#![stable(feature = "duration_core", since = "1.25.0")] //! Temporal quantification. //! //! Example: //! //! ``` //! use std::time::Duration; //! //! let five_seconds = Duration::new(5, 0); //! // both declarations are equivalent //! assert_eq!(Duration::new(5, 0), Duration::from_secs(5)); //! ``` use crate::{fmt, u64}; use crate::iter::Sum; use crate::ops::{Add, Sub, Mul, Div, AddAssign, SubAssign, MulAssign, DivAssign}; const NANOS_PER_SEC: u32 = 1_000_000_000; const NANOS_PER_MILLI: u32 = 1_000_000; const NANOS_PER_MICRO: u32 = 1_000; const MILLIS_PER_SEC: u64 = 1_000; const MICROS_PER_SEC: u64 = 1_000_000; /// A `Duration` type to represent a span of time, typically used for system /// timeouts. /// /// Each `Duration` is composed of a whole number of seconds and a fractional part /// represented in nanoseconds. If the underlying system does not support /// nanosecond-level precision, APIs binding a system timeout will typically round up /// the number of nanoseconds. /// /// `Duration`s implement many common traits, including [`Add`], [`Sub`], and other /// [`ops`] traits. /// /// [`Add`]: ../../std/ops/trait.Add.html /// [`Sub`]: ../../std/ops/trait.Sub.html /// [`ops`]: ../../std/ops/index.html /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let five_seconds = Duration::new(5, 0); /// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5); /// /// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5); /// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5); /// /// let ten_millis = Duration::from_millis(10); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] pub struct Duration { secs: u64, nanos: u32, // Always 0 <= nanos < NANOS_PER_SEC } impl Duration { /// The duration of one second. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::SECOND, Duration::from_secs(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const SECOND: Duration = Duration::from_secs(1); /// The duration of one millisecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const MILLISECOND: Duration = Duration::from_millis(1); /// The duration of one microsecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const MICROSECOND: Duration = Duration::from_micros(1); /// The duration of one nanosecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const NANOSECOND: Duration = Duration::from_nanos(1); /// Creates a new `Duration` from the specified number of whole seconds and /// additional nanoseconds. /// /// If the number of nanoseconds is greater than 1 billion (the number of /// nanoseconds in a second), then it will carry over into the seconds provided. /// /// # Panics /// /// This constructor will panic if the carry from the nanoseconds overflows /// the seconds counter. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let five_seconds = Duration::new(5, 0); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[inline] pub fn new(secs: u64, nanos: u32) -> Duration { let secs = secs.checked_add((nanos / NANOS_PER_SEC) as u64) .expect("overflow in Duration::new"); let nanos = nanos % NANOS_PER_SEC; Duration { secs, nanos } } /// Creates a new `Duration` from the specified number of whole seconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_secs(5); /// /// assert_eq!(5, duration.as_secs()); /// assert_eq!(0, duration.subsec_nanos()); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[inline] #[rustc_promotable] pub const fn from_secs(secs: u64) -> Duration { Duration { secs, nanos: 0 } } /// Creates a new `Duration` from the specified number of milliseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(2569); /// /// assert_eq!(2, duration.as_secs()); /// assert_eq!(569_000_000, duration.subsec_nanos()); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[inline] #[rustc_promotable] pub const fn from_millis(millis: u64) -> Duration { Duration { secs: millis / MILLIS_PER_SEC, nanos: ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI, } } /// Creates a new `Duration` from the specified number of microseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_000_002); /// /// assert_eq!(1, duration.as_secs()); /// assert_eq!(2000, duration.subsec_nanos()); /// ``` #[stable(feature = "duration_from_micros", since = "1.27.0")] #[inline] #[rustc_promotable] pub const fn from_micros(micros: u64) -> Duration { Duration { secs: micros / MICROS_PER_SEC, nanos: ((micros % MICROS_PER_SEC) as u32) * NANOS_PER_MICRO, } } /// Creates a new `Duration` from the specified number of nanoseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_nanos(1_000_000_123); /// /// assert_eq!(1, duration.as_secs()); /// assert_eq!(123, duration.subsec_nanos()); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] #[rustc_promotable] pub const fn from_nanos(nanos: u64) -> Duration { Duration { secs: nanos / (NANOS_PER_SEC as u64), nanos: (nanos % (NANOS_PER_SEC as u64)) as u32, } } /// Returns the number of _whole_ seconds contained by this `Duration`. /// /// The returned value does not include the fractional (nanosecond) part of the /// duration, which can be obtained using [`subsec_nanos`]. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_secs(), 5); /// ``` /// /// To determine the total number of seconds represented by the `Duration`, /// use `as_secs` in combination with [`subsec_nanos`]: /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// /// assert_eq!