// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::{self, Block, Ident, NodeId, PatKind, Path}; use ast::{MacStmtStyle, StmtKind, ItemKind}; use attr::{self, HasAttrs}; use codemap::{ExpnInfo, NameAndSpan, MacroBang, MacroAttribute}; use config::{is_test_or_bench, StripUnconfigured}; use errors::FatalError; use ext::base::*; use ext::derive::{add_derived_markers, collect_derives}; use ext::hygiene::{Mark, SyntaxContext}; use ext::placeholders::{placeholder, PlaceholderExpander}; use feature_gate::{self, Features, is_builtin_attr}; use fold; use fold::*; use parse::{DirectoryOwnership, PResult}; use parse::token::{self, Token}; use parse::parser::Parser; use ptr::P; use std_inject; use symbol::Symbol; use symbol::keywords; use syntax_pos::{Span, DUMMY_SP}; use tokenstream::{TokenStream, TokenTree}; use util::small_vector::SmallVector; use visit::Visitor; use std::collections::HashMap; use std::mem; use std::rc::Rc; macro_rules! expansions { ($($kind:ident: $ty:ty [$($vec:ident, $ty_elt:ty)*], $kind_name:expr, .$make:ident, $(.$fold:ident)* $(lift .$fold_elt:ident)*, $(.$visit:ident)* $(lift .$visit_elt:ident)*;)*) => { #[derive(Copy, Clone, PartialEq, Eq)] pub enum ExpansionKind { OptExpr, $( $kind, )* } pub enum Expansion { OptExpr(Option>), $( $kind($ty), )* } impl ExpansionKind { pub fn name(self) -> &'static str { match self { ExpansionKind::OptExpr => "expression", $( ExpansionKind::$kind => $kind_name, )* } } fn make_from<'a>(self, result: Box) -> Option { match self { ExpansionKind::OptExpr => result.make_expr().map(Some).map(Expansion::OptExpr), $( ExpansionKind::$kind => result.$make().map(Expansion::$kind), )* } } } impl Expansion { pub fn make_opt_expr(self) -> Option> { match self { Expansion::OptExpr(expr) => expr, _ => panic!("Expansion::make_* called on the wrong kind of expansion"), } } $( pub fn $make(self) -> $ty { match self { Expansion::$kind(ast) => ast, _ => panic!("Expansion::make_* called on the wrong kind of expansion"), } } )* pub fn fold_with(self, folder: &mut F) -> Self { use self::Expansion::*; match self { OptExpr(expr) => OptExpr(expr.and_then(|expr| folder.fold_opt_expr(expr))), $($( $kind(ast) => $kind(folder.$fold(ast)), )*)* $($( $kind(ast) => { $kind(ast.into_iter().flat_map(|ast| folder.$fold_elt(ast)).collect()) }, )*)* } } pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) { match *self { Expansion::OptExpr(Some(ref expr)) => visitor.visit_expr(expr), Expansion::OptExpr(None) => {} $($( Expansion::$kind(ref ast) => visitor.$visit(ast), )*)* $($( Expansion::$kind(ref ast) => for ast in &ast[..] { visitor.$visit_elt(ast); }, )*)* } } } impl<'a, 'b> Folder for MacroExpander<'a, 'b> { fn fold_opt_expr(&mut self, expr: P) -> Option> { self.expand(Expansion::OptExpr(Some(expr))).make_opt_expr() } $($(fn $fold(&mut self, node: $ty) -> $ty { self.expand(Expansion::$kind(node)).$make() })*)* $($(fn $fold_elt(&mut self, node: $ty_elt) -> $ty { self.expand(Expansion::$kind(SmallVector::one(node))).$make() })*)* } impl<'a> MacResult for ::ext::tt::macro_rules::ParserAnyMacro<'a> { $(fn $make(self: Box<::ext::tt::macro_rules::ParserAnyMacro<'a>>) -> Option<$ty> { Some(self.make(ExpansionKind::$kind).$make()) })* } } } expansions! { Expr: P [], "expression", .make_expr, .fold_expr, .visit_expr; Pat: P [], "pattern", .make_pat, .fold_pat, .visit_pat; Ty: P [], "type", .make_ty, .fold_ty, .visit_ty; Stmts: SmallVector [SmallVector, ast::Stmt], "statement", .make_stmts, lift .fold_stmt, lift .visit_stmt; Items: SmallVector> [SmallVector, P], "item", .make_items, lift .fold_item, lift .visit_item; TraitItems: SmallVector [SmallVector, ast::TraitItem], "trait item", .make_trait_items, lift .fold_trait_item, lift .visit_trait_item; ImplItems: SmallVector [SmallVector, ast::ImplItem], "impl item", .make_impl_items, lift .fold_impl_item, lift .visit_impl_item; } impl ExpansionKind { fn dummy(self, span: Span) -> Expansion { self.make_from(DummyResult::any(span)).unwrap() } fn expect_from_annotatables>(self, items: I) -> Expansion { let items = items.into_iter(); match self { ExpansionKind::Items => Expansion::Items(items.map(Annotatable::expect_item).collect()), ExpansionKind::ImplItems => Expansion::ImplItems(items.map(Annotatable::expect_impl_item).collect()), ExpansionKind::TraitItems => Expansion::TraitItems(items.map(Annotatable::expect_trait_item).collect()), _ => unreachable!