use crate::ffi::CStr; use crate::io::{self, IoVec, IoVecMut}; use crate::mem; use crate::net::{SocketAddr, Shutdown}; use crate::str; use crate::sys::fd::FileDesc; use crate::sys_common::{AsInner, FromInner, IntoInner}; use crate::sys_common::net::{getsockopt, setsockopt, sockaddr_to_addr}; use crate::time::{Duration, Instant}; use crate::cmp; use libc::{c_int, c_void, size_t, sockaddr, socklen_t, EAI_SYSTEM, MSG_PEEK}; pub use sys::{cvt, cvt_r}; #[allow(unused_extern_crates)] pub extern crate libc as netc; pub type wrlen_t = size_t; // See below for the usage of SOCK_CLOEXEC, but this constant is only defined on // Linux currently (e.g., support doesn't exist on other platforms). In order to // get name resolution to work and things to compile we just define a dummy // SOCK_CLOEXEC here for other platforms. Note that the dummy constant isn't // actually ever used (the blocks below are wrapped in `if cfg!` as well. #[cfg(target_os = "linux")] use libc::SOCK_CLOEXEC; #[cfg(not(target_os = "linux"))] const SOCK_CLOEXEC: c_int = 0; // Another conditional constant for name resolution: Macos et iOS use // SO_NOSIGPIPE as a setsockopt flag to disable SIGPIPE emission on socket. // Other platforms do otherwise. #[cfg(target_vendor = "apple")] use libc::SO_NOSIGPIPE; #[cfg(not(target_vendor = "apple"))] const SO_NOSIGPIPE: c_int = 0; pub struct Socket(FileDesc); pub fn init() {} pub fn cvt_gai(err: c_int) -> io::Result<()> { if err == 0 { return Ok(()) } // We may need to trigger a glibc workaround. See on_resolver_failure() for details. on_resolver_failure(); if err == EAI_SYSTEM { return Err(io::Error::last_os_error()) } let detail = unsafe { str::from_utf8(CStr::from_ptr(libc::gai_strerror(err)).to_bytes()).unwrap() .to_owned() }; Err(io::Error::new(io::ErrorKind::Other, &format!("failed to lookup address information: {}", detail)[..])) } impl Socket { pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result { let fam = match *addr { SocketAddr::V4(..) => libc::AF_INET, SocketAddr::V6(..) => libc::AF_INET6, }; Socket::new_raw(fam, ty) } pub fn new_raw(fam: c_int, ty: c_int) -> io::Result { unsafe { // On linux we first attempt to pass the SOCK_CLOEXEC flag to // atomically create the socket and set it as CLOEXEC. Support for // this option, however, was added in 2.6.27, and we still support // 2.6.18 as a kernel, so if the returned error is EINVAL we // fallthrough to the fallback. if cfg!(target_os = "linux") { match cvt(libc::socket(fam, ty | SOCK_CLOEXEC, 0)) { Ok(fd) => return Ok(Socket(FileDesc::new(fd))), Err(ref e) if e.raw_os_error() == Some(libc::EINVAL) => {} Err(e) => return Err(e), } } let fd = cvt(libc::socket(fam, ty, 0))?; let fd = FileDesc::new(fd); fd.set_cloexec()?; let socket = Socket(fd); if cfg!(target_vendor = "apple") { setsockopt(&socket, libc::SOL_SOCKET, SO_NOSIGPIPE, 1)?; } Ok(socket) } } pub fn new_pair(fam: c_int, ty: c_int) -> io::Result<(Socket, Socket)> { unsafe { let mut fds = [0, 0]; // Like above, see if we can set cloexec atomically if cfg!(target_os = "linux") { match cvt(libc::socketpair(fam, ty | SOCK_CLOEXEC, 0, fds.as_mut_ptr())) { Ok(_) => { return Ok((Socket(FileDesc::new(fds[0])), Socket(FileDesc::new(fds[1])))); } Err(ref e) if e.raw_os_error() == Some(libc::EINVAL) => {}, Err(e) => return Err(e), } } cvt(libc::socketpair(fam, ty, 0, fds.as_mut_ptr()))?; let a = FileDesc::new(fds[0]); let b = FileDesc::new(fds[1]); a.set_cloexec()?; b.set_cloexec()?; Ok((Socket(a), Socket(b))) } } pub fn connect_timeout(&self, addr: &SocketAddr, timeout: Duration) -> io::Result<()> { self.set_nonblocking(true)?; let r = unsafe { let (addrp, len) = addr.into_inner(); cvt(libc::connect(self.0.raw(), addrp, len)) }; self.set_nonblocking(false)?; match r { Ok(_) => return Ok(()), // there's no ErrorKind for EINPROGRESS :( Err(ref e) if e.raw_os_error() == Some(libc::EINPROGRESS) => {} