// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::{Block, Crate, DeclKind, PatMac}; use ast::{Local, Ident, Mac_, Name}; use ast::{MacStmtStyle, Mrk, Stmt, StmtKind, ItemKind}; use ast::TokenTree; use ast; use ext::mtwt; use ext::build::AstBuilder; use attr; use attr::{AttrMetaMethods, WithAttrs}; use codemap; use codemap::{Span, Spanned, ExpnInfo, NameAndSpan, MacroBang, MacroAttribute}; use ext::base::*; use feature_gate::{self, Features}; use fold; use fold::*; use util::move_map::MoveMap; use parse; use parse::token::{fresh_mark, fresh_name, intern}; use ptr::P; use util::small_vector::SmallVector; use visit; use visit::Visitor; use std_inject; use std::collections::HashSet; pub fn expand_expr(e: P, fld: &mut MacroExpander) -> P { let expr_span = e.span; return e.and_then(|ast::Expr {id, node, span, attrs}| match node { // expr_mac should really be expr_ext or something; it's the // entry-point for all syntax extensions. ast::ExprKind::Mac(mac) => { // Assert that we drop any macro attributes on the floor here drop(attrs); let expanded_expr = match expand_mac_invoc(mac, span, |r| r.make_expr(), mark_expr, fld) { Some(expr) => expr, None => { return DummyResult::raw_expr(span); } }; // Keep going, outside-in. let fully_expanded = fld.fold_expr(expanded_expr); let span = fld.new_span(span); fld.cx.bt_pop(); fully_expanded.map(|e| ast::Expr { id: ast::DUMMY_NODE_ID, node: e.node, span: span, attrs: e.attrs, }) } ast::ExprKind::InPlace(placer, value_expr) => { // Ensure feature-gate is enabled feature_gate::check_for_placement_in( fld.cx.ecfg.features, &fld.cx.parse_sess.span_diagnostic, expr_span); let placer = fld.fold_expr(placer); let value_expr = fld.fold_expr(value_expr); fld.cx.expr(span, ast::ExprKind::InPlace(placer, value_expr)) .with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::While(cond, body, opt_ident) => { let cond = fld.fold_expr(cond); let (body, opt_ident) = expand_loop_block(body, opt_ident, fld); fld.cx.expr(span, ast::ExprKind::While(cond, body, opt_ident)) .with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::WhileLet(pat, expr, body, opt_ident) => { let pat = fld.fold_pat(pat); let expr = fld.fold_expr(expr); // Hygienic renaming of the body. let ((body, opt_ident), mut rewritten_pats) = rename_in_scope(vec![pat], fld, (body, opt_ident), |rename_fld, fld, (body, opt_ident)| { expand_loop_block(rename_fld.fold_block(body), opt_ident, fld) }); assert!(rewritten_pats.len() == 1); let wl = ast::ExprKind::WhileLet(rewritten_pats.remove(0), expr, body, opt_ident); fld.cx.expr(span, wl).with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::Loop(loop_block, opt_ident) => { let (loop_block, opt_ident) = expand_loop_block(loop_block, opt_ident, fld); fld.cx.expr(span, ast::ExprKind::Loop(loop_block, opt_ident)) .with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::ForLoop(pat, head, body, opt_ident) => { let pat = fld.fold_pat(pat); // Hygienic renaming of the for loop body (for loop binds its pattern). let ((body, opt_ident), mut rewritten_pats) = rename_in_scope(vec![pat], fld, (body, opt_ident), |rename_fld, fld, (body, opt_ident)| { expand_loop_block(rename_fld.fold_block(body), opt_ident, fld) }); assert!(rewritten_pats.len() == 1); let head = fld.fold_expr(head); let fl = ast::ExprKind::ForLoop(rewritten_pats.remove(0), head, body, opt_ident); fld.cx.expr(span, fl).with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::IfLet(pat, sub_expr, body, else_opt) => { let pat = fld.fold_pat(pat); // Hygienic renaming of the body. let (body, mut rewritten_pats) = rename_in_scope(vec![pat], fld, body, |rename_fld, fld, body| { fld.fold_block(rename_fld.fold_block(body)) }); assert!(rewritten_pats.len() == 1); let else_opt = else_opt.map(|else_opt| fld.fold_expr(else_opt)); let sub_expr = fld.fold_expr(sub_expr); let il = ast::ExprKind::IfLet(rewritten_pats.remove(0), sub_expr, body, else_opt); fld.cx.expr(span, il).with_attrs(fold_thin_attrs(attrs, fld)) } ast::ExprKind::Closure(capture_clause, fn_decl, block) => { let (rewritten_fn_decl, rewritten_block) = expand_and_rename_fn_decl_and_block(fn_decl, block, fld); let new_node = ast::ExprKind::Closure(capture_clause, rewritten_fn_decl, rewritten_block); P(ast::Expr{id:id, node: new_node, span: fld.new_span(span), attrs: fold_thin_attrs(attrs, fld)}) } _ => { P(noop_fold_expr(ast::Expr { id: id, node: node, span: span, attrs: attrs }, fld)) } }); } /// Expand a (not-ident-style) macro invocation. Returns the result /// of expansion and the mark which must be applied to the result. /// Our current interface doesn't allow us to apply the mark to the /// result until after calling make_expr, make_items, etc. fn expand_mac_invoc(mac: ast::Mac, span: codemap::Span, parse_thunk: F, mark_thunk: G, fld: &mut MacroExpander) -> Option where F: for<'a> FnOnce(Box) -> Option, G: FnOnce(T, Mrk) -> T, { // it would almost certainly be cleaner to pass the whole // macro invocation in, rather than pulling it apart and // marking the tts and the ctxt separately. This also goes // for the other three macro invocation chunks of code // in this file. let Mac_ { path: pth, tts, .. } = mac.node; if pth.segments.len() > 1 { fld.cx.span_err(pth.span, "expected macro name without module \ separators"); // let compilation continue return None; } let extname = pth.segments[0].identifier.name; match fld.cx.syntax_env.find(extname) { None => { let mut err = fld.cx.struct_span_err( pth.span, &format!("macro undefined: '{}!'", &extname)); fld.cx.suggest_macro_name(&extname.as_str(), pth.span, &mut err); err.emit(); // let compilation continue None } Some(rc) => match *rc { NormalTT(ref expandfun, exp_span, allow_internal_unstable) => { fld.cx.bt_push(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(extname), span: exp_span, allow_internal_unstable: allow_internal_unstable, }, }); let fm = fresh_mark(); let marked_before = mark_tts(&tts[..], fm); // The span that we pass to the expanders we want to // be the root of the call stack. That's the most // relevant span and it's the actual invocation of // the macro. let mac_span = fld.cx.original_span(); let opt_parsed = { let expanded = expandfun.expand(fld.cx, mac_span, &marked_before[..]); parse_thunk(expanded) }; let parsed = match opt_parsed { Some(e) => e, None => { fld.cx.span_err( pth.span, &format!("non-expression macro in expression position: {}", extname )); return None; } }; Some(mark_thunk(parsed,fm)) } _ => { fld.cx.span_err( pth.span, &format!