(), } } } pub struct Invocation { pub kind: InvocationKind, expansion_kind: ExpansionKind, pub expansion_data: ExpansionData, } pub enum InvocationKind { Bang { mac: ast::Mac, ident: Option, span: Span, }, Attr { attr: Option, traits: Vec, item: Annotatable, }, Derive { path: Path, item: Annotatable, }, } impl Invocation { fn span(&self) -> Span { match self.kind { InvocationKind::Bang { span, .. } => span, InvocationKind::Attr { attr: Some(ref attr), .. } => attr.span, InvocationKind::Attr { attr: None, .. } => DUMMY_SP, InvocationKind::Derive { ref path, .. } => path.span, } } } pub struct MacroExpander<'a, 'b:'a> { pub cx: &'a mut ExtCtxt<'b>, monotonic: bool, // c.f. `cx.monotonic_expander()` } impl<'a, 'b> MacroExpander<'a, 'b> { pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self { MacroExpander { cx: cx, monotonic: monotonic } } pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate { self.cx.crate_root = std_inject::injected_crate_name(&krate); let mut module = ModuleData { mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)], directory: self.cx.codemap().span_to_unmapped_path(krate.span), }; module.directory.pop(); self.cx.current_expansion.module = Rc::new(module); let orig_mod_span = krate.module.inner; let krate_item = Expansion::Items(SmallVector::one(P(ast::Item { attrs: krate.attrs, span: krate.span, node: ast::ItemKind::Mod(krate.module), ident: keywords::Invalid.ident(), id: ast::DUMMY_NODE_ID, vis: ast::Visibility::Public, tokens: None, }))); match self.expand(krate_item).make_items().pop().map(P::unwrap) { Some(ast::Item { attrs, node: ast::ItemKind::Mod(module), .. }) => { krate.attrs = attrs; krate.module = module; }, None => { // Resolution failed so we return an empty expansion krate.attrs = vec![]; krate.module = ast::Mod { inner: orig_mod_span, items: vec![], }; }, _ => unreachable!(), }; self.cx.trace_macros_diag(); krate } // Fully expand all the invocations in `expansion`. fn expand(&mut self, expansion: Expansion) -> Expansion { let orig_expansion_data = self.cx.current_expansion.clone(); self.cx.current_expansion.depth = 0; let (expansion, mut invocations) = self.collect_invocations(expansion, &[]); self.resolve_imports(); invocations.reverse(); let mut expansions = Vec::new(); let mut derives = HashMap::new(); let mut undetermined_invocations = Vec::new(); let (mut progress, mut force) = (false, !self.monotonic); loop { let mut invoc = if let Some(invoc) = invocations.pop() { invoc } else { self.resolve_imports(); if undetermined_invocations.is_empty() { break } invocations = mem::replace(&mut undetermined_invocations, Vec::new()); force = !mem::replace(&mut progress, false); continue }; let scope = if self.monotonic { invoc.expansion_data.mark } else { orig_expansion_data.mark }; let ext = match self.cx.resolver.resolve_invoc(&mut invoc, scope, force) { Ok(ext) => Some(ext), Err(Determinacy::Determined) => None, Err(Determinacy::Undetermined) => { undetermined_invocations.push(invoc); continue } }; progress = true; let ExpansionData { depth, mark, .. } = invoc.expansion_data; self.cx.current_expansion = invoc.expansion_data.clone(); self.cx.current_expansion.mark = scope; // FIXME(jseyfried): Refactor out the following logic let (expansion, new_invocations) = if let Some(ext) = ext { if let Some(ext) = ext { let expansion = self.expand_invoc(invoc, ext); self.collect_invocations(expansion, &[]) } else if let InvocationKind::Attr { attr: None, traits, item } = invoc.kind { let derive_allowed = match item { Annotatable::Item(ref item) => match item.node { ast::ItemKind::Struct(..) | ast::ItemKind::Enum(..) | ast::ItemKind::Union(..) => true, _ => false, }, _ => false, }; if !derive_allowed { let attr = item.attrs().iter() .find(|attr| attr.check_name("derive")) .expect("`derive` attribute should exist"); let span = attr.span; let mut err = self.cx.mut_span_err(span, "`derive` may only be applied to \ structs, enums and unions"); if let ast::AttrStyle::Inner = attr.style { let trait_list = traits.iter() .map(|t| format!