use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::profiling::QueryInvocationId; use rustc_data_structures::sharded::{self, Sharded}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering}; use rustc_data_structures::unlikely; use rustc_errors::Diagnostic; use rustc_index::vec::{Idx, IndexVec}; use parking_lot::{Condvar, Mutex}; use smallvec::{smallvec, SmallVec}; use std::collections::hash_map::Entry; use std::env; use std::hash::Hash; use std::marker::PhantomData; use std::mem; use std::sync::atomic::Ordering::Relaxed; use super::debug::EdgeFilter; use super::prev::PreviousDepGraph; use super::query::DepGraphQuery; use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex}; use super::{DepContext, DepKind, DepNode, WorkProductId}; #[derive(Clone)] pub struct DepGraph { data: Option>>, /// This field is used for assigning DepNodeIndices when running in /// non-incremental mode. Even in non-incremental mode we make sure that /// each task has a `DepNodeIndex` that uniquely identifies it. This unique /// ID is used for self-profiling. virtual_dep_node_index: Lrc, } rustc_index::newtype_index! { pub struct DepNodeIndex { .. } } impl DepNodeIndex { pub const INVALID: DepNodeIndex = DepNodeIndex::MAX; } impl std::convert::From for QueryInvocationId { #[inline] fn from(dep_node_index: DepNodeIndex) -> Self { QueryInvocationId(dep_node_index.as_u32()) } } #[derive(PartialEq)] pub enum DepNodeColor { Red, Green(DepNodeIndex), } impl DepNodeColor { pub fn is_green(self) -> bool { match self { DepNodeColor::Red => false, DepNodeColor::Green(_) => true, } } } struct DepGraphData { /// The new encoding of the dependency graph, optimized for red/green /// tracking. The `current` field is the dependency graph of only the /// current compilation session: We don't merge the previous dep-graph into /// current one anymore. current: CurrentDepGraph, /// The dep-graph from the previous compilation session. It contains all /// nodes and edges as well as all fingerprints of nodes that have them. previous: PreviousDepGraph, colors: DepNodeColorMap, /// A set of loaded diagnostics that is in the progress of being emitted. emitting_diagnostics: Mutex>, /// Used to wait for diagnostics to be emitted. emitting_diagnostics_cond_var: Condvar, /// When we load, there may be `.o` files, cached MIR, or other such /// things available to us. If we find that they are not dirty, we /// load the path to the file storing those work-products here into /// this map. We can later look for and extract that data. previous_work_products: FxHashMap, dep_node_debug: Lock, String>>, } pub fn hash_result(hcx: &mut HashCtxt, result: &R) -> Option where R: HashStable, { let mut stable_hasher = StableHasher::new(); result.hash_stable(hcx, &mut stable_hasher); Some(stable_hasher.finish()) } impl DepGraph { pub fn new( prev_graph: PreviousDepGraph, prev_work_products: FxHashMap, ) -> DepGraph { let prev_graph_node_count = prev_graph.node_count(); DepGraph { data: Some(Lrc::new(DepGraphData { previous_work_products: prev_work_products, dep_node_debug: Default::default(), current: CurrentDepGraph::new(prev_graph_node_count), emitting_diagnostics: Default::default(), emitting_diagnostics_cond_var: Condvar::new(), previous: prev_graph, colors: DepNodeColorMap::new(prev_graph_node_count), })), virtual_dep_node_index: Lrc::new(AtomicU32::new(0)), } } pub fn new_disabled() -> DepGraph { DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) } } /// Returns `true` if we are actually building the full dep-graph, and `false` otherwise. #[inline] pub fn is_fully_enabled(&self) -> bool { self.data.is_some() } pub fn query(&self) -> DepGraphQuery { let data = self.data.as_ref().unwrap().current.data.lock(); let nodes: Vec<_> = data.iter().map(|n| n.node).collect(); let mut edges = Vec::new(); for (from, edge_targets) in data.iter().map(|d| (d.node, &d.edges)) { for &edge_target in edge_targets.iter() { let to = data[edge_target].node; edges.push((from, to)); } } DepGraphQuery::new(&nodes[..], &edges[..]) } pub fn assert_ignored(&self) { if let Some(..) = self.data { K::read_deps(|task_deps| { assert!