("'{}' is not a tt-style macro", extname)); None } } } } /// Rename loop label and expand its loop body /// /// The renaming procedure for loop is different in the sense that the loop /// body is in a block enclosed by loop head so the renaming of loop label /// must be propagated to the enclosed context. fn expand_loop_block(loop_block: P, opt_ident: Option, fld: &mut MacroExpander) -> (P, Option) { match opt_ident { Some(label) => { let new_label = fresh_name(label); let rename = (label, new_label); // The rename *must not* be added to the pending list of current // syntax context otherwise an unrelated `break` or `continue` in // the same context will pick that up in the deferred renaming pass // and be renamed incorrectly. let mut rename_list = vec!(rename); let mut rename_fld = IdentRenamer{renames: &mut rename_list}; let renamed_ident = rename_fld.fold_ident(label); // The rename *must* be added to the enclosed syntax context for // `break` or `continue` to pick up because by definition they are // in a block enclosed by loop head. fld.cx.syntax_env.push_frame(); fld.cx.syntax_env.info().pending_renames.push(rename); let expanded_block = expand_block_elts(loop_block, fld); fld.cx.syntax_env.pop_frame(); (expanded_block, Some(renamed_ident)) } None => (fld.fold_block(loop_block), opt_ident) } } // eval $e with a new exts frame. // must be a macro so that $e isn't evaluated too early. macro_rules! with_exts_frame { ($extsboxexpr:expr,$macros_escape:expr,$e:expr) => ({$extsboxexpr.push_frame(); $extsboxexpr.info().macros_escape = $macros_escape; let result = $e; $extsboxexpr.pop_frame(); result }) } // When we enter a module, record it, for the sake of `module!` pub fn expand_item(it: P, fld: &mut MacroExpander) -> SmallVector> { let it = expand_item_multi_modifier(Annotatable::Item(it), fld); expand_annotatable(it, fld) .into_iter().map(|i| i.expect_item()).collect() } /// Expand item_kind fn expand_item_kind(item: ast::ItemKind, fld: &mut MacroExpander) -> ast::ItemKind { match item { ast::ItemKind::Fn(decl, unsafety, constness, abi, generics, body) => { let (rewritten_fn_decl, rewritten_body) = expand_and_rename_fn_decl_and_block(decl, body, fld); let expanded_generics = fold::noop_fold_generics(generics,fld); ast::ItemKind::Fn(rewritten_fn_decl, unsafety, constness, abi, expanded_generics, rewritten_body) } _ => noop_fold_item_kind(item, fld) } } // does this attribute list contain "macro_use" ? fn contains_macro_use(fld: &mut MacroExpander, attrs: &[ast::Attribute]) -> bool { for attr in attrs { let mut is_use = attr.check_name("macro_use"); if attr.check_name("macro_escape") { let mut err = fld.cx.struct_span_warn(attr.span, "macro_escape is a deprecated synonym for macro_use"); is_use = true; if let ast::AttrStyle::Inner = attr.node.style { err.fileline_help(attr.span, "consider an outer attribute, \ #[macro_use] mod ...").emit(); } else { err.emit(); } }; if is_use { match attr.node.value.node { ast::MetaItemKind::Word(..) => (), _ => fld.cx.span_err(attr.span, "arguments to macro_use are not allowed here"), } return true; } } false } // Support for item-position macro invocations, exactly the same // logic as for expression-position macro invocations. pub fn expand_item_mac(it: P, fld: &mut MacroExpander) -> SmallVector> { let (extname, path_span, tts, span, attrs, ident) = it.and_then(|it| match it.node { ItemKind::Mac(codemap::Spanned { node: Mac_ { path, tts, .. }, .. }) => (path.segments[0].identifier.name, path.span, tts, it.span, it.attrs, it.ident), _ => fld.cx.span_bug(it.span, "invalid item macro invocation") }); let fm = fresh_mark(); let items = { let expanded = match fld.cx.syntax_env.find(extname) { None => { fld.cx.span_err(path_span, &format!("macro undefined: '{}!'", extname)); // let compilation continue return SmallVector::zero(); } Some(rc) => match *rc { NormalTT(ref expander, tt_span, allow_internal_unstable) => { if ident.name != parse::token::special_idents::invalid.name { fld.cx .span_err(path_span, &format!("macro {}! expects no ident argument, given '{}'", extname, ident)); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(extname), span: tt_span, allow_internal_unstable: allow_internal_unstable, } }); // mark before expansion: let marked_before = mark_tts(&tts[..], fm); expander.expand(fld.cx, span, &marked_before[..]) } IdentTT(ref expander, tt_span, allow_internal_unstable) => { if ident.name == parse::token::special_idents::invalid.name { fld.cx.span_err(path_span, &format!("macro {}! expects an ident argument", extname)); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(extname), span: tt_span, allow_internal_unstable: allow_internal_unstable, } }); // mark before expansion: let marked_tts = mark_tts(&tts[..], fm); expander.expand(fld.cx, span, ident, marked_tts) } MacroRulesTT => { if ident.name == parse::token::special_idents::invalid.name { fld.cx.span_err(path_span, "macro_rules! expects an ident argument"); return SmallVector::zero(); } fld.cx.bt_push(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(extname), span: None, // `macro_rules!` doesn't directly allow // unstable (this is orthogonal to whether // the macro it creates allows it) allow_internal_unstable: false, } }); // DON'T mark before expansion. let allow_internal_unstable = attr::contains_name(&attrs, "allow_internal_unstable"); // ensure any #[allow_internal_unstable]s are // detected (including nested macro definitions // etc.) if allow_internal_unstable && !fld.cx.ecfg.enable_allow_internal_unstable() { feature_gate::emit_feature_err( &fld.cx.parse_sess.span_diagnostic, "allow_internal_unstable", span, feature_gate::GateIssue::Language, feature_gate::EXPLAIN_ALLOW_INTERNAL_UNSTABLE) } let export = attr::contains_name(&attrs, "macro_export"); let def = ast::MacroDef { ident: ident, attrs: attrs, id: ast::DUMMY_NODE_ID, span: span, imported_from: None, export: export, use_locally: true, allow_internal_unstable: allow_internal_unstable, body: tts, }; fld.cx.insert_macro(def); // macro_rules! has a side effect but expands to nothing. fld.cx.bt_pop(); return SmallVector::zero(); } _ => { fld.cx.span_err(span, &format!("{}! is not legal in item position", extname)); return SmallVector::zero(); } } }; expanded.make_items() }; let items = match items { Some(items) => { items.into_iter() .map(|i| mark_item(i, fm)) .flat_map(|i| fld.fold_item(i).into_iter()) .collect() } None => { fld.cx.span_err(path_span, &format!("non-item macro in item position: {}", extname)); return SmallVector::zero(); } }; fld.cx.bt_pop(); items } /// Expand a stmt fn expand_stmt(stmt: P, fld: &mut MacroExpander) -> SmallVector> { let stmt = stmt.and_then(|stmt| stmt); let (mac, style, attrs) = match stmt.node { StmtKind::Mac(mac, style, attrs) => (mac, style, attrs), _ => return expand_non_macro_stmt(stmt, fld) }; // Assert that we drop any macro attributes on the floor here drop(attrs); let maybe_new_items = expand_mac_invoc(mac.and_then(|m| m), stmt.span, |r| r.make_stmts(), |stmts, mark| stmts.move_map(|m| mark_stmt(m, mark)), fld); let mut fully_expanded = match maybe_new_items { Some(stmts) => { // Keep going, outside-in. let new_items = stmts.into_iter().flat_map(|s| { fld.fold_stmt(s).into_iter() }).collect(); fld.cx.bt_pop(); new_items } None => SmallVector::zero() }; // If this is a macro invocation with a semicolon, then apply that // semicolon to the final statement produced by expansion. if style == MacStmtStyle::Semicolon { if let Some(stmt) = fully_expanded.pop() { let new_stmt = stmt.map(|Spanned {node, span}| { Spanned { node: match node { StmtKind::Expr(e, stmt_id) => StmtKind::Semi(e, stmt_id), _ => node /* might already have a semi */ }, span: span } }); fully_expanded.push(new_stmt); } } fully_expanded } // expand a non-macro stmt. this is essentially the fallthrough for // expand_stmt, above. fn expand_non_macro_stmt(Spanned {node, span: stmt_span}: Stmt, fld: &mut MacroExpander) -> SmallVector> { // is it a let? match node { StmtKind::Decl(decl, node_id) => decl.and_then(|Spanned {node: decl, span}| match decl { DeclKind::Local(local) => { // take it apart: let rewritten_local = local.map(|Local {id, pat, ty, init, span, attrs}| { // expand the ty since TyKind::FixedLengthVec contains an Expr // and thus may have a macro use let expanded_ty = ty.map(|t| fld.fold_ty(t)); // expand the pat (it might contain macro uses): let expanded_pat = fld.fold_pat(pat); // find the PatIdents in the pattern: // oh dear heaven... this is going to include the enum // names, as well... but that should be okay, as long as // the new names are gensyms for the old ones. // generate fresh names, push them to a new pending list let idents = pattern_bindings(&expanded_pat); let mut new_pending_renames = idents.iter().map(|ident| (*ident, fresh_name(*ident))).collect(); // rewrite the pattern using the new names (the old // ones have already been applied): let rewritten_pat = { // nested binding to allow borrow to expire: let mut rename_fld = IdentRenamer{renames: &mut new_pending_renames}; rename_fld.fold_pat(expanded_pat) }; // add them to the existing pending renames: fld.cx.syntax_env.info().pending_renames .extend(new_pending_renames); Local { id: id, ty: expanded_ty, pat: rewritten_pat, // also, don't forget to expand the init: init: init.map(|e| fld.fold_expr(e)), span: span, attrs: fold::fold_thin_attrs(attrs, fld), } }); SmallVector::one(P(Spanned { node: StmtKind::Decl(P(Spanned { node: DeclKind::Local(rewritten_local), span: span }), node_id), span: stmt_span })) } _ => { noop_fold_stmt(Spanned { node: StmtKind::Decl(P(Spanned { node: decl, span: span }), node_id), span: stmt_span }, fld) } }), _ => { noop_fold_stmt(Spanned { node: node, span: stmt_span }, fld) } } } // expand the arm of a 'match', renaming for macro hygiene fn expand_arm(arm: ast::Arm, fld: &mut MacroExpander) -> ast::Arm { // expand pats... they might contain macro uses: let expanded_pats = arm.pats.move_map(|pat| fld.fold_pat(pat)); if expanded_pats.is_empty() { panic!("encountered match arm with 0 patterns"); } // apply renaming and then expansion to the guard and the body: let ((rewritten_guard, rewritten_body), rewritten_pats) = rename_in_scope(expanded_pats, fld, (arm.guard, arm.body), |rename_fld, fld, (ag, ab)|{ let rewritten_guard = ag.map(|g| fld.fold_expr(rename_fld.fold_expr(g))); let rewritten_body = fld.fold_expr(rename_fld.fold_expr(ab)); (rewritten_guard, rewritten_body) }); ast::Arm { attrs: fold::fold_attrs(arm.attrs, fld), pats: rewritten_pats, guard: rewritten_guard, body: rewritten_body, } } fn rename_in_scope(pats: Vec>, fld: &mut MacroExpander, x: X, f: F) -> (X, Vec>) where F: Fn(&mut IdentRenamer, &mut MacroExpander, X) -> X { // all of the pats must have the same set of bindings, so use the // first one to extract them and generate new names: let idents = pattern_bindings(&pats[0]); let new_renames = idents.into_iter().map(|id| (id, fresh_name(id))).collect(); // apply the renaming, but only to the PatIdents: let mut rename_pats_fld = PatIdentRenamer{renames:&new_renames}; let rewritten_pats = pats.move_map(|pat| rename_pats_fld.fold_pat(pat)); let mut rename_fld = IdentRenamer{ renames:&new_renames }; (f(&mut rename_fld, fld, x), rewritten_pats) } /// A visitor that extracts the PatIdent (binding) paths /// from a given thingy and puts them in a mutable /// array #[derive(Clone)] struct PatIdentFinder { ident_accumulator: Vec } impl<'v> Visitor<'v> for PatIdentFinder { fn visit_pat(&mut self, pattern: &ast::Pat) { match *pattern { ast::Pat { id: _, node: ast::PatIdent(_, ref path1, ref inner), span: _ } => { self.ident_accumulator.push(path1.node); // visit optional subpattern of PatIdent: if let Some(ref subpat) = *inner { self.visit_pat(subpat) } } // use the default traversal for non-PatIdents _ => visit::walk_pat(self, pattern) } } } /// find the PatIdent paths in a pattern fn pattern_bindings(pat: &ast::Pat) -> Vec { let mut name_finder = PatIdentFinder{ident_accumulator:Vec::new()}; name_finder.visit_pat(pat); name_finder.ident_accumulator } /// find the PatIdent paths in a fn fn_decl_arg_bindings(fn_decl: &ast::FnDecl) -> Vec { let mut pat_idents = PatIdentFinder{ident_accumulator:Vec::new()}; for arg in &fn_decl.inputs { pat_idents.visit_pat(&arg.pat); } pat_idents.ident_accumulator } // expand a block. pushes a new exts_frame, then calls expand_block_elts pub fn expand_block(blk: P, fld: &mut MacroExpander) -> P { // see note below about treatment of exts table with_exts_frame!