("{}", t)).collect::>(); let suggestion = format!("#[derive({})]", trait_list.join(", ")); err.span_suggestion(span, "try an outer attribute", suggestion); } err.emit(); } let item = self.fully_configure(item) .map_attrs(|mut attrs| { attrs.retain(|a| a.path != "derive"); attrs }); let item_with_markers = add_derived_markers(&mut self.cx, item.span(), &traits, item.clone()); let derives = derives.entry(invoc.expansion_data.mark).or_insert_with(Vec::new); for path in &traits { let mark = Mark::fresh(self.cx.current_expansion.mark); derives.push(mark); let item = match self.cx.resolver.resolve_macro( Mark::root(), path, MacroKind::Derive, false) { Ok(ext) => match *ext { BuiltinDerive(..) => item_with_markers.clone(), _ => item.clone(), }, _ => item.clone(), }; invocations.push(Invocation { kind: InvocationKind::Derive { path: path.clone(), item: item }, expansion_kind: invoc.expansion_kind, expansion_data: ExpansionData { mark, ..invoc.expansion_data.clone() }, }); } let expansion = invoc.expansion_kind .expect_from_annotatables(::std::iter::once(item_with_markers)); self.collect_invocations(expansion, derives) } else { unreachable!() } } else { self.collect_invocations(invoc.expansion_kind.dummy(invoc.span()), &[]) }; if expansions.len() < depth { expansions.push(Vec::new()); } expansions[depth - 1].push((mark, expansion)); if !self.cx.ecfg.single_step { invocations.extend(new_invocations.into_iter().rev()); } } self.cx.current_expansion = orig_expansion_data; let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic); while let Some(expansions) = expansions.pop() { for (mark, expansion) in expansions.into_iter().rev() { let derives = derives.remove(&mark).unwrap_or_else(Vec::new); placeholder_expander.add(NodeId::placeholder_from_mark(mark), expansion, derives); } } expansion.fold_with(&mut placeholder_expander) } fn resolve_imports(&mut self) { if self.monotonic { let err_count = self.cx.parse_sess.span_diagnostic.err_count(); self.cx.resolver.resolve_imports(); self.cx.resolve_err_count += self.cx.parse_sess.span_diagnostic.err_count() - err_count; } } fn collect_invocations(&mut self, expansion: Expansion, derives: &[Mark]) -> (Expansion, Vec) { let result = { let mut collector = InvocationCollector { cfg: StripUnconfigured { should_test: self.cx.ecfg.should_test, sess: self.cx.parse_sess, features: self.cx.ecfg.features, }, cx: self.cx, invocations: Vec::new(), monotonic: self.monotonic, }; (expansion.fold_with(&mut collector), collector.invocations) }; if self.monotonic { let err_count = self.cx.parse_sess.span_diagnostic.err_count(); let mark = self.cx.current_expansion.mark; self.cx.resolver.visit_expansion(mark, &result.0, derives); self.cx.resolve_err_count += self.cx.parse_sess.span_diagnostic.err_count() - err_count; } result } fn fully_configure(&mut self, item: Annotatable) -> Annotatable { let mut cfg = StripUnconfigured { should_test: self.cx.ecfg.should_test, sess: self.cx.parse_sess, features: self.cx.ecfg.features, }; // Since the item itself has already been configured by the InvocationCollector, // we know that fold result vector will contain exactly one element match item { Annotatable::Item(item) => { Annotatable::Item(cfg.fold_item(item).pop().unwrap()) } Annotatable::TraitItem(item) => { Annotatable::TraitItem(item.map(|item| cfg.fold_trait_item(item).pop().unwrap())) } Annotatable::ImplItem(item) => { Annotatable::ImplItem(item.map(|item| cfg.fold_impl_item(item).pop().unwrap())) } } } fn expand_invoc(&mut self, invoc: Invocation, ext: Rc) -> Expansion { let result = match invoc.kind { InvocationKind::Bang { .. } => self.expand_bang_invoc(invoc, ext), InvocationKind::Attr { .. } => self.expand_attr_invoc(invoc, ext), InvocationKind::Derive { .. } => self.expand_derive_invoc(invoc, ext), }; if self.cx.current_expansion.depth > self.cx.ecfg.recursion_limit { let info = self.cx.current_expansion.mark.expn_info().unwrap(); let suggested_limit = self.cx.ecfg.recursion_limit * 2; let mut err = self.cx.struct_span_err(info.call_site, &format!("recursion limit reached while expanding the macro `{}`", info.callee.name())); err.help(&format!( "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate", suggested_limit)); err.emit(); self.cx.trace_macros_diag(); panic!(FatalError); } result } fn expand_attr_invoc(&mut self, invoc: Invocation, ext: Rc) -> Expansion { let Invocation { expansion_kind: kind, .. } = invoc; let (attr, item) = match invoc.kind { InvocationKind::Attr { attr, item, .. } => (attr.unwrap(), item), _ => unreachable!(), }; attr::mark_used(&attr); invoc.expansion_data.mark.set_expn_info(ExpnInfo { call_site: attr.span, callee: NameAndSpan { format: MacroAttribute(Symbol::intern(&format!("{}", attr.path))), span: None, allow_internal_unstable: false, allow_internal_unsafe: false, } }); match *ext { MultiModifier(ref mac) => { let meta = panictry!(attr.parse_meta(self.cx.parse_sess)); let item = mac.expand(self.cx, attr.span, &meta, item); kind.expect_from_annotatables(item) } MultiDecorator(ref mac) => { let mut items = Vec::new(); let meta = panictry!(attr.parse_meta(self.cx.parse_sess)); mac.expand(self.cx, attr.span, &meta, &item, &mut |item| items.push(item)); items.push(item); kind.expect_from_annotatables(items) } AttrProcMacro(ref mac) => { let item_tok = TokenTree::Token(DUMMY_SP, Token::interpolated(match item { Annotatable::Item(item) => token::NtItem(item), Annotatable::TraitItem(item) => token::NtTraitItem(item.unwrap()), Annotatable::ImplItem(item) => token::NtImplItem(item.unwrap()), })).into(); let tok_result = mac.expand(self.cx, attr.span, attr.tokens, item_tok); self.parse_expansion(tok_result, kind, &attr.path, attr.span) } ProcMacroDerive(..) | BuiltinDerive(..) => { self.cx.span_err(attr.span, &format!("`{}` is a derive mode", attr.path)); self.cx.trace_macros_diag(); kind.dummy(attr.span) } _ => { let msg = &format!("macro `{}` may not be used in attributes", attr.path); self.cx.span_err(attr.span, msg); self.cx.trace_macros_diag(); kind.dummy(attr.span) } } } /// Expand a macro invocation. Returns the result of expansion. fn expand_bang_invoc(&mut self, invoc: Invocation, ext: Rc) -> Expansion { let (mark, kind) = (invoc.expansion_data.mark, invoc.expansion_kind); let (mac, ident, span) = match invoc.kind { InvocationKind::Bang { mac, ident, span } => (mac, ident, span), _ => unreachable!(), }; let path = &mac.node.path; let ident = ident.unwrap_or_else(|| keywords::Invalid.ident()); let validate_and_set_expn_info = |def_site_span, allow_internal_unstable, allow_internal_unsafe| { if ident.name != keywords::Invalid.name() { return Err(format!("macro {}! expects no ident argument, given '{}'", path, ident)); } mark.set_expn_info(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(Symbol::intern(&format!("{}", path))), span: def_site_span, allow_internal_unstable, allow_internal_unsafe, }, }); Ok(()) }; let opt_expanded = match *ext { DeclMacro(ref expand, def_span) => { if let Err(msg) = validate_and_set_expn_info(def_span.map(|(_, s)| s), false, false) { self.cx.span_err(path.span, &msg); self.cx.trace_macros_diag(); return kind.dummy(span); } kind.make_from(expand.expand(self.cx, span, mac.node.stream())) } NormalTT { ref expander, def_info, allow_internal_unstable, allow_internal_unsafe } => { if let Err(msg) = validate_and_set_expn_info(def_info.map(|(_, s)| s), allow_internal_unstable, allow_internal_unsafe) { self.cx.span_err(path.span, &msg); self.cx.trace_macros_diag(); return kind.dummy(span); } kind.make_from(expander.expand(self.cx, span, mac.node.stream())) } IdentTT(ref expander, tt_span, allow_internal_unstable) => { if ident.name == keywords::Invalid.name() { self.cx.span_err(path.span, &format!