(task_deps.is_none(), "expected no task dependency tracking"); }) } } pub fn with_ignore(&self, op: OP) -> R where OP: FnOnce() -> R, { K::with_deps(None, op) } /// Starts a new dep-graph task. Dep-graph tasks are specified /// using a free function (`task`) and **not** a closure -- this /// is intentional because we want to exercise tight control over /// what state they have access to. In particular, we want to /// prevent implicit 'leaks' of tracked state into the task (which /// could then be read without generating correct edges in the /// dep-graph -- see the [rustc dev guide] for more details on /// the dep-graph). To this end, the task function gets exactly two /// pieces of state: the context `cx` and an argument `arg`. Both /// of these bits of state must be of some type that implements /// `DepGraphSafe` and hence does not leak. /// /// The choice of two arguments is not fundamental. One argument /// would work just as well, since multiple values can be /// collected using tuples. However, using two arguments works out /// to be quite convenient, since it is common to need a context /// (`cx`) and some argument (e.g., a `DefId` identifying what /// item to process). /// /// For cases where you need some other number of arguments: /// /// - If you only need one argument, just use `()` for the `arg` /// parameter. /// - If you need 3+ arguments, use a tuple for the /// `arg` parameter. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html pub fn with_task, A, R>( &self, key: DepNode, cx: Ctxt, arg: A, task: fn(Ctxt, A) -> R, hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option, ) -> (R, DepNodeIndex) { self.with_task_impl( key, cx, arg, false, task, |_key| { Some(TaskDeps { #[cfg(debug_assertions)] node: Some(_key), reads: SmallVec::new(), read_set: Default::default(), phantom_data: PhantomData, }) }, |data, key, fingerprint, task| data.complete_task(key, task.unwrap(), fingerprint), hash_result, ) } fn with_task_impl, A, R>( &self, key: DepNode, cx: Ctxt, arg: A, no_tcx: bool, task: fn(Ctxt, A) -> R, create_task: fn(DepNode) -> Option>, finish_task_and_alloc_depnode: fn( &CurrentDepGraph, DepNode, Fingerprint, Option>, ) -> DepNodeIndex, hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option, ) -> (R, DepNodeIndex) { if let Some(ref data) = self.data { let task_deps = create_task(key).map(Lock::new); // In incremental mode, hash the result of the task. We don't // do anything with the hash yet, but we are computing it // anyway so that // - we make sure that the infrastructure works and // - we can get an idea of the runtime cost. let mut hcx = cx.create_stable_hashing_context(); let result = if no_tcx { task(cx, arg) } else { K::with_deps(task_deps.as_ref(), || task(cx, arg)) }; let current_fingerprint = hash_result(&mut hcx, &result); let dep_node_index = finish_task_and_alloc_depnode( &data.current, key, current_fingerprint.unwrap_or(Fingerprint::ZERO), task_deps.map(|lock| lock.into_inner()), ); let print_status = cfg!(debug_assertions) && cx.debug_dep_tasks(); // Determine the color of the new DepNode. if let Some(prev_index) = data.previous.node_to_index_opt(&key) { let prev_fingerprint = data.previous.fingerprint_by_index(prev_index); let color = if let Some(current_fingerprint) = current_fingerprint { if current_fingerprint == prev_fingerprint { if print_status { eprintln!("[task::green] {:?}", key); } DepNodeColor::Green(dep_node_index) } else { if print_status { eprintln!("[task::red] {:?}", key); } DepNodeColor::Red } } else { if print_status { eprintln!("[task::unknown] {:?}", key); } // Mark the node as Red if we can't hash the result DepNodeColor::Red }; debug_assert!( data.colors.get(prev_index).is_none(), "DepGraph::with_task() - Duplicate DepNodeColor \ insertion for {:?}", key ); data.colors.insert(prev_index, color); } else { if print_status { eprintln!("[task::new] {:?