// check-pass // revisions: host // revisions: i686 //[i686] compile-flags: --target i686-unknown-linux-gnu //[i686] needs-llvm-components: x86 // revisions: x86-64 //[x86-64] compile-flags: --target x86_64-unknown-linux-gnu //[x86-64] needs-llvm-components: x86 // revisions: x86-64-win //[x86-64-win] compile-flags: --target x86_64-pc-windows-msvc //[x86-64-win] needs-llvm-components: x86 // revisions: arm //[arm] compile-flags: --target arm-unknown-linux-gnueabi //[arm] needs-llvm-components: arm // revisions: aarch64 //[aarch64] compile-flags: --target aarch64-unknown-linux-gnu //[aarch64] needs-llvm-components: aarch64 // revisions: s390x //[s390x] compile-flags: --target s390x-unknown-linux-gnu //[s390x] needs-llvm-components: systemz // revisions: mips //[mips] compile-flags: --target mips-unknown-linux-gnu //[mips] needs-llvm-components: mips // revisions: mips64 //[mips64] compile-flags: --target mips64-unknown-linux-gnuabi64 //[mips64] needs-llvm-components: mips // revisions: sparc //[sparc] compile-flags: --target sparc-unknown-linux-gnu //[sparc] needs-llvm-components: sparc // revisions: sparc64 //[sparc64] compile-flags: --target sparc64-unknown-linux-gnu //[sparc64] needs-llvm-components: sparc // revisions: powerpc64 //[powerpc64] compile-flags: --target powerpc64-unknown-linux-gnu //[powerpc64] needs-llvm-components: powerpc // revisions: riscv //[riscv] compile-flags: --target riscv64gc-unknown-linux-gnu //[riscv] needs-llvm-components: riscv // revisions: loongarch64 //[loongarch64] compile-flags: --target loongarch64-unknown-linux-gnu //[loongarch64] needs-llvm-components: loongarch //[loongarch64] min-llvm-version: 17 // revisions: wasm //[wasm] compile-flags: --target wasm32-unknown-unknown //[wasm] needs-llvm-components: webassembly // revisions: wasi //[wasi] compile-flags: --target wasm32-wasi //[wasi] needs-llvm-components: webassembly // revisions: bpf //[bpf] compile-flags: --target bpfeb-unknown-none //[bpf] needs-llvm-components: bpf // revisions: m68k //[m68k] compile-flags: --target m68k-unknown-linux-gnu //[m68k] needs-llvm-components: m68k // FIXME: disabled on nvptx64 since the target ABI fails the sanity check // see https://github.com/rust-lang/rust/issues/117480 /* revisions: nvptx64 [nvptx64] compile-flags: --target nvptx64-nvidia-cuda [nvptx64] needs-llvm-components: nvptx */ // FIXME: disabled since it fails on CI saying the csky component is missing /* revisions: csky [csky] compile-flags: --target csky-unknown-linux-gnuabiv2 [csky] needs-llvm-components: csky */ #![feature(rustc_attrs, unsized_fn_params, transparent_unions)] #![cfg_attr(not(host), feature(no_core, lang_items), no_std, no_core)] #![allow(unused, improper_ctypes_definitions, internal_features)] // FIXME: some targets are broken in various ways. // Hence there are `cfg` throughout this test to disable parts of it on those targets. // sparc64: https://github.com/rust-lang/rust/issues/115336 // mips64: https://github.com/rust-lang/rust/issues/115404 #[cfg(host)] use std::{ any::Any, marker::PhantomData, mem::ManuallyDrop, num::NonZeroI32, ptr::NonNull, rc::Rc, sync::Arc, }; /// To work cross-target this test must be no_core. /// This little prelude supplies what we need. #[cfg(not(host))] mod prelude { #[lang = "sized"] pub trait Sized {} #[lang = "receiver"] pub trait Receiver {} impl Receiver for &T {} impl Receiver for &mut T {} #[lang = "copy"] pub trait Copy: Sized {} impl Copy for i32 {} impl Copy for f32 {} impl Copy for &T {} impl Copy for *const T {} impl Copy for *mut T {} #[lang = "clone"] pub