("macro {}! expects an ident argument", path)); self.cx.trace_macros_diag(); return kind.dummy(span); }; invoc.expansion_data.mark.set_expn_info(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(Symbol::intern(&format!("{}", path))), span: tt_span, allow_internal_unstable, allow_internal_unsafe: false, } }); let input: Vec<_> = mac.node.stream().into_trees().collect(); kind.make_from(expander.expand(self.cx, span, ident, input)) } MultiDecorator(..) | MultiModifier(..) | AttrProcMacro(..) => { self.cx.span_err(path.span, &format!("`{}` can only be used in attributes", path)); self.cx.trace_macros_diag(); return kind.dummy(span); } ProcMacroDerive(..) | BuiltinDerive(..) => { self.cx.span_err(path.span, &format!("`{}` is a derive mode", path)); self.cx.trace_macros_diag(); return kind.dummy(span); } ProcMacro(ref expandfun) => { if ident.name != keywords::Invalid.name() { let msg = format!("macro {}! expects no ident argument, given '{}'", path, ident); self.cx.span_err(path.span, &msg); self.cx.trace_macros_diag(); return kind.dummy(span); } invoc.expansion_data.mark.set_expn_info(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(Symbol::intern(&format!("{}", path))), // FIXME procedural macros do not have proper span info // yet, when they do, we should use it here. span: None, // FIXME probably want to follow macro_rules macros here. allow_internal_unstable: false, allow_internal_unsafe: false, }, }); let tok_result = expandfun.expand(self.cx, span, mac.node.stream()); Some(self.parse_expansion(tok_result, kind, path, span)) } }; unwrap_or!(opt_expanded, { let msg = format!("non-{kind} macro in {kind} position: {name}", name = path.segments[0].identifier.name, kind = kind.name()); self.cx.span_err(path.span, &msg); self.cx.trace_macros_diag(); kind.dummy(span) }) } /// Expand a derive invocation. Returns the result of expansion. fn expand_derive_invoc(&mut self, invoc: Invocation, ext: Rc) -> Expansion { let Invocation { expansion_kind: kind, .. } = invoc; let (path, item) = match invoc.kind { InvocationKind::Derive { path, item } => (path, item), _ => unreachable!(), }; let pretty_name = Symbol::intern(&format!("derive({})", path)); let span = path.span; let attr = ast::Attribute { path, span, tokens: TokenStream::empty(), // irrelevant: id: ast::AttrId(0), style: ast::AttrStyle::Outer, is_sugared_doc: false, }; let mut expn_info = ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroAttribute(pretty_name), span: None, allow_internal_unstable: false, allow_internal_unsafe: false, } }; match *ext { ProcMacroDerive(ref ext, _) => { invoc.expansion_data.mark.set_expn_info(expn_info); let span = span.with_ctxt(self.cx.backtrace()); let dummy = ast::MetaItem { // FIXME(jseyfried) avoid this name: keywords::Invalid.name(), span: DUMMY_SP, node: ast::MetaItemKind::Word, }; kind.expect_from_annotatables(ext.expand(self.cx, span, &dummy, item)) } BuiltinDerive(func) => { expn_info.callee.allow_internal_unstable = true; invoc.expansion_data.mark.set_expn_info(expn_info); let span = span.with_ctxt(self.cx.backtrace()); let mut items = Vec::new(); func(self.cx, span, &attr.meta().unwrap(), &item, &mut |a| items.push(a)); kind.expect_from_annotatables(items) } _ => { let msg = &format!