(fld.cx.syntax_env,false, expand_block_elts(blk, fld)) } // expand the elements of a block. pub fn expand_block_elts(b: P, fld: &mut MacroExpander) -> P { b.map(|Block {id, stmts, expr, rules, span}| { let new_stmts = stmts.into_iter().flat_map(|x| { // perform all pending renames let renamed_stmt = { let pending_renames = &mut fld.cx.syntax_env.info().pending_renames; let mut rename_fld = IdentRenamer{renames:pending_renames}; rename_fld.fold_stmt(x).expect_one("rename_fold didn't return one value") }; // expand macros in the statement fld.fold_stmt(renamed_stmt).into_iter() }).collect(); let new_expr = expr.map(|x| { let expr = { let pending_renames = &mut fld.cx.syntax_env.info().pending_renames; let mut rename_fld = IdentRenamer{renames:pending_renames}; rename_fld.fold_expr(x) }; fld.fold_expr(expr) }); Block { id: fld.new_id(id), stmts: new_stmts, expr: new_expr, rules: rules, span: span } }) } fn expand_pat(p: P, fld: &mut MacroExpander) -> P { match p.node { PatMac(_) => {} _ => return noop_fold_pat(p, fld) } p.map(|ast::Pat {node, span, ..}| { let (pth, tts) = match node { PatMac(mac) => (mac.node.path, mac.node.tts), _ => unreachable!() }; if pth.segments.len() > 1 { fld.cx.span_err(pth.span, "expected macro name without module separators"); return DummyResult::raw_pat(span); } let extname = pth.segments[0].identifier.name; let marked_after = match fld.cx.syntax_env.find(extname) { None => { fld.cx.span_err(pth.span, &format!("macro undefined: '{}!'", extname)); // let compilation continue return DummyResult::raw_pat(span); } Some(rc) => match *rc { NormalTT(ref expander, tt_span, allow_internal_unstable) => { fld.cx.bt_push(ExpnInfo { call_site: span, callee: NameAndSpan { format: MacroBang(extname), span: tt_span, allow_internal_unstable: allow_internal_unstable, } }); let fm = fresh_mark(); let marked_before = mark_tts(&tts[..], fm); let mac_span = fld.cx.original_span(); let pat = expander.expand(fld.cx, mac_span, &marked_before[..]).make_pat(); let expanded = match pat { Some(e) => e, None => { fld.cx.span_err( pth.span, &format!( "non-pattern macro in pattern position: {}", extname ) ); return DummyResult::raw_pat(span); } }; // mark after: mark_pat(expanded,fm) } _ => { fld.cx.span_err(span, &format!("{}! is not legal in pattern position", extname)); return DummyResult::raw_pat(span); } } }; let fully_expanded = fld.fold_pat(marked_after).node.clone(); fld.cx.bt_pop(); ast::Pat { id: ast::DUMMY_NODE_ID, node: fully_expanded, span: span } }) } /// A tree-folder that applies every rename in its (mutable) list /// to every identifier, including both bindings and varrefs /// (and lots of things that will turn out to be neither) pub struct IdentRenamer<'a> { renames: &'a mtwt::RenameList, } impl<'a> Folder for IdentRenamer<'a> { fn fold_ident(&mut self, id: Ident) -> Ident { Ident::new(id.name, mtwt::apply_renames(self.renames, id.ctxt)) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { fold::noop_fold_mac(mac, self) } } /// A tree-folder that applies every rename in its list to /// the idents that are in PatIdent patterns. This is more narrowly /// focused than IdentRenamer, and is needed for FnDecl, /// where we want to rename the args but not the fn name or the generics etc. pub struct PatIdentRenamer<'a> { renames: &'a mtwt::RenameList, } impl<'a> Folder for PatIdentRenamer<'a> { fn fold_pat(&mut self, pat: P) -> P { match pat.node { ast::PatIdent(..) => {}, _ => return noop_fold_pat(pat, self) } pat.map(|ast::Pat {id, node, span}| match node { ast::PatIdent(binding_mode, Spanned{span: sp, node: ident}, sub) => { let new_ident = Ident::new(ident.name, mtwt::apply_renames(self.renames, ident.ctxt)); let new_node = ast::PatIdent(binding_mode, Spanned{span: self.new_span(sp), node: new_ident}, sub.map(|p| self.fold_pat(p))); ast::Pat { id: id, node: new_node, span: self.new_span(span) } }, _ => unreachable!() }) } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { fold::noop_fold_mac(mac, self) } } fn expand_annotatable(a: Annotatable, fld: &mut MacroExpander) -> SmallVector { let a = expand_item_multi_modifier(a, fld); let mut decorator_items = SmallVector::zero(); let mut new_attrs = Vec::new(); expand_decorators(a.clone(), fld, &mut decorator_items, &mut new_attrs); let mut new_items: SmallVector = match a { Annotatable::Item(it) => match it.node { ast::ItemKind::Mac(..) => { expand_item_mac(it, fld).into_iter().map(|i| Annotatable::Item(i)).collect() } ast::ItemKind::Mod(_) | ast::ItemKind::ForeignMod(_) => { let valid_ident = it.ident.name != parse::token::special_idents::invalid.name; if valid_ident { fld.cx.mod_push(it.ident); } let macro_use = contains_macro_use(fld, &new_attrs[..]); let result = with_exts_frame!(fld.cx.syntax_env, macro_use, noop_fold_item(it, fld)); if valid_ident { fld.cx.mod_pop(); } result.into_iter().map(|i| Annotatable::Item(i)).collect() }, _ => { let it = P(ast::Item { attrs: new_attrs, ..(*it).clone() }); noop_fold_item(it, fld).into_iter().map(|i| Annotatable::Item(i)).collect() } }, Annotatable::TraitItem(it) => match it.node { ast::TraitItemKind::Method(_, Some(_)) => SmallVector::one(it.map(|ti| ast::TraitItem { id: ti.id, ident: ti.ident, attrs: ti.attrs, node: match ti.node { ast::TraitItemKind::Method(sig, Some(body)) => { let (sig, body) = expand_and_rename_method(sig, body, fld); ast::TraitItemKind::Method(sig, Some(body)) } _ => unreachable!() }, span: fld.new_span(ti.span) })), _ => fold::noop_fold_trait_item(it, fld) }.into_iter().map(Annotatable::TraitItem).collect(), Annotatable::ImplItem(ii) => { expand_impl_item(ii, fld).into_iter().map(Annotatable::ImplItem).collect() } }; new_items.push_all(decorator_items); new_items } // Partition a set of attributes into one kind of attribute, and other kinds. macro_rules! partition { ($fn_name: ident, $variant: ident) => { #[allow(deprecated)] // The `allow` is needed because the `Modifier` variant might be used. fn $fn_name(attrs: &[ast::Attribute], fld: &MacroExpander) -> (Vec, Vec) { attrs.iter().cloned().partition(|attr| { match fld.cx.syntax_env.find(intern(&attr.name())) { Some(rc) => match *rc { $variant(..) => true, _ => false }, _ => false } }) } } } partition!