatalAbort>, ) -> Diag<'a, FatalAbort> { fatal.into_diagnostic(self, Fatal) } #[track_caller] pub fn emit_fatal<'a>(&'a self, fatal: impl IntoDiagnostic<'a, FatalAbort>) -> ! { self.create_fatal(fatal).emit() } #[track_caller] pub fn create_almost_fatal<'a>( &'a self, fatal: impl IntoDiagnostic<'a, FatalError>, ) -> Diag<'a, FatalError> { fatal.into_diagnostic(self, Fatal) } #[track_caller] pub fn emit_almost_fatal<'a>( &'a self, fatal: impl IntoDiagnostic<'a, FatalError>, ) -> FatalError { self.create_almost_fatal(fatal).emit() } // FIXME: This method should be removed (every error should have an associated error code). #[rustc_lint_diagnostics] #[track_caller] pub fn struct_err(&self, msg: impl Into) -> Diag<'_> { Diag::new(self, Error, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn err(&self, msg: impl Into) -> ErrorGuaranteed { self.struct_err(msg).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_span_err( &self, span: impl Into, msg: impl Into, ) -> Diag<'_> { self.struct_err(msg).with_span(span) } #[rustc_lint_diagnostics] #[track_caller] pub fn span_err( &self, span: impl Into, msg: impl Into, ) -> ErrorGuaranteed { self.struct_span_err(span, msg).emit() } #[track_caller] pub fn create_err<'a>(&'a self, err: impl IntoDiagnostic<'a>) -> Diag<'a> { err.into_diagnostic(self, Error) } #[track_caller] pub fn emit_err<'a>(&'a self, err: impl IntoDiagnostic<'a>) -> ErrorGuaranteed { self.create_err(err).emit() } /// Ensures that an error is printed. See `Level::DelayedBug`. // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn delayed_bug(&self, msg: impl Into) -> ErrorGuaranteed { Diag::::new(self, DelayedBug, msg).emit() } /// Ensures that an error is printed. See `Level::DelayedBug`. /// /// Note: this function used to be called `delay_span_bug`. It was renamed /// to match similar functions like `span_err`, `span_warn`, etc. // No `#[rustc_lint_diagnostics]` because bug messages aren't user-facing. #[track_caller] pub fn span_delayed_bug( &self, sp: impl Into, msg: impl Into, ) -> ErrorGuaranteed { Diag::::new(self, DelayedBug, msg).with_span(sp).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_warn(&self, msg: impl Into) -> Diag<'_, ()> { Diag::new(self, Warning, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn warn(&self, msg: impl Into) { self.struct_warn(msg).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_span_warn( &self, span: impl Into, msg: impl Into, ) -> Diag<'_, ()> { self.struct_warn(msg).with_span(span) } #[rustc_lint_diagnostics] #[track_caller] pub fn span_warn(&self, span: impl Into, msg: impl Into) { self.struct_span_warn(span, msg).emit() } #[track_caller] pub fn create_warn<'a>(&'a self, warning: impl IntoDiagnostic<'a, ()>) -> Diag<'a, ()> { warning.into_diagnostic(self, Warning) } #[track_caller] pub fn emit_warn<'a>(&'a self, warning: impl IntoDiagnostic<'a, ()>) { self.create_warn(warning).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_note(&self, msg: impl Into) -> Diag<'_, ()> { Diag::new(self, Note, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn note(&self, msg: impl Into) { self.struct_note(msg).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_span_note( &self, span: impl Into, msg: impl Into, ) -> Diag<'_, ()> { self.struct_note(msg).with_span(span) } #[rustc_lint_diagnostics] #[track_caller] pub fn span_note(&self, span: impl Into, msg: impl Into) { self.struct_span_note(span, msg).emit() } #[track_caller] pub fn create_note<'a>(&'a self, note: impl IntoDiagnostic<'a, ()>) -> Diag<'a, ()> { note.into_diagnostic(self, Note) } #[track_caller] pub fn emit_note<'a>(&'a self, note: impl IntoDiagnostic<'a, ()>) { self.create_note(note).emit() } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_help(&self, msg: impl Into) -> Diag<'_, ()> { Diag::new(self, Help, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_failure_note(&self, msg: impl