}", key); } } (result, dep_node_index) } else { (task(cx, arg), self.next_virtual_depnode_index()) } } /// Executes something within an "anonymous" task, that is, a task the /// `DepNode` of which is determined by the list of inputs it read from. pub fn with_anon_task(&self, dep_kind: K, op: OP) -> (R, DepNodeIndex) where OP: FnOnce() -> R, { if let Some(ref data) = self.data { let task_deps = Lock::new(TaskDeps::default()); let result = K::with_deps(Some(&task_deps), op); let task_deps = task_deps.into_inner(); let dep_node_index = data.current.complete_anon_task(dep_kind, task_deps); (result, dep_node_index) } else { (op(), self.next_virtual_depnode_index()) } } /// Executes something within an "eval-always" task which is a task /// that runs whenever anything changes. pub fn with_eval_always_task, A, R>( &self, key: DepNode, cx: Ctxt, arg: A, task: fn(Ctxt, A) -> R, hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option, ) -> (R, DepNodeIndex) { self.with_task_impl( key, cx, arg, false, task, |_| None, |data, key, fingerprint, _| data.alloc_node(key, smallvec![], fingerprint), hash_result, ) } #[inline] pub fn read(&self, v: DepNode) { if let Some(ref data) = self.data { let map = data.current.node_to_node_index.get_shard_by_value(&v).lock(); if let Some(dep_node_index) = map.get(&v).copied() { std::mem::drop(map); data.read_index(dep_node_index); } else { panic!("DepKind {:?} should be pre-allocated but isn't.", v.kind) } } } #[inline] pub fn read_index(&self, dep_node_index: DepNodeIndex) { if let Some(ref data) = self.data { data.read_index(dep_node_index); } } #[inline] pub fn dep_node_index_of(&self, dep_node: &DepNode) -> DepNodeIndex { self.data .as_ref() .unwrap() .current .node_to_node_index .get_shard_by_value(dep_node) .lock() .get(dep_node) .cloned() .unwrap() } #[inline] pub fn dep_node_exists(&self, dep_node: &DepNode) -> bool { if let Some(ref data) = self.data { data.current .node_to_node_index .get_shard_by_value(&dep_node) .lock() .contains_key(dep_node) } else { false } } #[inline] pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint { let data = self.data.as_ref().expect("dep graph enabled").current.data.lock(); data[dep_node_index].fingerprint } pub fn prev_fingerprint_of(&self, dep_node: &DepNode) -> Option { self.data.as_ref().unwrap().previous.fingerprint_of(dep_node) } #[inline] pub fn prev_dep_node_index_of(&self, dep_node: &DepNode) -> SerializedDepNodeIndex { self.data.as_ref().unwrap().previous.node_to_index(dep_node) } /// Checks whether a previous work product exists for `v` and, if /// so, return the path that leads to it. Used to skip doing work. pub fn previous_work_product(&self, v: &WorkProductId) -> Option { self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned()) } /// Access the map of work-products created during the cached run. Only /// used during saving of the dep-graph. pub fn previous_work_products(&self) -> &FxHashMap { &self.data.as_ref().unwrap().previous_work_products } #[inline(always)] pub fn register_dep_node_debug_str(&self, dep_node: DepNode, debug_str_gen: F) where F: FnOnce() -> String, { let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug; if dep_node_debug.borrow().contains_key(&dep_node) { return; } let debug_str = debug_str_gen(); dep_node_debug.borrow_mut().insert(dep_node, debug_str); } pub fn dep_node_debug_str(&self, dep_node: DepNode) -> Option { self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned() } pub fn edge_deduplication_data(&self) -> Option<(u64, u64)> { if cfg!(debug_assertions) { let current_dep_graph = &self.data.as_ref().unwrap().current; Some(( current_dep_graph.total_read_count.load(Relaxed), current_dep_graph.total_duplicate_read_count.load(Relaxed), )) } else { None } } pub fn serialize(&self) -> SerializedDepGraph { let data = self.data.as_ref().unwrap().current.data.lock(); let fingerprints: IndexVec = data.iter().map(|d| d.fingerprint).collect(); let nodes: IndexVec = data.iter().map(|d| d.node).collect(); let total_edge_count: usize = data.iter().map(|d| d.edges.len()).sum(); let mut edge_list_indices = IndexVec::with_capacity(nodes.len()); let mut edge_list_data = Vec::with_capacity(total_edge_count); for (current_dep_node_index, edges) in data.iter_enumerated().map(|(i, d)| (i, &d.edges)) { let start = edge_list_data.len() as u32; // This should really just be a memcpy :/ edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index()))); let end = edge_list_data.len() as u32; debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len()); edge_list_indices.push((start, end)); } debug_assert!