(multi_modifiers, MultiModifier); fn expand_decorators(a: Annotatable, fld: &mut MacroExpander, decorator_items: &mut SmallVector, new_attrs: &mut Vec) { for attr in a.attrs() { let mname = intern(&attr.name()); match fld.cx.syntax_env.find(mname) { Some(rc) => match *rc { MultiDecorator(ref dec) => { attr::mark_used(&attr); fld.cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { format: MacroAttribute(mname), span: Some(attr.span), // attributes can do whatever they like, // for now. allow_internal_unstable: true, } }); // we'd ideally decorator_items.push_all(expand_annotatable(ann, fld)), // but that double-mut-borrows fld let mut items: SmallVector = SmallVector::zero(); dec.expand(fld.cx, attr.span, &attr.node.value, &a, &mut |ann| items.push(ann)); decorator_items.extend(items.into_iter() .flat_map(|ann| expand_annotatable(ann, fld).into_iter())); fld.cx.bt_pop(); } _ => new_attrs.push((*attr).clone()), }, _ => new_attrs.push((*attr).clone()), } } } fn expand_item_multi_modifier(mut it: Annotatable, fld: &mut MacroExpander) -> Annotatable { let (modifiers, other_attrs) = multi_modifiers(it.attrs(), fld); // Update the attrs, leave everything else alone. Is this mutation really a good idea? it = it.fold_attrs(other_attrs); if modifiers.is_empty() { return it } for attr in &modifiers { let mname = intern(&attr.name()); match fld.cx.syntax_env.find(mname) { Some(rc) => match *rc { MultiModifier(ref mac) => { attr::mark_used(attr); fld.cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { format: MacroAttribute(mname), span: Some(attr.span), // attributes can do whatever they like, // for now allow_internal_unstable: true, } }); it = mac.expand(fld.cx, attr.span, &*attr.node.value, it); fld.cx.bt_pop(); } _ => unreachable!() }, _ => unreachable!() } } // Expansion may have added new ItemKind::Modifiers. expand_item_multi_modifier(it, fld) } fn expand_impl_item(ii: P, fld: &mut MacroExpander) -> SmallVector> { match ii.node { ast::ImplItemKind::Method(..) => SmallVector::one(ii.map(|ii| ast::ImplItem { id: ii.id, ident: ii.ident, attrs: ii.attrs, vis: ii.vis, node: match ii.node { ast::ImplItemKind::Method(sig, body) => { let (sig, body) = expand_and_rename_method(sig, body, fld); ast::ImplItemKind::Method(sig, body) } _ => unreachable!() }, span: fld.new_span(ii.span) })), ast::ImplItemKind::Macro(_) => { let (span, mac) = ii.and_then(|ii| match ii.node { ast::ImplItemKind::Macro(mac) => (ii.span, mac), _ => unreachable!() }); let maybe_new_items = expand_mac_invoc(mac, span, |r| r.make_impl_items(), |meths, mark| meths.move_map(|m| mark_impl_item(m, mark)), fld); match maybe_new_items { Some(impl_items) => { // expand again if necessary let new_items = impl_items.into_iter().flat_map(|ii| { expand_impl_item(ii, fld).into_iter() }).collect(); fld.cx.bt_pop(); new_items } None => SmallVector::zero() } } _ => fold::noop_fold_impl_item(ii, fld) } } /// Given a fn_decl and a block and a MacroExpander, expand the fn_decl, then use the /// PatIdents in its arguments to perform renaming in the FnDecl and /// the block, returning both the new FnDecl and the new Block. fn expand_and_rename_fn_decl_and_block(fn_decl: P, block: P, fld: &mut MacroExpander) -> (P, P) { let expanded_decl = fld.fold_fn_decl(fn_decl); let idents = fn_decl_arg_bindings(&expanded_decl); let renames = idents.iter().map(|id| (*id,fresh_name(*id))).collect(); // first, a renamer for the PatIdents, for the fn_decl: let mut rename_pat_fld = PatIdentRenamer{renames: &renames}; let rewritten_fn_decl = rename_pat_fld.fold_fn_decl(expanded_decl); // now, a renamer for *all* idents, for the body: let mut rename_fld = IdentRenamer{renames: &renames}; let rewritten_body = fld.fold_block(rename_fld.fold_block(block)); (rewritten_fn_decl,rewritten_body) } fn expand_and_rename_method(sig: ast::MethodSig, body: P, fld: &mut MacroExpander) -> (ast::MethodSig, P) { let (rewritten_fn_decl, rewritten_body) = expand_and_rename_fn_decl_and_block(sig.decl, body, fld); (ast::MethodSig { generics: fld.fold_generics(sig.generics), abi: sig.abi, explicit_self: fld.fold_explicit_self(sig.explicit_self), unsafety: sig.unsafety, constness: sig.constness, decl: rewritten_fn_decl }, rewritten_body) } pub fn expand_type(t: P, fld: &mut MacroExpander) -> P { let t = match t.node.clone() { ast::TyKind::Mac(mac) => { if fld.cx.ecfg.features.unwrap().type_macros { let expanded_ty = match expand_mac_invoc(mac, t.span, |r| r.make_ty(), mark_ty, fld) { Some(ty) => ty, None => { return DummyResult::raw_ty(t.span); } }; // Keep going, outside-in. let fully_expanded = fld.fold_ty(expanded_ty); fld.cx.bt_pop(); fully_expanded.map(|t| ast::Ty { id: ast::DUMMY_NODE_ID, node: t.node, span: t.span, }) } else { feature_gate::emit_feature_err( &fld.cx.parse_sess.span_diagnostic, "type_macros", t.span, feature_gate::GateIssue::Language, "type macros are experimental"); DummyResult::raw_ty(t.span) } } _ => t }; fold::noop_fold_ty(t, fld) } /// A tree-folder that performs macro expansion pub struct MacroExpander<'a, 'b:'a> { pub cx: &'a mut ExtCtxt<'b>, } impl<'a, 'b> MacroExpander<'a, 'b> { pub fn new(cx: &'a mut ExtCtxt<'b>) -> MacroExpander<'a, 'b> { MacroExpander { cx: cx } } } impl<'a, 'b> Folder for MacroExpander<'a, 'b> { fn fold_expr(&mut self, expr: P) -> P { expand_expr(expr, self) } fn fold_pat(&mut self, pat: P) -> P { expand_pat(pat, self) } fn fold_item(&mut self, item: P) -> SmallVector> { expand_item(item, self) } fn fold_item_kind(&mut self, item: ast::ItemKind) -> ast::ItemKind { expand_item_kind(item, self) } fn fold_stmt(&mut self, stmt: P) -> SmallVector> { expand_stmt(stmt, self) } fn fold_block(&mut self, block: P) -> P { expand_block(block, self) } fn fold_arm(&mut self, arm: ast::Arm) -> ast::Arm { expand_arm(arm, self) } fn fold_trait_item(&mut self, i: P) -> SmallVector> { expand_annotatable(Annotatable::TraitItem(i), self) .into_iter().map(|i| i.expect_trait_item()).collect() } fn fold_impl_item(&mut self, i: P) -> SmallVector> { expand_annotatable(Annotatable::ImplItem(i), self) .into_iter().map(|i| i.expect_impl_item()).collect() } fn fold_ty(&mut self, ty: P) -> P { expand_type(ty, self) } fn new_span(&mut self, span: Span) -> Span { new_span(self.cx, span) } } fn new_span(cx: &ExtCtxt, sp: Span) -> Span { /* this discards information in the case of macro-defining macros */ Span { lo: sp.lo, hi: sp.hi, expn_id: cx.backtrace(), } } pub struct ExpansionConfig<'feat> { pub crate_name: String, pub features: Option<&'feat Features>, pub recursion_limit: usize, pub trace_mac: bool, } macro_rules! feature_tests { ($( fn $getter:ident = $field:ident, )*) => { $( pub fn $getter(&self) -> bool { match self.features { Some(&Features { $field: true, .. }) => true, _ => false, } } )* } } impl<'feat> ExpansionConfig<'feat> { pub fn default(crate_name: String) -> ExpansionConfig<'static> { ExpansionConfig { crate_name: crate_name, features: None, recursion_limit: 64, trace_mac: false, } } feature_tests! { fn enable_quotes = allow_quote, fn enable_asm = allow_asm, fn enable_log_syntax = allow_log_syntax, fn enable_concat_idents = allow_concat_idents, fn enable_trace_macros = allow_trace_macros, fn enable_allow_internal_unstable = allow_internal_unstable, fn enable_custom_derive = allow_custom_derive, fn enable_pushpop_unsafe = allow_pushpop_unsafe, } } pub fn