("macro `{}` may not be used for derive attributes", attr.path); self.cx.span_err(span, msg); self.cx.trace_macros_diag(); kind.dummy(span) } } } fn parse_expansion(&mut self, toks: TokenStream, kind: ExpansionKind, path: &Path, span: Span) -> Expansion { let mut parser = self.cx.new_parser_from_tts(&toks.into_trees().collect::>()); let expansion = match parser.parse_expansion(kind, false) { Ok(expansion) => expansion, Err(mut err) => { err.emit(); self.cx.trace_macros_diag(); return kind.dummy(span); } }; parser.ensure_complete_parse(path, kind.name(), span); expansion } } impl<'a> Parser<'a> { pub fn parse_expansion(&mut self, kind: ExpansionKind, macro_legacy_warnings: bool) -> PResult<'a, Expansion> { Ok(match kind { ExpansionKind::Items => { let mut items = SmallVector::new(); while let Some(item) = self.parse_item()? { items.push(item); } Expansion::Items(items) } ExpansionKind::TraitItems => { let mut items = SmallVector::new(); while self.token != token::Eof { items.push(self.parse_trait_item(&mut false)?); } Expansion::TraitItems(items) } ExpansionKind::ImplItems => { let mut items = SmallVector::new(); while self.token != token::Eof { items.push(self.parse_impl_item(&mut false)?); } Expansion::ImplItems(items) } ExpansionKind::Stmts => { let mut stmts = SmallVector::new(); while self.token != token::Eof && // won't make progress on a `}` self.token != token::CloseDelim(token::Brace) { if let Some(stmt) = self.parse_full_stmt(macro_legacy_warnings)? { stmts.push(stmt); } } Expansion::Stmts(stmts) } ExpansionKind::Expr => Expansion::Expr(self.parse_expr()?), ExpansionKind::OptExpr => Expansion::OptExpr(Some(self.parse_expr()?)), ExpansionKind::Ty => Expansion::Ty(self.parse_ty()?), ExpansionKind::Pat => Expansion::Pat(self.parse_pat()?), }) } pub fn ensure_complete_parse(&mut self, macro_path: &Path, kind_name: &str, span: Span) { if self.token != token::Eof { let msg = format!("macro expansion ignores token `{}` and any following", self.this_token_to_string()); // Avoid emitting backtrace info twice. let def_site_span = self.span.with_ctxt(SyntaxContext::empty()); let mut err = self.diagnostic().struct_span_err(def_site_span, &msg); let msg = format!("caused by the macro expansion here; the usage \ of `{}!` is likely invalid in {} context", macro_path, kind_name); err.span_note(span, &msg).emit(); } } } struct InvocationCollector<'a, 'b: 'a> { cx: &'a mut ExtCtxt<'b>, cfg: StripUnconfigured<'a>, invocations: Vec, monotonic: bool, } impl<'a, 'b> InvocationCollector<'a, 'b> { fn collect(&mut self, expansion_kind: ExpansionKind, kind: InvocationKind) -> Expansion { let mark = Mark::fresh(self.cx.current_expansion.mark); self.invocations.push(Invocation { kind, expansion_kind, expansion_data: ExpansionData { mark, depth: self.cx.current_expansion.depth + 1, ..self.cx.current_expansion.clone() }, }); placeholder(expansion_kind, NodeId::placeholder_from_mark(mark)) } fn collect_bang(&mut self, mac: ast::Mac, span: Span, kind: ExpansionKind) -> Expansion { self.collect(kind, InvocationKind::Bang { mac: mac, ident: None, span: span }) } fn collect_attr(&mut self, attr: Option, traits: Vec, item: Annotatable, kind: ExpansionKind) -> Expansion { self.collect(kind, InvocationKind::Attr { attr, traits, item }) } // If `item` is an attr invocation, remove and return the macro attribute. fn classify_item(&mut self, mut item: T) -> (Option, Vec, T) where T: HasAttrs, { let (mut attr, mut traits) = (None, Vec::new()); item = item.map_attrs(|mut attrs| { if let Some(legacy_attr_invoc) = self.cx.resolver.find_legacy_attr_invoc(&mut attrs) { attr = Some(legacy_attr_invoc); return attrs; } if self.cx.ecfg.proc_macro_enabled() { attr = find_attr_invoc(&mut attrs); } traits = collect_derives(&mut self.cx, &mut attrs); attrs }); (attr, traits, item) } fn configure(&mut self, node: T) -> Option { self.cfg.configure(node) } // Detect use of feature-gated or invalid attributes on macro invocations // since they will not be detected after macro expansion. fn check_attributes(&mut self, attrs: &[ast::Attribute]) { let features = self.cx.ecfg.features.unwrap(); for attr in attrs.iter() { feature_gate::check_attribute(attr, self.cx.parse_sess, features); } } } pub fn find_attr_invoc(attrs: &mut Vec) -> Option { attrs.iter() .position(|a| !attr::is_known(a) && !is_builtin_attr(a)) .map(|i| attrs.remove(i)) } impl<'a, 'b> Folder for InvocationCollector<'a, 'b> { fn fold_expr(&mut self, expr: P) -> P { let mut expr = self.cfg.configure_expr(expr).unwrap(); expr.node = self.cfg.configure_expr_kind(expr.node); if let ast::ExprKind::Mac(mac) = expr.node { self.check_attributes(&expr.attrs); self.collect_bang(mac, expr.span, ExpansionKind::Expr).make_expr() } else { P(noop_fold_expr(expr, self)) } } fn fold_opt_expr(&mut self, expr: P) -> Option> { let mut expr = configure!