trait Clone: Sized { fn clone(&self) -> Self; } #[lang = "phantom_data"] pub struct PhantomData; impl Copy for PhantomData {} #[lang = "unsafe_cell"] #[repr(transparent)] pub struct UnsafeCell { value: T, } pub trait Any: 'static {} pub enum Option { None, Some(T), } impl Copy for Option {} pub enum Result { Ok(T), Err(E), } impl Copy for Result {} #[lang = "manually_drop"] #[repr(transparent)] pub struct ManuallyDrop { value: T, } impl Copy for ManuallyDrop {} #[repr(transparent)] #[rustc_layout_scalar_valid_range_start(1)] #[rustc_nonnull_optimization_guaranteed] pub struct NonNull { pointer: *const T, } impl Copy for NonNull {} #[repr(transparent)] #[rustc_layout_scalar_valid_range_start(1)] #[rustc_nonnull_optimization_guaranteed] pub struct NonZeroI32(i32); // This just stands in for a non-trivial type. pub struct Vec { ptr: NonNull, cap: usize, len: usize, } pub struct Unique { pub pointer: NonNull, pub _marker: PhantomData, } pub struct Global; #[lang = "owned_box"] pub struct Box(Unique, A); #[repr(C)] struct RcBox { strong: UnsafeCell, weak: UnsafeCell, value: T, } pub struct Rc { ptr: NonNull>, phantom: PhantomData>, alloc: A, } #[repr(C, align(8))] struct AtomicUsize(usize); #[repr(C)] struct ArcInner { strong: AtomicUsize, weak: AtomicUsize, data: T, } pub struct Arc { ptr: NonNull>, phantom: PhantomData>, alloc: A, } } #[cfg(not(host))] use prelude::*; macro_rules! assert_abi_compatible { ($name:ident, $t1:ty, $t2:ty) => { mod $name { use super::*; // Declaring a `type` doesn't even check well-formedness, so we also declare a function. fn check_wf(_x: $t1, _y: $t2) {} // Test argument and return value, `Rust` and `C` ABIs. #[rustc_abi(assert_eq)] type TestRust = (fn($t1) -> $t1, fn($t2) -> $t2); #[rustc_abi(assert_eq)] type TestC = (extern "C" fn($t1) -> $t1, extern "C" fn($t2) -> $t2); } }; } struct Zst; impl Copy for Zst {} impl Clone for Zst { fn clone(&self) -> Self { Zst } } #[repr(C)] struct ReprC1(T); #[repr(C)] struct ReprC2Int(i32, T); #[repr(C)] struct ReprC2Float(f32, T); #[repr(C)] struct ReprC4(T, Vec, Zst, T); #[repr(C)] struct ReprC4Mixed(T, f32, i32, T); #[repr(C)] enum ReprCEnum { Variant1, Variant2(T), } #[repr(C)] union ReprCUnion { nothing: (), something: ManuallyDrop, } macro_rules! test_abi_compatible { ($name:ident, $t1:ty, $t2:ty) => { mod $name { use super::*; assert_abi_compatible!(plain, $t1, $t2); // We also do some tests with differences in fields of `repr(C)` types. assert_abi_compatible!(repr_c_1, ReprC1<$t1>, ReprC1<$t2>); assert_abi_compatible!(repr_c_2_int, ReprC2Int<$t1>, ReprC2Int<$t2>); assert_abi_compatible!(repr_c_2_float, ReprC2Float<$t1>, ReprC2Float<$t2>); assert_abi_compatible!(repr_c_4, ReprC4<$t1>, ReprC4<$t2>); assert_abi_compatible!(repr_c_4mixed, ReprC4Mixed<$t1>, ReprC4Mixed<$t2>); assert_abi_compatible!(repr_c_enum, ReprCEnum<$t1>, ReprCEnum<$t2>); assert_abi_compatible!(repr_c_union, ReprCUnion<$t1>, ReprCUnion<$t2>); } }; } // Compatibility of pointers. test_abi_compatible!(ptr_mut, *const i32, *mut i32); test_abi_compatible!(ptr_pointee, *const i32, *const Vec); test_abi_compatible!(ref_mut, &i32, &mut i32); test_abi_compatible!(ref_ptr, &i32, *const i32); test_abi_compatible!(box_ptr, Box, *const i32); test_abi_compatible!(nonnull_ptr, NonNull, *const i32); test_abi_compatible!(fn_fn, fn(), fn(i32) -> i32); // Compatibility of integer types. test_abi_compatible!(char_uint, char, u32); #[cfg(target_pointer_width = "32")] test_abi_compatible!(isize_int, isize, i32); #[cfg(target_pointer_width = "64")] test_abi_compatible!