expand_crate(mut cx: ExtCtxt, // these are the macros being imported to this crate: imported_macros: Vec, user_exts: Vec, c: Crate) -> (Crate, HashSet) { if std_inject::no_core(&c) { cx.crate_root = None; } else if std_inject::no_std(&c) { cx.crate_root = Some("core"); } else { cx.crate_root = Some("std"); } let ret = { let mut expander = MacroExpander::new(&mut cx); for def in imported_macros { expander.cx.insert_macro(def); } for (name, extension) in user_exts { expander.cx.syntax_env.insert(name, extension); } let err_count = cx.parse_sess.span_diagnostic.err_count(); let mut ret = expander.fold_crate(c); ret.exported_macros = expander.cx.exported_macros.clone(); if cx.parse_sess.span_diagnostic.err_count() > err_count { cx.parse_sess.span_diagnostic.abort_if_errors(); } ret }; return (ret, cx.syntax_env.names); } // HYGIENIC CONTEXT EXTENSION: // all of these functions are for walking over // ASTs and making some change to the context of every // element that has one. a CtxtFn is a trait-ified // version of a closure in (SyntaxContext -> SyntaxContext). // the ones defined here include: // Marker - add a mark to a context // A Marker adds the given mark to the syntax context struct Marker { mark: Mrk } impl Folder for Marker { fn fold_ident(&mut self, id: Ident) -> Ident { ast::Ident::new(id.name, mtwt::apply_mark(self.mark, id.ctxt)) } fn fold_mac(&mut self, Spanned {node, span}: ast::Mac) -> ast::Mac { Spanned { node: Mac_ { path: self.fold_path(node.path), tts: self.fold_tts(&node.tts), ctxt: mtwt::apply_mark(self.mark, node.ctxt), }, span: span, } } } // apply a given mark to the given token trees. Used prior to expansion of a macro. fn mark_tts(tts: &[TokenTree], m: Mrk) -> Vec { noop_fold_tts(tts, &mut Marker{mark:m}) } // apply a given mark to the given expr. Used following the expansion of a macro. fn mark_expr(expr: P, m: Mrk) -> P { Marker{mark:m}.fold_expr(expr) } // apply a given mark to the given pattern. Used following the expansion of a macro. fn mark_pat(pat: P, m: Mrk) -> P { Marker{mark:m}.fold_pat(pat) } // apply a given mark to the given stmt. Used following the expansion of a macro. fn mark_stmt(stmt: P, m: Mrk) -> P { Marker{mark:m}.fold_stmt(stmt) .expect_one("marking a stmt didn't return exactly one stmt") } // apply a given mark to the given item. Used following the expansion of a macro. fn mark_item(expr: P, m: Mrk) -> P { Marker{mark:m}.fold_item(expr) .expect_one("marking an item didn't return exactly one item") } // apply a given mark to the given item. Used following the expansion of a macro. fn mark_impl_item(ii: P, m: Mrk) -> P { Marker{mark:m}.fold_impl_item(ii) .expect_one("marking an impl item didn't return exactly one impl item") } fn mark_ty(ty: P, m: Mrk) -> P { Marker { mark: m }.fold_ty(ty) } /// Check that there are no macro invocations left in the AST: pub fn check_for_macros(sess: &parse::ParseSess, krate: &ast::Crate) { visit::walk_crate(&mut MacroExterminator{sess:sess}, krate); } /// A visitor that ensures that no macro invocations remain in an AST. struct MacroExterminator<'a>{ sess: &'a parse::ParseSess } impl<'a, 'v> Visitor<'v> for MacroExterminator<'a> { fn visit_mac(&mut self, mac: &ast::Mac) { self.sess.span_diagnostic.span_bug(mac.span, "macro exterminator: expected AST \ with no macro invocations"); } } #[cfg(test)] mod tests { use super::{pattern_bindings, expand_crate}; use super::{PatIdentFinder, IdentRenamer, PatIdentRenamer, ExpansionConfig}; use ast; use ast::Name; use codemap; use ext::base::ExtCtxt; use ext::mtwt; use fold::Folder; use parse; use parse::token; use util::parser_testing::{string_to_parser}; use util::parser_testing::{string_to_pat, string_to_crate, strs_to_idents}; use visit; use visit::Visitor; // a visitor that extracts the paths // from a given thingy and puts them in a mutable // array (passed in to the traversal) #[derive(Clone)] struct PathExprFinderContext { path_accumulator: Vec , } impl<'v> Visitor<'v> for PathExprFinderContext { fn visit_expr(&mut self, expr: &ast::Expr) { if let ast::ExprKind::Path(None, ref p) = expr.node { self.path_accumulator.push(p.clone()); } visit::walk_expr(self, expr); } } // find the variable references in a crate fn crate_varrefs(the_crate : &ast::Crate) -> Vec { let mut path_finder = PathExprFinderContext{path_accumulator:Vec::new()}; visit::walk_crate(&mut path_finder, the_crate); path_finder.path_accumulator } /// A Visitor that extracts the identifiers from a thingy. // as a side note, I'm starting to want to abstract over these.... struct IdentFinder { ident_accumulator: Vec } impl<'v> Visitor<'v> for IdentFinder { fn visit_ident(&mut self, _: codemap::Span, id: ast::Ident){ self.ident_accumulator.push(id); } } /// Find the idents in a crate fn crate_idents(the_crate: &ast::Crate) -> Vec { let mut ident_finder = IdentFinder{ident_accumulator: Vec::new()}; visit::walk_crate(&mut ident_finder, the_crate); ident_finder.ident_accumulator } // these following tests are quite fragile, in that they don't test what // *kind* of failure occurs. fn test_ecfg() -> ExpansionConfig<'static> { ExpansionConfig::default("test".to_string()) } // make sure that macros can't escape fns #[should_panic] #[test] fn macros_cant_escape_fns_test () { let src = "fn bogus() {macro_rules! z (() => (3+4));}\ fn inty() -> i32 { z!() }".to_string(); let sess = parse::ParseSess::new(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); // should fail: let mut gated_cfgs = vec![]; let ecx = ExtCtxt::new(&sess, vec![], test_ecfg(), &mut gated_cfgs); expand_crate(ecx, vec![], vec![], crate_ast); } // make sure that macros can't escape modules #[should_panic] #[test] fn macros_cant_escape_mods_test () { let src = "mod foo {macro_rules! z (() => (3+4));}\ fn inty() -> i32 { z!() }".to_string(); let sess = parse::ParseSess::new(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); let mut gated_cfgs = vec![]; let ecx = ExtCtxt::new(&sess, vec![], test_ecfg(), &mut gated_cfgs); expand_crate(ecx, vec![], vec![], crate_ast); } // macro_use modules should allow macros to escape #[test] fn macros_can_escape_flattened_mods_test () { let src = "#[macro_use] mod foo {macro_rules! z (() => (3+4));}\ fn inty() -> i32 { z!() }".to_string(); let sess = parse::ParseSess::new(); let crate_ast = parse::parse_crate_from_source_str( "".to_string(), src, Vec::new(), &sess); let mut gated_cfgs = vec![]; let ecx = ExtCtxt::new(&sess, vec![], test_ecfg(), &mut gated_cfgs); expand_crate(ecx, vec![], vec![], crate_ast); } fn expand_crate_str(crate_str: String) -> ast::Crate { let ps = parse::ParseSess::new(); let crate_ast = panictry!