(edge_list_data.len() <= u32::MAX as usize); debug_assert_eq!(edge_list_data.len(), total_edge_count); SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data } } pub fn node_color(&self, dep_node: &DepNode) -> Option { if let Some(ref data) = self.data { if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) { return data.colors.get(prev_index); } else { // This is a node that did not exist in the previous compilation // session, so we consider it to be red. return Some(DepNodeColor::Red); } } None } /// Try to read a node index for the node dep_node. /// A node will have an index, when it's already been marked green, or when we can mark it /// green. This function will mark the current task as a reader of the specified node, when /// a node index can be found for that node. pub fn try_mark_green_and_read>( &self, tcx: Ctxt, dep_node: &DepNode, ) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> { self.try_mark_green(tcx, dep_node).map(|(prev_index, dep_node_index)| { debug_assert!(self.is_green(&dep_node)); self.read_index(dep_node_index); (prev_index, dep_node_index) }) } pub fn try_mark_green>( &self, tcx: Ctxt, dep_node: &DepNode, ) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> { debug_assert!(!dep_node.kind.is_eval_always()); // Return None if the dep graph is disabled let data = self.data.as_ref()?; // Return None if the dep node didn't exist in the previous session let prev_index = data.previous.node_to_index_opt(dep_node)?; match data.colors.get(prev_index) { Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)), Some(DepNodeColor::Red) => None, None => { // This DepNode and the corresponding query invocation existed // in the previous compilation session too, so we can try to // mark it as green by recursively marking all of its // dependencies green. self.try_mark_previous_green(tcx, data, prev_index, &dep_node) .map(|dep_node_index| (prev_index, dep_node_index)) } } } /// Try to mark a dep-node which existed in the previous compilation session as green. fn try_mark_previous_green>( &self, tcx: Ctxt, data: &DepGraphData, prev_dep_node_index: SerializedDepNodeIndex, dep_node: &DepNode, ) -> Option { debug!("try_mark_previous_green({:?}) - BEGIN", dep_node); #[cfg(not(parallel_compiler))] { debug_assert!( !data .current .node_to_node_index .get_shard_by_value(dep_node) .lock() .contains_key(dep_node) ); debug_assert!(data.colors.get(prev_dep_node_index).is_none()); } // We never try to mark eval_always nodes as green debug_assert!(!dep_node.kind.is_eval_always()); debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node); let prev_deps = data.previous.edge_targets_from(prev_dep_node_index); let mut current_deps = SmallVec::new(); for &dep_dep_node_index in prev_deps { let dep_dep_node_color = data.colors.get(dep_dep_node_index); match dep_dep_node_color { Some(DepNodeColor::Green(node_index)) => { // This dependency has been marked as green before, we are // still fine and can continue with checking the other // dependencies. debug!( "try_mark_previous_green({:?}) --- found dependency {:?} to \ be immediately green", dep_node, data.previous.index_to_node(dep_dep_node_index) ); current_deps.push(node_index); } Some(DepNodeColor::Red) => { // We found a dependency the value of which has changed // compared to the previous compilation session. We cannot // mark the DepNode as green and also don't need to bother // with checking any of the other dependencies. debug!( "try_mark_previous_green({:?}) - END - dependency {:?