(isize_int, isize, i64); // Compatibility of 1-ZST. test_abi_compatible!(zst_unit, Zst, ()); #[cfg(not(any(target_arch = "sparc64")))] test_abi_compatible!(zst_array, Zst, [u8; 0]); test_abi_compatible!(nonzero_int, NonZeroI32, i32); // `DispatchFromDyn` relies on ABI compatibility. // This is interesting since these types are not `repr(transparent)`. So this is not part of our // public ABI guarantees, but is relied on by the compiler. test_abi_compatible!(rc, Rc, *mut i32); test_abi_compatible!(arc, Arc, *mut i32); // `repr(transparent)` compatibility. #[repr(transparent)] struct Wrapper1(T); #[repr(transparent)] struct Wrapper2((), Zst, T); #[repr(transparent)] struct Wrapper3(T, [u8; 0], PhantomData); #[repr(transparent)] union WrapperUnion { nothing: (), something: ManuallyDrop, } macro_rules! test_transparent { ($name:ident, $t:ty) => { mod $name { use super::*; test_abi_compatible!(wrap1, $t, Wrapper1<$t>); test_abi_compatible!(wrap2, $t, Wrapper2<$t>); test_abi_compatible!(wrap3, $t, Wrapper3<$t>); test_abi_compatible!(wrap4, $t, WrapperUnion<$t>); } }; } test_transparent!(simple, i32); test_transparent!(reference, &'static i32); test_transparent!(zst, Zst); test_transparent!(unit, ()); test_transparent!(enum_, Option); test_transparent!(enum_niched, Option<&'static i32>); #[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))] mod tuples { use super::*; // mixing in some floats since they often get special treatment test_transparent!(pair, (i32, f32)); // chosen to fit into 64bit test_transparent!(triple, (i8, i16, f32)); // Pure-float types that are not ScalarPair seem to be tricky. test_transparent!(triple_f32, (f32, f32, f32)); test_transparent!(triple_f64, (f64, f64, f64)); // and also something that's larger than 2 pointers test_transparent!(tuple, (i32, f32, i64, f64)); } // Some targets have special rules for arrays. #[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))] mod arrays { use super::*; test_transparent!(empty_array, [u32; 0]); test_transparent!(empty_1zst_array, [u8; 0]); test_transparent!(small_array, [i32; 2]); // chosen to fit into 64bit test_transparent!(large_array, [i32; 16]); } // Some tests with unsized types (not all wrappers are compatible with that). macro_rules! test_transparent_unsized { ($name:ident, $t:ty) => { mod $name { use super::*; assert_abi_compatible!(wrap1, $t, Wrapper1<$t>); assert_abi_compatible!(wrap1_reprc, ReprC1<$t>, ReprC1>); assert_abi_compatible!(wrap2, $t, Wrapper2<$t>); assert_abi_compatible!(wrap2_reprc, ReprC1<$t>, ReprC1>); } }; } #[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))] mod unsized_ { use super::*; test_transparent_unsized!(str_, str); test_transparent_unsized!(slice, [u8]); test_transparent_unsized!(slice_with_prefix, (usize, [u8])); test_transparent_unsized!(dyn_trait, dyn Any); } // RFC 3391 . macro_rules! test_nonnull { ($name:ident, $t:ty) => { mod $name { use super::*; test_abi_compatible!(option, Option<$t>, $t); test_abi_compatible!(result_err_unit, Result<$t, ()>, $t); test_abi_compatible!(result_ok_unit, Result<(), $t>, $t); test_abi_compatible!(result_err_zst, Result<$t, Zst>, $t); test_abi_compatible!(result_ok_zst, Result, $t); test_abi_compatible!(result_err_arr, Result<$t, [i8; 0]>, $t); test_abi_compatible!(result_ok_arr, Result<[i8; 0], $t>, $t); } } } test_nonnull!(ref_, &i32); test_nonnull!(mut_, &mut i32); test_nonnull!(ref_unsized, &[i32]); test_nonnull!(mut_unsized, &mut [i32]); test_nonnull!(fn_, fn()); test_nonnull!(nonnull, NonNull); test_nonnull!(nonnull_unsized, NonNull); test_nonnull!(non_zero, NonZeroI32); fn main() {}