(string_to_parser(&ps, crate_str).parse_crate_mod()); // the cfg argument actually does matter, here... let mut gated_cfgs = vec![]; let ecx = ExtCtxt::new(&ps, vec![], test_ecfg(), &mut gated_cfgs); expand_crate(ecx, vec![], vec![], crate_ast).0 } // find the pat_ident paths in a crate fn crate_bindings(the_crate : &ast::Crate) -> Vec { let mut name_finder = PatIdentFinder{ident_accumulator:Vec::new()}; visit::walk_crate(&mut name_finder, the_crate); name_finder.ident_accumulator } #[test] fn macro_tokens_should_match(){ expand_crate_str( "macro_rules! m((a)=>(13)) ;fn main(){m!(a);}".to_string()); } // should be able to use a bound identifier as a literal in a macro definition: #[test] fn self_macro_parsing(){ expand_crate_str( "macro_rules! foo ((zz) => (287;)); fn f(zz: i32) {foo!(zz);}".to_string() ); } // renaming tests expand a crate and then check that the bindings match // the right varrefs. The specification of the test case includes the // text of the crate, and also an array of arrays. Each element in the // outer array corresponds to a binding in the traversal of the AST // induced by visit. Each of these arrays contains a list of indexes, // interpreted as the varrefs in the varref traversal that this binding // should match. So, for instance, in a program with two bindings and // three varrefs, the array [[1, 2], [0]] would indicate that the first // binding should match the second two varrefs, and the second binding // should match the first varref. // // Put differently; this is a sparse representation of a boolean matrix // indicating which bindings capture which identifiers. // // Note also that this matrix is dependent on the implicit ordering of // the bindings and the varrefs discovered by the name-finder and the path-finder. // // The comparisons are done post-mtwt-resolve, so we're comparing renamed // names; differences in marks don't matter any more. // // oog... I also want tests that check "bound-identifier-=?". That is, // not just "do these have the same name", but "do they have the same // name *and* the same marks"? Understanding this is really pretty painful. // in principle, you might want to control this boolean on a per-varref basis, // but that would make things even harder to understand, and might not be // necessary for thorough testing. type RenamingTest = (&'static str, Vec>, bool); #[test] fn automatic_renaming () { let tests: Vec = vec!(// b & c should get new names throughout, in the expr too: ("fn a() -> i32 { let b = 13; let c = b; b+c }", vec!(vec!(0,1),vec!(2)), false), // both x's should be renamed (how is this causing a bug?) ("fn main () {let x: i32 = 13;x;}", vec!(vec!(0)), false), // the use of b after the + should be renamed, the other one not: ("macro_rules! f (($x:ident) => (b + $x)); fn a() -> i32 { let b = 13; f!(b)}", vec!(vec!(1)), false), // the b before the plus should not be renamed (requires marks) ("macro_rules! f (($x:ident) => ({let b=9; ($x + b)})); fn a() -> i32 { f!(b)}", vec!(vec!(1)), false), // the marks going in and out of letty should cancel, allowing that $x to // capture the one following the semicolon. // this was an awesome test case, and caught a *lot* of bugs. ("macro_rules! letty(($x:ident) => (let $x = 15;)); macro_rules! user(($x:ident) => ({letty!($x); $x})); fn main() -> i32 {user!(z)}", vec!(vec!(0)), false) ); for (idx,s) in tests.iter().enumerate() { run_renaming_test(s,idx); } } // no longer a fixme #8062: this test exposes a *potential* bug; our system does // not behave exactly like MTWT, but a conversation with Matthew Flatt // suggests that this can only occur in the presence of local-expand, which // we have no plans to support. ... unless it's needed for item hygiene.... #[ignore] #[test] fn issue_8062(){ run_renaming_test( &("fn main() {let hrcoo = 19; macro_rules! getx(()=>(hrcoo)); getx!();}", vec!(vec!(0)), true), 0) } // FIXME #6994: // the z flows into and out of two macros (g & f) along one path, and one // (just g) along the other, so the result of the whole thing should // be "let z_123 = 3; z_123" #[ignore] #[test] fn issue_6994(){ run_renaming_test( &("macro_rules! g (($x:ident) => ({macro_rules! f(($y:ident)=>({let $y=3;$x}));f!($x)})); fn a(){g!(z)}", vec!(vec!(0)),false), 0) } // match variable hygiene. Should expand into // fn z() {match 8 {x_1 => {match 9 {x_2 | x_2 if x_2 == x_1 => x_2 + x_1}}}} #[test] fn issue_9384(){ run_renaming_test( &("macro_rules! bad_macro (($ex:expr) => ({match 9 {x | x if x == $ex => x + $ex}})); fn z() {match 8 {x => bad_macro!(x)}}", // NB: the third "binding" is the repeat of the second one. vec!(vec!(1,3),vec!(0,2),vec!(0,2)), true), 0) } // interpolated nodes weren't getting labeled. // should expand into // fn main(){let g1_1 = 13; g1_1}} #[test] fn pat_expand_issue_15221(){ run_renaming_test( &("macro_rules! inner ( ($e:pat ) => ($e)); macro_rules! outer ( ($e:pat ) => (inner!($e))); fn main() { let outer!(g) = 13; g;}", vec!(vec!(0)), true), 0) } // create a really evil test case where a $x appears inside a binding of $x // but *shouldn't* bind because it was inserted by a different macro.... // can't write this test case until we have macro-generating macros. // method arg hygiene // method expands to fn get_x(&self_0, x_1: i32) {self_0 + self_2 + x_3 + x_1} #[test] fn method_arg_hygiene(){ run_renaming_test( &("macro_rules! inject_x (()=>(x)); macro_rules! inject_self (()=>(self)); struct A; impl A{fn get_x(&self, x: i32) {self + inject_self!() + inject_x!() + x;} }", vec!(vec!(0),vec!(3)), true), 0) } // ooh, got another bite? // expands to struct A; impl A {fn thingy(&self_1) {self_1;}} #[test] fn method_arg_hygiene_2(){ run_renaming_test( &("struct A; macro_rules! add_method (($T:ty) => (impl $T { fn thingy(&self) {self;} })); add_method!(A);", vec!(vec!(0)), true), 0) } // item fn hygiene // expands to fn q(x_1: i32){fn g(x_2: i32){x_2 + x_1};} #[test] fn issue_9383(){ run_renaming_test( &("macro_rules! bad_macro (($ex:expr) => (fn g(x: i32){ x + $ex })); fn q(x: i32) { bad_macro!(x); }", vec!(vec!(1),vec!(0)),true), 0) } // closure arg hygiene (ExprKind::Closure) // expands to fn f(){(|x_1 : i32| {(x_2 + x_1)})(3);} #[test] fn closure_arg_hygiene(){ run_renaming_test( &("macro_rules! inject_x (()=>(x)); fn f(){(|x : i32| {(inject_x!() + x)})(3);}", vec!(vec!