} was \ immediately red", dep_node, data.previous.index_to_node(dep_dep_node_index) ); return None; } None => { let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index); // We don't know the state of this dependency. If it isn't // an eval_always node, let's try to mark it green recursively. if !dep_dep_node.kind.is_eval_always() { debug!( "try_mark_previous_green({:?}) --- state of dependency {:?} \ is unknown, trying to mark it green", dep_node, dep_dep_node ); let node_index = self.try_mark_previous_green( tcx, data, dep_dep_node_index, dep_dep_node, ); if let Some(node_index) = node_index { debug!( "try_mark_previous_green({:?}) --- managed to MARK \ dependency {:?} as green", dep_node, dep_dep_node ); current_deps.push(node_index); continue; } } // We failed to mark it green, so we try to force the query. debug!( "try_mark_previous_green({:?}) --- trying to force \ dependency {:?}", dep_node, dep_dep_node ); if tcx.try_force_from_dep_node(dep_dep_node) { let dep_dep_node_color = data.colors.get(dep_dep_node_index); match dep_dep_node_color { Some(DepNodeColor::Green(node_index)) => { debug!( "try_mark_previous_green({:?}) --- managed to \ FORCE dependency {:?} to green", dep_node, dep_dep_node ); current_deps.push(node_index); } Some(DepNodeColor::Red) => { debug!( "try_mark_previous_green({:?}) - END - \ dependency {:?} was red after forcing", dep_node, dep_dep_node ); return None; } None => { if !tcx.has_errors_or_delayed_span_bugs() { panic!( "try_mark_previous_green() - Forcing the DepNode \ should have set its color" ) } else { // If the query we just forced has resulted in // some kind of compilation error, we cannot rely on // the dep-node color having been properly updated. // This means that the query system has reached an // invalid state. We let the compiler continue (by // returning `None`) so it can emit error messages // and wind down, but rely on the fact that this // invalid state will not be persisted to the // incremental compilation cache because of // compilation errors being present. debug!( "try_mark_previous_green({:?}) - END - \ dependency {:?} resulted in compilation error", dep_node, dep_dep_node ); return None; } } } } else { // The DepNode could not be forced. debug!( "try_mark_previous_green({:?}) - END - dependency {:?} \ could not be forced", dep_node, dep_dep_node ); return None; } } } } // If we got here without hitting a `return` that means that all // dependencies of this DepNode could be marked as green. Therefore we // can also mark this DepNode as green. // There may be multiple threads trying to mark the same dep node green concurrently let dep_node_index = { // Copy the fingerprint from the previous graph, // so we don't have to recompute it let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index); // We allocating an entry for the node in the current dependency graph and // adding all the appropriate edges imported from the previous graph data.current.intern_node(*dep_node, current_deps, fingerprint) }; // ... emitting any stored diagnostic ... // FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere // Maybe store a list on disk and encode this fact in the DepNodeState let diagnostics = tcx.load_diagnostics(prev_dep_node_index); #[cfg(not(parallel_compiler))] debug_assert!( data.colors.get(prev_dep_node_index).is_none(), "DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \ insertion for {:?}", dep_node ); if unlikely!(!diagnostics.is_empty()) { self.emit_diagnostics(tcx, data, dep_node_index, prev_dep_node_index, diagnostics); } // ... and finally storing a "Green" entry in the color map. // Multiple threads can all write the same color here data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index)); debug!("try_mark_previous_green({:?