Into) -> Diag<'_, ()> { Diag::new(self, FailureNote, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_allow(&self, msg: impl Into) -> Diag<'_, ()> { Diag::new(self, Allow, msg) } #[rustc_lint_diagnostics] #[track_caller] pub fn struct_expect( &self, msg: impl Into, id: LintExpectationId, ) -> Diag<'_, ()> { Diag::new(self, Expect(id), msg) } } // Note: we prefer implementing operations on `DiagCtxt`, rather than // `DiagCtxtInner`, whenever possible. This minimizes functions where // `DiagCtxt::foo()` just borrows `inner` and forwards a call to // `DiagCtxtInner::foo`. impl DiagCtxtInner { /// Emit all stashed diagnostics. fn emit_stashed_diagnostics(&mut self) -> Option { let mut guar = None; let has_errors = !self.err_guars.is_empty(); for (_, diag) in std::mem::take(&mut self.stashed_diagnostics).into_iter() { if diag.is_error() { if diag.is_lint.is_none() { self.stashed_err_count -= 1; } } else { // Unless they're forced, don't flush stashed warnings when // there are errors, to avoid causing warning overload. The // stash would've been stolen already if it were important. if !diag.is_force_warn() && has_errors { continue; } } guar = guar.or(self.emit_diagnostic(diag)); } guar } // Return value is only `Some` if the level is `Error` or `DelayedBug`. fn emit_diagnostic(&mut self, mut diagnostic: DiagInner) -> Option { assert!(diagnostic.level.can_be_top_or_sub().0); if let Some(expectation_id) = diagnostic.level.get_expectation_id() { // The `LintExpectationId` can be stable or unstable depending on when it was created. // Diagnostics created before the definition of `HirId`s are unstable and can not yet // be stored. Instead, they are buffered until the `LintExpectationId` is replaced by // a stable one by the `LintLevelsBuilder`. if let LintExpectationId::Unstable { .. } = expectation_id { self.unstable_expect_diagnostics.push(diagnostic); return None; } self.suppressed_expected_diag = true; self.fulfilled_expectations.insert(expectation_id.normalize()); } if diagnostic.has_future_breakage() { // Future breakages aren't emitted if they're Level::Allow, // but they still need to be constructed and stashed below, // so they'll trigger the must_produce_diag check. self.suppressed_expected_diag = true; self.future_breakage_diagnostics.push(diagnostic.clone()); } // Note that because this comes before the `match` below, // `-Zeagerly-emit-delayed-bugs` continues to work even after we've // issued an error and stopped recording new delayed bugs. if diagnostic.level == DelayedBug && self.flags.eagerly_emit_delayed_bugs { diagnostic.level = Error; } match diagnostic.level { // This must come after the possible promotion of `DelayedBug` to // `Error` above. Fatal | Error if self.treat_next_err_as_bug() => { diagnostic.level = Bug; } DelayedBug => { // If we have already emitted at least one error, we don't need // to record the delayed bug, because it'll never be used. return if let Some(guar) = self.has_errors() { Some(guar) } else { let backtrace = std::backtrace::Backtrace::capture(); // This `unchecked_error_guaranteed` is valid. It is where the // `ErrorGuaranteed` for delayed bugs originates. #[allow(deprecated)] let guar = ErrorGuaranteed::unchecked_error_guaranteed(); self.delayed_bugs .push((DelayedDiagInner::with_backtrace(diagnostic, backtrace), guar)); Some(guar) }; } Warning if !self.flags.can_emit_warnings => { if diagnostic.has_future_breakage() { (*TRACK_DIAGNOSTIC)(diagnostic, &mut |_| {}); } return None; } Allow | Expect(_) => { (*TRACK_DIAGNOSTIC)(diagnostic, &mut |_| {}); return None; } _ => {} } let mut guaranteed = None; (*TRACK_DIAGNOSTIC)(diagnostic, &mut |mut diagnostic| { if let Some(code) = diagnostic.code { self.emitted_diagnostic_codes.insert(code); } let already_emitted = { let mut hasher = StableHasher::new(); diagnostic.hash(&mut hasher); let diagnostic_hash = hasher.finish(); !self.emitted_diagnostics.insert(diagnostic_hash) }; let is_error = diagnostic.is_error(); let is_lint = diagnostic.is_lint.is_some(); // Only emit the diagnostic if we've been asked to deduplicate or // haven't already emitted an equivalent diagnostic. if !(self.flags.deduplicate_diagnostics && already_emitted) { debug!(?diagnostic); debug!(?self.emitted_diagnostics); let already_emitted_sub = |sub: &mut Subdiag| { debug!(?sub); if sub.level != OnceNote && sub.level != OnceHelp { return false; } let mut hasher = StableHasher::new(); sub.hash(&mut hasher); let diagnostic_hash = hasher.finish(); debug!(?diagnostic_hash); !self.emitted_diagnostics.insert(diagnostic_hash) }; diagnostic.children.extract_if(already_emitted_sub).for_each(|_| {}); if already_emitted { let msg = "duplicate diagnostic emitted due to `-Z deduplicate-diagnostics=no`"; diagnostic.sub(Level::Note, msg, MultiSpan::new()); } if is_error { self.deduplicated_err_count += 1; } else if matches!(diagnostic.level, ForceWarning(_) | Warning) { self.deduplicated_warn_count += 1; } self.has_printed = true; self.emitter.emit_diagnostic(diagnostic); } if is_error { // If we have any delayed bugs recorded, we can discard them // because they won't be used. (This should only occur if there // have been no errors previously emitted, because we don't add // new delayed bugs once the first error is emitted.) if !self.delayed_bugs.is_empty() { assert_eq!(self.lint_err_guars.len() + self.err_guars.len(), 0); self.delayed_bugs.clear(); self.delayed_bugs.shrink_to_fit(); } // This `unchecked_error_guaranteed` is valid. It is where the // `ErrorGuaranteed` for errors and lint errors originates. #[allow(deprecated)] let guar = ErrorGuaranteed::unchecked_error_guaranteed(); guaranteed = Some(guar); if is_lint { self.lint_err_guars.push(guar); } else { self.err_guars.push(guar); } self.panic_if_treat_err_as_bug(); } }); guaranteed } fn treat_err_as_bug(&self) -> bool { self.flags .treat_err_as_bug .is_some_and(|c| self.err_guars.len() + self.lint_err_guars.len() >= c.get()) } // Use this one before incrementing `err_count`. fn treat_next_err_as_bug(&self) -> bool { self.flags .treat_err_as_bug .is_some_and(|c| self.err_guars.len() + self.lint_err_guars.len() + 1 >= c.get()) } fn has_errors_excluding_lint_errors(&self) -> Option { self.err_guars.get(0).copied() } fn has_errors(&self) -> Option { self.has_errors_excluding_lint_errors().or_else(|| self.lint_err_guars.get(0).copied()) } fn has_errors_or_delayed_bugs(&self) -> Option { self.has_errors().or_else(|| self.delayed_bugs.get(0).map(|(_, guar)| guar).copied()) } /// Translate `message` eagerly with `args` to `SubdiagnosticMessage::Eager`. pub fn eagerly_translate<'a>( &self, message: DiagnosticMessage, args: impl Iterator>, ) -> SubdiagnosticMessage { SubdiagnosticMessage::Translated(Cow::from(self.eagerly_translate_to_string(message, args))) } /// Translate `message` eagerly with `args` to `String`. pub fn eagerly_translate_to_string<'a>( &self, message: DiagnosticMessage, args: impl Iterator>, ) -> String { let args = crate::translation::to_fluent_args(args); self.emitter.translate_message(&message, &args).map_err(Report::new).unwrap().to_string() } fn eagerly_translate_for_subdiag( &self, diag: &DiagInner, msg: impl Into, ) -> SubdiagnosticMessage { let msg = diag.subdiagnostic_message_to_diagnostic_message(msg); self.eagerly_translate(msg, diag.args.iter()) } fn flush_delayed(&mut self) { // Stashed diagnostics must be emitted before delayed bugs are flushed. // Otherwise, we might ICE prematurely when errors would have // eventually happened. assert!(self.stashed_diagnostics.is_empty()); if self.delayed_bugs.is_empty() { return; } let bugs: Vec<_> = std::mem::take(&mut self.delayed_bugs).into_iter().map(|(b, _)| b).collect(); let backtrace = std::env::var_os("RUST_BACKTRACE").map_or(true, |x| &x != "0"); let decorate = backtrace || self.ice_file.is_none(); let mut out = self .ice_file .as_ref() .and_then(|file| std::fs::File::options().create(true).append(true).open(file).ok()); // Put the overall explanation before the `DelayedBug`s, to frame them // better (e.g. separate warnings from them). Also, use notes, which // don't count as errors, to avoid possibly triggering // `-Ztreat-err-as-bug`, which we don't want. let note1 = "no errors encountered even though delayed bugs were created"; let note2 = "those delayed bugs will now be shown as internal compiler errors"; self.emit_diagnostic(DiagInner::new(Note, note1)); self.emit_diagnostic(DiagInner::new(Note, note2)); for bug in bugs { if let Some(out) = &mut out { _ = write!( out, "delayed bug: {}\n{}\n", bug.inner .messages .iter() .filter_map(|(msg, _)| msg.as_str()) .collect::(), &bug.note ); } let mut bug = if decorate { bug.decorate(self) } else { bug.inner }; // "Undelay" the delayed bugs into plain bugs. if bug.level != DelayedBug { // NOTE(eddyb) not panicking here because we're already producing // an ICE, and the more information the merrier. // // We are at the `DiagInner`/`DiagCtxtInner` level rather than // the usual `Diag`/`DiagCtxt` level, so we must augment `bug` // in a lower-level fashion. bug.arg("level", bug.level); let msg = crate::fluent_generated::errors_invalid_flushed_delayed_diagnostic_level; let msg = self.eagerly_translate_for_subdiag(&bug, msg); // after the `arg` call bug.sub(Level::Note, msg, bug.span.primary_span().unwrap().into()); } bug.level = Bug; self.emit_diagnostic(bug); } // Panic with `DelayedBugPanic` to avoid "unexpected panic" messages. panic::panic_any(DelayedBugPanic); } fn panic_if_treat_err_as_bug(&self) { if self.treat_err_as_bug() { let n = self.flags.treat_err_as_bug.map(|c| c.get()).unwrap(); assert_eq!(n, self.err_guars.len() + self.lint_err_guars.len()); if n == 1 { panic!("aborting due to `-Z treat-err-as-bug=1`"); } else { panic!("aborting after {n} errors due to `-Z treat-err-as-bug={n}`"); } } } } struct DelayedDiagInner { inner: DiagInner, note: Backtrace, } impl DelayedDiagInner { fn with_backtrace(diagnostic: DiagInner, backtrace: Backtrace) -> Self { DelayedDiagInner { inner: diagnostic, note: backtrace } } fn decorate(self, dcx: &DiagCtxtInner) -> DiagInner { // We are at the `DiagInner`/`DiagCtxtInner` level rather than the // usual `Diag`/`DiagCtxt` level, so we must construct `diag` in a // lower-level fashion. let mut diag = self.inner; let msg = match self.note.status() { BacktraceStatus::Captured => crate::fluent_generated::errors_delayed_at_with_newline, // Avoid the needless newline when no backtrace has been captured, // the display impl should just be a single line. _ => crate::fluent_generated::errors_delayed_at_without_newline, }; diag.arg("emitted_at", diag.emitted_at.clone()); diag.arg("note", self.note); let msg = dcx.eagerly_translate_for_subdiag(&diag, msg); // after the `arg` calls diag.sub(Level::Note, msg, diag.span.primary_span().unwrap_or(DUMMY_SP).into()); diag } } /// Level is_error EmissionGuarantee Top-level Sub Used in lints? /// ----- -------- ----------------- --------- --- -------------- /// Bug yes BugAbort yes - - /// Fatal yes FatalAbort/FatalError(*) yes - - /// Error yes ErrorGuaranteed yes - yes /// DelayedBug yes ErrorGuaranteed yes - - /// ForceWarning - () yes - lint-only /// Warning - () yes yes yes /// Note - () rare yes - /// OnceNote - () - yes lint-only /// Help - () rare yes - /// OnceHelp - () - yes lint-only /// FailureNote - () rare - - /// Allow - () yes - lint-only /// Expect - () yes - lint-only /// /// (*) `FatalAbort` normally, `FatalError` in the non-aborting "almost fatal" case that is /// occasionally used. /// #[derive(Copy, PartialEq, Eq, Clone, Hash, Debug, Encodable, Decodable)] pub enum Level { /// For bugs in the compiler. Manifests as an ICE (internal compiler error) panic. Bug, /// An error that causes an immediate abort. Used for things like configuration errors, /// internal overflows, some file operation errors. Fatal, /// An error in the code being compiled, which prevents compilation from finishing. This