(5.730023852, /// duration.as_secs() as f64 /// + duration.subsec_nanos() as f64 * 1e-9); /// ``` /// /// [`subsec_nanos`]: #method.subsec_nanos #[stable(feature = "duration", since = "1.3.0")] #[inline] pub const fn as_secs(&self) -> u64 { self.secs } /// Returns the fractional part of this `Duration`, in whole milliseconds. /// /// This method does **not** return the length of the duration when /// represented by milliseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one thousand). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(5432); /// assert_eq!(duration.as_secs(), 5); /// assert_eq!(duration.subsec_millis(), 432); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] pub const fn subsec_millis(&self) -> u32 { self.nanos / NANOS_PER_MILLI } /// Returns the fractional part of this `Duration`, in whole microseconds. /// /// This method does **not** return the length of the duration when /// represented by microseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one million). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_234_567); /// assert_eq!(duration.as_secs(), 1); /// assert_eq!(duration.subsec_micros(), 234_567); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] pub const fn subsec_micros(&self) -> u32 { self.nanos / NANOS_PER_MICRO } /// Returns the fractional part of this `Duration`, in nanoseconds. /// /// This method does **not** return the length of the duration when /// represented by nanoseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one billion). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(5010); /// assert_eq!(duration.as_secs(), 5); /// assert_eq!(duration.subsec_nanos(), 10_000_000); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[inline] pub const fn subsec_nanos(&self) -> u32 { self.nanos } /// Returns the total number of whole milliseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_millis(), 5730); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[inline] pub const fn as_millis(&self) -> u128 { self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos / NANOS_PER_MILLI) as u128 } /// Returns the total number of whole microseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_micros(), 5730023); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[inline] pub const fn as_micros(&self) -> u128 { self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos / NANOS_PER_MICRO) as u128 } /// Returns the total number of nanoseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_nanos(), 5730023852); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[inline] pub const fn as_nanos(&self) -> u128 { self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos as u128 } /// Checked `Duration` addition. Computes `self + other`, returning [`None`] /// if overflow occurred. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1))); /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(std::u64::MAX, 0)), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[inline] pub fn checked_add(self, rhs: Duration) -> Option { if let Some(mut secs) = self.secs.checked_add(rhs.secs) { let mut nanos = self.nanos + rhs.nanos; if nanos >= NANOS_PER_SEC { nanos -= NANOS_PER_SEC; if let Some(new_secs) = secs.checked_add(1) { secs = new_secs; } else { return None; } } debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos, }) } else { None } } /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`] /// if the result would be negative or if overflow occurred. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1))); /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[inline] pub fn checked_sub(self, rhs: Duration) -> Option { if let Some(mut secs) = self.secs.checked_sub(rhs.secs) { let nanos = if self.nanos >= rhs.nanos { self.nanos - rhs.nanos } else { if let Some(sub_secs) = secs.checked_sub(1) { secs = sub_secs; self.nanos + NANOS_PER_SEC - rhs.nanos } else { return None; } }; debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos }) } else { None } } /// Checked `Duration` multiplication. Computes `self * other`, returning /// [`None`] if overflow occurred. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2))); /// assert_eq!(Duration::new(std::u64::MAX - 1, 0).checked_mul(2), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[inline] pub fn checked_mul(self, rhs: u32) -> Option { // Multiply nanoseconds as u64, because it cannot overflow that way. let total_nanos = self.nanos as u64 * rhs as u64; let extra_secs = total_nanos / (NANOS_PER_SEC as u64); let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32; if let Some(secs) = self.secs .checked_mul(rhs as u64) .and_then(|s| s.checked_add(extra_secs)) { debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos, }) } else { None } } /// Checked `Duration` division. Computes `self / other`, returning [`None`] /// if `other == 0`. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0))); /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000))); /// assert_eq!(Duration::new(2, 0).checked_div(0), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[inline] pub fn checked_div(self, rhs: u32) -> Option { if rhs != 0 { let secs = self.secs / (rhs as u64); let carry = self.secs - secs * (rhs as u64); let extra_nanos = carry * (NANOS_PER_SEC as u64) / (rhs as u64); let nanos = self.nanos / rhs + (extra_nanos as u32); debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos }) } else { None } } /// Returns the number of seconds contained by this `Duration` as `f64`. /// /// The returned value does include the fractional (nanosecond) part of the duration. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.as_secs_f64(), 2.7); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn as_secs_f64(&self) -> f64 { (self.secs as f64) + (self.nanos as f64) / (NANOS_PER_SEC as f64) } /// Returns the number of seconds contained by this `Duration` as `f32`. /// /// The returned value does include the fractional (nanosecond) part of the duration. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.as_secs_f32(), 2.7); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn as_secs_f32(&self) -> f32 { (self.secs as f32) + (self.nanos as f32) / (NANOS_PER_SEC as f32) } /// Creates a new `Duration` from the specified number of seconds represented /// as `f64`. /// /// # Panics /// This constructor will panic if `secs` is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::from_secs_f64(2.7); /// assert_eq!(dur, Duration::new(2, 700_000_000)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn from_secs_f64(secs: f64) -> Duration { const MAX_NANOS_F64: f64 = ((u64::MAX as u128 + 1)*(NANOS_PER_SEC as u128)) as f64; let nanos = secs * (NANOS_PER_SEC as f64); if !nanos.is_finite() { panic!("got non-finite value when converting float to duration"); } if nanos >= MAX_NANOS_F64 { panic!("overflow when converting float to duration"); } if nanos < 0.0 { panic!("underflow when converting float to duration"); } let nanos = nanos as u128; Duration { secs: (nanos / (NANOS_PER_SEC as u128)) as u64, nanos: (nanos % (NANOS_PER_SEC as u128)) as u32, } } /// Creates a new `Duration` from the specified number of seconds represented /// as `f32`. /// /// # Panics /// This constructor will panic if `secs` is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::from_secs_f32(2.7); /// assert_eq!(dur, Duration::new(2, 700_000_000)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn from_secs_f32(secs: f32) -> Duration { const MAX_NANOS_F32: f32 = ((u64::MAX as u128 + 1)*(NANOS_PER_SEC as u128)) as f32; let nanos = secs * (NANOS_PER_SEC as f32); if !nanos.is_finite() { panic!("got non-finite value when converting float to duration"); } if nanos >= MAX_NANOS_F32 { panic!("overflow when converting float to duration"); } if nanos < 0.0 { panic!("underflow when converting float to duration"); } let nanos = nanos as u128; Duration { secs: (nanos / (NANOS_PER_SEC as u128)) as u64, nanos: (nanos % (NANOS_PER_SEC as u128)) as u32, } } /// Multiplies `Duration` by `f64`. /// /// # Panics /// This method will panic if result is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000)); /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn mul_f64(self, rhs: f64) -> Duration { Duration::from_secs_f64(rhs * self.as_secs_f64()) } /// Multiplies `Duration` by `f32`. /// /// # Panics /// This method will panic if result is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// // note that due to rounding errors result is slightly different /// // from 8.478 and 847800.0 /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_640)); /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847799, 969_120_256)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn mul_f32(self, rhs: f32) -> Duration { Duration::from_secs_f32(rhs * self.as_secs_f32()) } /// Divide `Duration` by `f64`. /// /// # Panics /// This method will panic if result is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611)); /// // note that truncation is used, not rounding /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_598)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn div_f64(self, rhs: f64) -> Duration { Duration::from_secs_f64(self.as_secs_f64() / rhs) } /// Divide `Duration` by `f32`. /// /// # Panics /// This method will panic if result is not finite, negative or overflows `Duration`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// // note that due to rounding errors result is slightly /// // different from 0.859_872_611 /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_576)); /// // note that truncation is used, not rounding /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_598)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn div_f32(self, rhs: f32) -> Duration { Duration::from_secs_f32(self.as_secs_f32() / rhs) } /// Divide `Duration` by `Duration` and return `f64`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur1 = Duration::new(2, 700_000_000); /// let dur2 = Duration::new(5, 400_000_000); /// assert_eq!(dur1.div_duration_f64(dur2), 0.5); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn div_duration_f64(self, rhs: Duration) -> f64 { self.as_secs_f64() / rhs.as_secs_f64() } /// Divide `Duration` by `Duration` and return `f32`. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur1 = Duration::new(2, 700_000_000); /// let dur2 = Duration::new(5, 400_000_000); /// assert_eq!(dur1.div_duration_f32(dur2), 0.5); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[inline] pub fn div_duration_f32(self, rhs: Duration) -> f32 { self.as_secs_f32() / rhs.as_secs_f32() } } #[stable(feature = "duration", since = "1.3.0")] impl Add for Duration { type Output = Duration; fn add(self, rhs: Duration) -> Duration { self.checked_add(rhs).expect("overflow when adding durations") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl AddAssign for Duration { fn add_assign(&mut self, rhs: Duration) { *self = *self + rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Sub for Duration { type Output = Duration; fn sub(self, rhs: Duration) -> Duration { self.checked_sub(rhs).expect("overflow when subtracting durations") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl SubAssign for Duration { fn sub_assign(&mut self, rhs: Duration) { *self = *self - rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Mul for Duration { type Output = Duration; fn mul(self, rhs: u32) -> Duration { self.checked_mul(rhs).expect("overflow when multiplying duration by scalar") } } #[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")] impl Mul for u32 { type Output = Duration; fn mul(self, rhs: Duration) -> Duration { rhs * self } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl MulAssign for Duration { fn mul_assign(&mut self, rhs: u32) { *self = *self * rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Div for Duration { type Output = Duration; fn div(self, rhs: u32) -> Duration { self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl DivAssign for Duration { fn div_assign(&mut self, rhs: u32) { *self = *self / rhs; } } macro_rules! sum_durations { ($iter:expr) => {{ let mut total_secs: u64 = 0; let mut total_nanos: u64 = 0; for entry in $iter { total_secs = total_secs .checked_add(entry.secs) .expect("overflow in iter::sum over durations"); total_nanos = match total_nanos.checked_add(entry.nanos as u64) { Some(n) => n, None => { total_secs = total_secs .checked_add(total_nanos / NANOS_PER_SEC as u64) .expect("overflow in iter::sum over durations"); (total_nanos % NANOS_PER_SEC as u64) + entry.nanos as u64 } }; } total_secs = total_secs .checked_add(total_nanos / NANOS_PER_SEC as u64) .expect("overflow in iter::sum over durations"); total_nanos = total_nanos % NANOS_PER_SEC as u64; Duration { secs: total_secs, nanos: total_nanos as u32, } }}; } #[stable(feature = "duration_sum", since = "1.16.0")] impl Sum for Duration { fn sum>(iter: I) -> Duration { sum_durations!(iter) } } #[stable(feature = "duration_sum", since = "1.16.0")] impl<'a> Sum<&'a Duration> for Duration { fn sum>(iter: I) -> Duration { sum_durations!(iter) } } #[stable(feature = "duration_debug_impl", since = "1.27.0")] impl fmt::Debug for Duration { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { /// Formats a floating point number in decimal notation. /// /// The number is given as the `integer_part` and a fractional part. /// The value of the fractional part is `fractional_part / divisor`. So /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100 /// represents the number `3.012`. Trailing zeros are omitted. /// /// `divisor` must not be above 100_000_000. It also should be a power /// of 10, everything else doesn't make sense. `fractional_part` has /// to be less than `10 * divisor`! fn fmt_decimal( f: &mut fmt::Formatter<'_>, mut integer_part: u64, mut fractional_part: u32, mut divisor: u32, ) -> fmt::Result { // Encode the fractional part into a temporary buffer. The buffer // only need to hold 9 elements, because `fractional_part` has to // be smaller than 10^9. The buffer is prefilled with '0' digits // to simplify the code below. let mut buf = [b'0'; 9]; // The next digit is written at this position let mut pos = 0; // We keep writing digits into the buffer while there are non-zero // digits left and we haven't written enough digits yet. while fractional_part > 0 && pos < f.precision().unwrap_or(9) { // Write new digit into the buffer buf[pos] = b'0' + (fractional_part / divisor) as u8; fractional_part %= divisor; divisor /= 10; pos += 1; } // If a precision < 9 was specified, there may be some non-zero // digits left that weren't written into the buffer. In that case we // need to perform rounding to match the semantics of printing // normal floating point numbers. However, we only need to do work // when rounding up. This happens if the first digit of the // remaining ones is >= 5. if fractional_part > 0 && fractional_part >= divisor * 5 { // Round up the number contained in the buffer. We go through // the buffer backwards and keep track of the carry. let mut rev_pos = pos; let mut carry = true; while carry && rev_pos > 0 { rev_pos -= 1; // If the digit in the buffer is not '9', we just need to // increment it and can stop then (since we don't have a // carry anymore). Otherwise, we set it to '0' (overflow) // and continue. if buf[rev_pos] < b'9' { buf[rev_pos] += 1; carry = false; } else { buf[rev_pos] = b'0'; } } // If we still have the carry bit set, that means that we set // the whole buffer to '0's and need to increment the integer // part. if carry { integer_part += 1; } } // Determine the end of the buffer: if precision is set, we just // use as many digits from the buffer (capped to 9). If it isn't // set, we only use all digits up to the last non-zero one. let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos); // If we haven't emitted a single fractional digit and the precision // wasn't set to a non-zero value, we don't print the decimal point. if end == 0 { write!(f, "{}", integer_part) } else { // We are only writing ASCII digits into the buffer and it was // initialized with '0's, so it contains valid UTF8. let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) }; // If the user request a precision > 9, we pad '0's at the end. let w = f.precision().unwrap_or(pos); write!(f, "{}.{:0 0 { fmt_decimal(f, self.secs, self.nanos, 100_000_000)?; f.write_str("s") } else if self.nanos >= 1_000_000 { fmt_decimal(f, self.nanos as u64 / 1_000_000, self.nanos % 1_000_000, 100_000)?; f.write_str("ms") } else if self.nanos >= 1_000 { fmt_decimal(f, self.nanos as u64 / 1_000, self.nanos % 1_000, 100)?; f.write_str("µs") } else { fmt_decimal(f, self.nanos as u64, 0, 1)?; f.write_str("ns") } } }