(1)), true), 0) } // macro_rules in method position. Sadly, unimplemented. #[test] fn macro_in_method_posn(){ expand_crate_str( "macro_rules! my_method (() => (fn thirteen(&self) -> i32 {13})); struct A; impl A{ my_method!(); } fn f(){A.thirteen;}".to_string()); } // another nested macro // expands to impl Entries {fn size_hint(&self_1) {self_1;} #[test] fn item_macro_workaround(){ run_renaming_test( &("macro_rules! item { ($i:item) => {$i}} struct Entries; macro_rules! iterator_impl { () => { item!( impl Entries { fn size_hint(&self) { self;}});}} iterator_impl! { }", vec!(vec!(0)), true), 0) } // run one of the renaming tests fn run_renaming_test(t: &RenamingTest, test_idx: usize) { let invalid_name = token::special_idents::invalid.name; let (teststr, bound_connections, bound_ident_check) = match *t { (ref str,ref conns, bic) => (str.to_string(), conns.clone(), bic) }; let cr = expand_crate_str(teststr.to_string()); let bindings = crate_bindings(&cr); let varrefs = crate_varrefs(&cr); // must be one check clause for each binding: assert_eq!(bindings.len(),bound_connections.len()); for (binding_idx,shouldmatch) in bound_connections.iter().enumerate() { let binding_name = mtwt::resolve(bindings[binding_idx]); let binding_marks = mtwt::marksof(bindings[binding_idx].ctxt, invalid_name); // shouldmatch can't name varrefs that don't exist: assert!((shouldmatch.is_empty()) || (varrefs.len() > *shouldmatch.iter().max().unwrap())); for (idx,varref) in varrefs.iter().enumerate() { let print_hygiene_debug_info = || { // good lord, you can't make a path with 0 segments, can you? let final_varref_ident = match varref.segments.last() { Some(pathsegment) => pathsegment.identifier, None => panic!("varref with 0 path segments?") }; let varref_name = mtwt::resolve(final_varref_ident); let varref_idents : Vec = varref.segments.iter().map(|s| s.identifier) .collect(); println!("varref #{}: {:?}, resolves to {}",idx, varref_idents, varref_name); println!("varref's first segment's string: \"{}\"", final_varref_ident); println!("binding #{}: {}, resolves to {}", binding_idx, bindings[binding_idx], binding_name); mtwt::with_sctable(|x| mtwt::display_sctable(x)); }; if shouldmatch.contains(&idx) { // it should be a path of length 1, and it should // be free-identifier=? or bound-identifier=? to the given binding assert_eq!(varref.segments.len(),1); let varref_name = mtwt::resolve(varref.segments[0].identifier); let varref_marks = mtwt::marksof(varref.segments[0] .identifier .ctxt, invalid_name); if !(varref_name==binding_name) { println!("uh oh, should match but doesn't:"); print_hygiene_debug_info(); } assert_eq!(varref_name,binding_name); if bound_ident_check { // we're checking bound-identifier=?, and the marks // should be the same, too: assert_eq!(varref_marks,binding_marks.clone()); } } else { let varref_name = mtwt::resolve(varref.segments[0].identifier); let fail = (varref.segments.len() == 1) && (varref_name == binding_name); // temp debugging: if fail { println!("failure on test {}",test_idx); println!("text of test case: \"{}\"", teststr); println!(""); println!("uh oh, matches but shouldn't:"); print_hygiene_debug_info(); } assert!(!fail); } } } } #[test] fn fmt_in_macro_used_inside_module_macro() { let crate_str = "macro_rules! fmt_wrap(($b:expr)=>($b.to_string())); macro_rules! foo_module (() => (mod generated { fn a() { let xx = 147; fmt_wrap!(xx);}})); foo_module!(); ".to_string(); let cr = expand_crate_str(crate_str); // find the xx binding let bindings = crate_bindings(&cr); let cxbinds: Vec<&ast::Ident> = bindings.iter().filter(|b| b.name.as_str() == "xx").collect(); let cxbinds: &[&ast::Ident] = &cxbinds[..]; let cxbind = match (cxbinds.len(), cxbinds.get(0)) { (1, Some(b)) => *b, _ => panic!("expected just one binding for ext_cx") }; let resolved_binding = mtwt::resolve(*cxbind); let varrefs = crate_varrefs(&cr); // the xx binding should bind all of the xx varrefs: for (idx,v) in varrefs.iter().filter(|p| { p.segments.len() == 1 && p.segments[0].identifier.name.as_str() == "xx" }).enumerate() { if mtwt::resolve(v.segments[0].identifier) != resolved_binding { println!("uh oh, xx binding didn't match xx varref:"); println!("this is xx varref \\# {}", idx); println!("binding: {}", cxbind); println!("resolves to: {}", resolved_binding); println!("varref: {}", v.segments[0].identifier); println!("resolves to: {}", mtwt::resolve(v.segments[0].identifier)); mtwt::with_sctable(|x| mtwt::display_sctable(x)); } assert_eq!(mtwt::resolve(v.segments[0].identifier), resolved_binding); }; } #[test] fn pat_idents(){ let pat = string_to_pat( "(a,Foo{x:c @ (b,9),y:Bar(4,d)})".to_string()); let idents = pattern_bindings(&pat); assert_eq!(idents, strs_to_idents(vec!("a","c","b","d"))); } // test the list of identifier patterns gathered by the visitor. Note that // 'None' is listed as an identifier pattern because we don't yet know that // it's the name of a 0-ary variant, and that 'i' appears twice in succession. #[test] fn crate_bindings_test(){ let the_crate = string_to_crate("fn main (a: i32) -> i32 {|b| { match 34 {None => 3, Some(i) | i => j, Foo{k:z,l:y} => \"banana\"}} }".to_string()); let idents = crate_bindings(&the_crate); assert_eq!(idents, strs_to_idents(vec!("a","b","None","i","i","z","y"))); } // test the IdentRenamer directly #[test] fn ident_renamer_test () { let the_crate = string_to_crate("fn f(x: i32){let x = x; x}".to_string()); let f_ident = token::str_to_ident("f"); let x_ident = token::str_to_ident("x"); let int_ident = token::str_to_ident("i32"); let renames = vec!((x_ident,Name(16))); let mut renamer = IdentRenamer{renames: &renames}; let renamed_crate = renamer.fold_crate(the_crate); let idents = crate_idents(&renamed_crate); let resolved : Vec = idents.iter().map(|id| mtwt::resolve(*id)).collect(); assert_eq!(resolved, [f_ident.name,Name(16),int_ident.name,Name(16),Name(16),Name(16)]); } // test the PatIdentRenamer; only PatIdents get renamed #[test] fn pat_ident_renamer_test () { let the_crate = string_to_crate("fn f(x: i32){let x = x; x}".to_string()); let f_ident = token::str_to_ident("f"); let x_ident = token::str_to_ident("x"); let int_ident = token::str_to_ident("i32"); let renames = vec!((x_ident,Name(16))); let mut renamer = PatIdentRenamer{renames: &renames}; let renamed_crate = renamer.fold_crate(the_crate); let idents = crate_idents(&renamed_crate); let resolved : Vec = idents.iter().map(|id| mtwt::resolve(*id)).collect(); let x_name = x_ident.name; assert_eq!(resolved, [f_ident.name,Name(16),int_ident.name,Name(16),x_name,x_name]); } }