}) - END - successfully marked as green", dep_node); Some(dep_node_index) } /// Atomically emits some loaded diagnostics. /// This may be called concurrently on multiple threads for the same dep node. #[cold] #[inline(never)] fn emit_diagnostics>( &self, tcx: Ctxt, data: &DepGraphData, dep_node_index: DepNodeIndex, prev_dep_node_index: SerializedDepNodeIndex, diagnostics: Vec, ) { let mut emitting = data.emitting_diagnostics.lock(); if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index)) { // The node is already green so diagnostics must have been emitted already return; } if emitting.insert(dep_node_index) { // We were the first to insert the node in the set so this thread // must emit the diagnostics and signal other potentially waiting // threads after. mem::drop(emitting); // Promote the previous diagnostics to the current session. tcx.store_diagnostics(dep_node_index, diagnostics.clone().into()); let handle = tcx.diagnostic(); for diagnostic in diagnostics { handle.emit_diagnostic(&diagnostic); } // Mark the node as green now that diagnostics are emitted data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index)); // Remove the node from the set data.emitting_diagnostics.lock().remove(&dep_node_index); // Wake up waiters data.emitting_diagnostics_cond_var.notify_all(); } else { // We must wait for the other thread to finish emitting the diagnostic loop { data.emitting_diagnostics_cond_var.wait(&mut emitting); if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index)) { break; } } } } // Returns true if the given node has been marked as green during the // current compilation session. Used in various assertions pub fn is_green(&self, dep_node: &DepNode) -> bool { self.node_color(dep_node).map(|c| c.is_green()).unwrap_or(false) } // This method loads all on-disk cacheable query results into memory, so // they can be written out to the new cache file again. Most query results // will already be in memory but in the case where we marked something as // green but then did not need the value, that value will never have been // loaded from disk. // // This method will only load queries that will end up in the disk cache. // Other queries will not be executed. pub fn exec_cache_promotions>(&self, tcx: Ctxt) { let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion"); let data = self.data.as_ref().unwrap(); for prev_index in data.colors.values.indices() { match data.colors.get(prev_index) { Some(DepNodeColor::Green(_)) => { let dep_node = data.previous.index_to_node(prev_index); tcx.try_load_from_on_disk_cache(&dep_node); } None | Some(DepNodeColor::Red) => { // We can skip red nodes because a node can only be marked // as red if the query result was recomputed and thus is // already in memory. } } } } fn next_virtual_depnode_index(&self) -> DepNodeIndex { let index = self.virtual_dep_node_index.fetch_add(1, Relaxed); DepNodeIndex::from_u32(index) } } /// A "work product" is an intermediate result that we save into the /// incremental directory for later re-use. The primary example are /// the object files that we save for each partition at code /// generation time. /// /// Each work product is associated with a dep-node, representing the /// process that produced the work-product. If that dep-node is found /// to be dirty when we load up, then we will delete the work-product /// at load time. If the work-product is found to be clean, then we /// will keep a record in the `previous_work_products` list. /// /// In addition, work products have an associated hash. This hash is /// an extra hash that can be used to decide if the work-product from /// a previous compilation can be re-used (in addition to the dirty /// edges check). /// /// As the primary example, consider the object files we generate for /// each partition. In the first run, we create partitions based on /// the symbols that need to be compiled. For each partition P, we /// hash the symbols in P and create a `WorkProduct` record associated /// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols /// in P. /// /// The next time we compile, if the `DepNode::CodegenUnit(P)` is /// judged to be clean (which means none of the things we read to /// generate the partition were found to be dirty), it will be loaded /// into previous work products. We will then regenerate the set of /// symbols in the partition P and hash them (note