(self, expr).unwrap(); expr.node = self.cfg.configure_expr_kind(expr.node); if let ast::ExprKind::Mac(mac) = expr.node { self.check_attributes(&expr.attrs); self.collect_bang(mac, expr.span, ExpansionKind::OptExpr).make_opt_expr() } else { Some(P(noop_fold_expr(expr, self))) } } fn fold_pat(&mut self, pat: P) -> P { let pat = self.cfg.configure_pat(pat); match pat.node { PatKind::Mac(_) => {} _ => return noop_fold_pat(pat, self), } pat.and_then(|pat| match pat.node { PatKind::Mac(mac) => self.collect_bang(mac, pat.span, ExpansionKind::Pat).make_pat(), _ => unreachable!(), }) } fn fold_stmt(&mut self, stmt: ast::Stmt) -> SmallVector { let stmt = match self.cfg.configure_stmt(stmt) { Some(stmt) => stmt, None => return SmallVector::new(), }; let (mac, style, attrs) = if let StmtKind::Mac(mac) = stmt.node { mac.unwrap() } else { // The placeholder expander gives ids to statements, so we avoid folding the id here. let ast::Stmt { id, node, span } = stmt; return noop_fold_stmt_kind(node, self).into_iter().map(|node| { ast::Stmt { id: id, node: node, span: span } }).collect() }; self.check_attributes(&attrs); let mut placeholder = self.collect_bang(mac, stmt.span, ExpansionKind::Stmts).make_stmts(); // If this is a macro invocation with a semicolon, then apply that // semicolon to the final statement produced by expansion. if style == MacStmtStyle::Semicolon { if let Some(stmt) = placeholder.pop() { placeholder.push(stmt.add_trailing_semicolon()); } } placeholder } fn fold_block(&mut self, block: P) -> P { let old_directory_ownership = self.cx.current_expansion.directory_ownership; self.cx.current_expansion.directory_ownership = DirectoryOwnership::UnownedViaBlock; let result = noop_fold_block(block, self); self.cx.current_expansion.directory_ownership = old_directory_ownership; result } fn fold_item(&mut self, item: P) -> SmallVector> { let item = configure!(self, item); let (attr, traits, mut item) = self.classify_item(item); if attr.is_some() || !traits.is_empty() { let item = Annotatable::Item(item); return self.collect_attr(attr, traits, item, ExpansionKind::Items).make_items(); } match item.node { ast::ItemKind::Mac(..) => { self.check_attributes(&item.attrs); item.and_then(|item| match item.node { ItemKind::Mac(mac) => { self.collect(ExpansionKind::Items, InvocationKind::Bang { mac, ident: Some(item.ident), span: item.span, }).make_items() } _ => unreachable!(), }) } ast::ItemKind::Mod(ast::Mod { inner, .. }) => { if item.ident == keywords::Invalid.ident() { return noop_fold_item(item, self); } let orig_directory_ownership = self.cx.current_expansion.directory_ownership; let mut module = (*self.cx.current_expansion.module).clone(); module.mod_path.push(item.ident); // Detect if this is an inline module (`mod m { ... }` as opposed to `mod m;`). // In the non-inline case, `inner` is never the dummy span (c.f. `parse_item_mod`). // Thus, if `inner` is the dummy span, we know the module is inline. let inline_module = item.span.contains(inner) || inner == DUMMY_SP; if inline_module { if let Some(path) = attr::first_attr_value_str_by_name(&item.attrs, "path") { self.cx.current_expansion.directory_ownership = DirectoryOwnership::Owned; module.directory.push(&*path.as_str()); } else { module.directory.push(&*item.ident.name.as_str()); } } else { let mut path = self.cx.parse_sess.codemap().span_to_unmapped_path(inner); let directory_ownership = match path.file_name().unwrap().to_str() { Some("mod.rs") => DirectoryOwnership::Owned, _ => DirectoryOwnership::UnownedViaMod(false), }; path.pop(); module.directory = path; self.cx.current_expansion.directory_ownership = directory_ownership; } let orig_module = mem::replace(&mut self.cx.current_expansion.module, Rc::new(module)); let result = noop_fold_item(item, self); self.cx.current_expansion.module = orig_module; self.cx.current_expansion.directory_ownership = orig_directory_ownership; result } // Ensure that test functions are accessible from the test harness. ast::ItemKind::Fn(..) if self.cx.ecfg.should_test => { if item.attrs.iter().any(|attr| is_test_or_bench(attr)) { item = item.map(|mut item| { item.vis = ast::Visibility::Public; item }); } noop_fold_item(item, self) } _ => noop_fold_item(item, self), } } fn fold_trait_item(&mut self, item: ast::TraitItem) -> SmallVector { let item = configure!(self, item); let (attr, traits, item) = self.classify_item(item); if attr.is_some() || !traits.is_empty() { let item = Annotatable::TraitItem(P(item)); return self.collect_attr(attr, traits, item, ExpansionKind::TraitItems) .make_trait_items() } match item.node { ast::TraitItemKind::Macro(mac) => { let ast::TraitItem { attrs, span, .. } = item; self.check_attributes(&attrs); self.collect_bang(mac, span, ExpansionKind::TraitItems).make_trait_items() } _ => fold::noop_fold_trait_item(item, self), } } fn fold_impl_item(&mut self, item: ast::ImplItem) -> SmallVector { let item = configure!(self, item); let (attr, traits, item) = self.classify_item(item); if attr.is_some() || !traits.is_empty() { let item = Annotatable::ImplItem(P(item)); return self.collect_attr(attr, traits, item, ExpansionKind::ImplItems) .make_impl_items(); } match item.node { ast::ImplItemKind::Macro(mac) => { let ast::ImplItem { attrs, span, .. } = item; self.check_attributes(&attrs); self.collect_bang(mac, span, ExpansionKind::ImplItems).make_impl_items() } _ => fold::noop_fold_impl_item(item, self), } } fn fold_ty(&mut self, ty: P) -> P { let ty = match ty.node { ast::TyKind::Mac(_) => ty.unwrap(), _ => return fold::noop_fold_ty(ty, self), }; match ty.node { ast::TyKind::Mac(mac) => self.collect_bang(mac, ty.span, ExpansionKind::Ty).make_ty(), _ => unreachable!(), } } fn fold_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod { noop_fold_foreign_mod(self.cfg.configure_foreign_mod(foreign_mod), self) } fn fold_item_kind(&mut self, item: ast::ItemKind) -> ast::ItemKind { match item { ast::ItemKind::MacroDef(..) => item, _ => noop_fold_item_kind(self.cfg.configure_item_kind(item), self), } } fn new_id(&mut self, id: ast::NodeId) -> ast::NodeId { if self.monotonic { assert_eq!(id, ast::DUMMY_NODE_ID); self.cx.resolver.next_node_id() } else { id } } } pub struct ExpansionConfig<'feat> { pub crate_name: String, pub features: Option<&'feat Features>, pub recursion_limit: usize, pub trace_mac: bool, pub should_test: bool, // If false, strip `#[test]` nodes pub single_step: bool, pub keep_macs: bool, } macro_rules! feature_tests { ($( fn $getter:ident = $field:ident, )*) => { $( pub fn $getter(&self) -> bool { match self.features { Some(&Features { $field: true, .. }) => true, _ => false, } } )* } } impl<'feat> ExpansionConfig<'feat> { pub fn default(crate_name: String) -> ExpansionConfig<'static> { ExpansionConfig { crate_name, features: None, recursion_limit: 1024, trace_mac: false, should_test: false, single_step: false, keep_macs: false, } } feature_tests! { fn enable_quotes = quote, fn enable_asm = asm, fn enable_global_asm = global_asm, fn enable_log_syntax = log_syntax, fn enable_concat_idents = concat_idents, fn enable_trace_macros = trace_macros, fn enable_allow_internal_unstable = allow_internal_unstable, fn enable_custom_derive = custom_derive, fn proc_macro_enabled = proc_macro, } } // A Marker adds the given mark to the syntax context. #[derive(Debug)] pub struct Marker(pub Mark); impl Folder for Marker { fn fold_ident(&mut self, mut ident: Ident) -> Ident { ident.ctxt = ident.ctxt.apply_mark(self.0); ident } fn new_span(&mut self, span: Span) -> Span { span.with_ctxt(span.ctxt().apply_mark(self.0)) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { noop_fold_mac(mac, self) } }