is the /// most common case. Error, /// This is a strange one: lets you register an error without emitting it. If compilation ends /// without any other errors occurring, this will be emitted as a bug. Otherwise, it will be /// silently dropped. I.e. "expect other errors are emitted" semantics. Useful on code paths /// that should only be reached when compiling erroneous code. DelayedBug, /// A `force-warn` lint warning about the code being compiled. Does not prevent compilation /// from finishing. /// /// The [`LintExpectationId`] is used for expected lint diagnostics. In all other cases this /// should be `None`. ForceWarning(Option), /// A warning about the code being compiled. Does not prevent compilation from finishing. /// Will be skipped if `can_emit_warnings` is false. Warning, /// A message giving additional context. Note, /// A note that is only emitted once. OnceNote, /// A message suggesting how to fix something. Help, /// A help that is only emitted once. OnceHelp, /// Similar to `Note`, but used in cases where compilation has failed. When printed for human /// consumption, it doesn't have any kind of `note:` label. FailureNote, /// Only used for lints. Allow, /// Only used for lints. Expect(LintExpectationId), } impl fmt::Display for Level { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.to_str().fmt(f) } } impl Level { fn color(self) -> ColorSpec { let mut spec = ColorSpec::new(); match self { Bug | Fatal | Error | DelayedBug => { spec.set_fg(Some(Color::Red)).set_intense(true); } ForceWarning(_) | Warning => { spec.set_fg(Some(Color::Yellow)).set_intense(cfg!(windows)); } Note | OnceNote => { spec.set_fg(Some(Color::Green)).set_intense(true); } Help | OnceHelp => { spec.set_fg(Some(Color::Cyan)).set_intense(true); } FailureNote => {} Allow | Expect(_) => unreachable!(), } spec } pub fn to_str(self) -> &'static str { match self { Bug | DelayedBug => "error: internal compiler error", Fatal | Error => "error", ForceWarning(_) | Warning => "warning", Note | OnceNote => "note", Help | OnceHelp => "help", FailureNote => "failure-note", Allow | Expect(_) => unreachable!(), } } pub fn is_failure_note(&self) -> bool { matches!(*self, FailureNote) } pub fn get_expectation_id(&self) -> Option { match self { Expect(id) | ForceWarning(Some(id)) => Some(*id), _ => None, } } // Can this level be used in a top-level diagnostic message and/or a // subdiagnostic message? fn can_be_top_or_sub(&self) -> (bool, bool) { match self { Bug | DelayedBug | Fatal | Error | ForceWarning(_) | FailureNote | Allow | Expect(_) => (true, false), Warning | Note | Help => (true, true), OnceNote | OnceHelp => (false, true), } } } // FIXME(eddyb) this doesn't belong here AFAICT, should be moved to callsite. pub fn add_elided_lifetime_in_path_suggestion( source_map: &SourceMap, diag: &mut Diag<'_, G>, n: usize, path_span: Span, incl_angl_brckt: bool, insertion_span: Span, ) { diag.subdiagnostic(diag.dcx, ExpectedLifetimeParameter { span: path_span, count: n }); if !source_map.is_span_accessible(insertion_span) { // Do not try to suggest anything if generated by a proc-macro. return; } let anon_lts = vec!["'_"; n].join(", "); let suggestion = if incl_angl_brckt { format!("<{anon_lts}>") } else { format!("{anon_lts}, ") }; diag.subdiagnostic( diag.dcx, IndicateAnonymousLifetime { span: insertion_span.shrink_to_hi(), count: n, suggestion }, ); } pub fn report_ambiguity_error<'a, G: EmissionGuarantee>( diag: &mut Diag<'a, G>, ambiguity: rustc_lint_defs::AmbiguityErrorDiag, ) { diag.span_label(ambiguity.label_span, ambiguity.label_msg); diag.note(ambiguity.note_msg); diag.span_note(ambiguity.b1_span, ambiguity.b1_note_msg); for help_msg in ambiguity.b1_help_msgs { diag.help(help_msg); } diag.span_note(ambiguity.b2_span, ambiguity.b2_note_msg); for help_msg in ambiguity.b2_help_msgs { diag.help(help_msg); } } #[derive(Clone, Copy, PartialEq, Hash, Debug)] pub enum TerminalUrl { No, Yes, Auto, }