that new symbols /// may be added -- for example, new monomorphizations -- even if /// nothing in P changed!). We will compare that hash against the /// previous hash. If it matches up, we can reuse the object file. #[derive(Clone, Debug, Encodable, Decodable)] pub struct WorkProduct { pub cgu_name: String, /// Saved file associated with this CGU. pub saved_file: Option, } #[derive(Clone)] struct DepNodeData { node: DepNode, edges: EdgesVec, fingerprint: Fingerprint, } /// `CurrentDepGraph` stores the dependency graph for the current session. /// It will be populated as we run queries or tasks. /// /// The nodes in it are identified by an index (`DepNodeIndex`). /// The data for each node is stored in its `DepNodeData`, found in the `data` field. /// /// We never remove nodes from the graph: they are only added. /// /// This struct uses two locks internally. The `data` and `node_to_node_index` fields are /// locked separately. Operations that take a `DepNodeIndex` typically just access /// the data field. /// /// The only operation that must manipulate both locks is adding new nodes, in which case /// we first acquire the `node_to_node_index` lock and then, once a new node is to be inserted, /// acquire the lock on `data.` pub(super) struct CurrentDepGraph { data: Lock>>, node_to_node_index: Sharded, DepNodeIndex>>, /// Used to trap when a specific edge is added to the graph. /// This is used for debug purposes and is only active with `debug_assertions`. #[allow(dead_code)] forbidden_edge: Option, /// Anonymous `DepNode`s are nodes whose IDs we compute from the list of /// their edges. This has the beneficial side-effect that multiple anonymous /// nodes can be coalesced into one without changing the semantics of the /// dependency graph. However, the merging of nodes can lead to a subtle /// problem during red-green marking: The color of an anonymous node from /// the current session might "shadow" the color of the node with the same /// ID from the previous session. In order to side-step this problem, we make /// sure that anonymous `NodeId`s allocated in different sessions don't overlap. /// This is implemented by mixing a session-key into the ID fingerprint of /// each anon node. The session-key is just a random number generated when /// the `DepGraph` is created. anon_id_seed: Fingerprint, /// These are simple counters that are for profiling and /// debugging and only active with `debug_assertions`. total_read_count: AtomicU64, total_duplicate_read_count: AtomicU64, } impl CurrentDepGraph { fn new(prev_graph_node_count: usize) -> CurrentDepGraph { use std::time::{SystemTime, UNIX_EPOCH}; let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64; let mut stable_hasher = StableHasher::new(); nanos.hash(&mut stable_hasher); let forbidden_edge = if cfg!(debug_assertions) { match env::var("RUST_FORBID_DEP_GRAPH_EDGE") { Ok(s) => match EdgeFilter::new(&s) { Ok(f) => Some(f), Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err), }, Err(_) => None, } } else { None }; // Pre-allocate the dep node structures. We over-allocate a little so // that we hopefully don't have to re-allocate during this compilation // session. The over-allocation is 2% plus a small constant to account // for the fact that in very small crates 2% might not be enough. let new_node_count_estimate = (prev_graph_node_count * 102) / 100 + 200; CurrentDepGraph { data: Lock::new(IndexVec::with_capacity(new_node_count_estimate)), node_to_node_index: Sharded::new(|| { FxHashMap::with_capacity_and_hasher( new_node_count_estimate / sharded::SHARDS, Default::default(), ) }), anon_id_seed: stable_hasher.finish(), forbidden_edge, total_read_count: AtomicU64::new(0), total_duplicate_read_count: AtomicU64::new(0), } } fn complete_task( &self, node: DepNode, task_deps: TaskDeps, fingerprint: Fingerprint, ) -> DepNodeIndex { self.alloc_node(node, task_deps.reads, fingerprint) } fn complete_anon_task(&self, kind: K, task_deps: TaskDeps) -> DepNodeIndex { debug_assert!(!kind.is_eval_always()); let mut hasher = StableHasher::new(); // The dep node indices are hashed here instead of hashing the dep nodes of the // dependencies. These indices may refer to different nodes per session, but this isn't // a problem here because we that ensure the final dep node hash is per session only by // combining it with the per session random number `anon_id_seed`. This hash only need // to map the dependencies to a single value on a per session basis. task_deps.reads.hash(&mut hasher); let target_dep_node = DepNode { kind, // Fingerprint::combine() is faster than sending Fingerprint // through the StableHasher (at least as long as StableHasher // is so slow). hash: self.anon_id_seed.combine(hasher.finish()), }; self.intern_node(target_dep_node, task_deps.reads, Fingerprint::ZERO) } fn alloc_node( &self, dep_node: DepNode, edges: EdgesVec, fingerprint: Fingerprint, ) -> DepNodeIndex { debug_assert!( !self.node_to_node_index.get_shard_by_value(&dep_node).lock().contains_key(&dep_node) ); self.intern_node(dep_node, edges, fingerprint) } fn intern_node( &self, dep_node: DepNode, edges: EdgesVec, fingerprint: Fingerprint, ) -> DepNodeIndex { match self.node_to_node_index.get_shard_by_value(&dep_node).lock().entry(dep_node) { Entry::Occupied(entry) => *entry.get(), Entry::Vacant(entry) => { let mut data = self.data.lock(); let dep_node_index = DepNodeIndex::new(data.len()); data.push(DepNodeData { node: dep_node, edges, fingerprint }); entry.insert(dep_node_index); dep_node_index } } } } impl DepGraphData { #[inline(never)] fn read_index(&self, source: DepNodeIndex) { K::read_deps(|task_deps| { if let Some(task_deps) = task_deps { let mut task_deps = task_deps.lock(); let task_deps = &mut *task_deps; if cfg!(debug_assertions) { self.current.total_read_count.fetch_add(1, Relaxed); } // As long as we only have a low number of reads we can avoid doing a hash // insert and potentially allocating/reallocating the hashmap let new_read = if task_deps.reads.len() < TASK_DEPS_READS_CAP { task_deps.reads.iter().all(|other| *other != source) } else { task_deps.read_set.insert(source) }; if new_read { task_deps.reads.push(source); if task_deps.reads.len() == TASK_DEPS_READS_CAP { // Fill `read_set` with what we have so far so we can use the hashset next // time task_deps.read_set.extend(task_deps.reads.iter().copied()); } #[cfg(debug_assertions)] { if let Some(target) = task_deps.node { let data = self.current.data.lock(); if let Some(ref forbidden_edge) = self.current.forbidden_edge { let source = data[source].node; if forbidden_edge.test(&source, &target) { panic!("forbidden edge {:?} -> {:?} created", source, target) } } } } } else if cfg!(debug_assertions) { self.current.total_duplicate_read_count.fetch_add(1, Relaxed); } } }) } } /// The capacity of the `reads` field `SmallVec` const TASK_DEPS_READS_CAP: usize = 8; type EdgesVec = SmallVec<[DepNodeIndex; TASK_DEPS_READS_CAP]>; pub struct TaskDeps { #[cfg(debug_assertions)] node: Option>, reads: EdgesVec, read_set: FxHashSet, phantom_data: PhantomData>, } impl Default for TaskDeps { fn default() -> Self { Self { #[cfg(debug_assertions)] node: None, reads: EdgesVec::new(), read_set: FxHashSet::default(), phantom_data: PhantomData, } } } // A data structure that stores Option values as a contiguous // array, using one u32 per entry. struct DepNodeColorMap { values: IndexVec, } const COMPRESSED_NONE: u32 = 0; const COMPRESSED_RED: u32 = 1; const COMPRESSED_FIRST_GREEN: u32 = 2; impl DepNodeColorMap { fn new(size: usize) -> DepNodeColorMap { DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() } } #[inline] fn get(&self, index: SerializedDepNodeIndex) -> Option { match self.values[index].load(Ordering::Acquire) { COMPRESSED_NONE => None, COMPRESSED_RED => Some(DepNodeColor::Red), value => { Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN))) } } } fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) { self.values[index].store( match color { DepNodeColor::Red => COMPRESSED_RED, DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN, }, Ordering::Release, ) } }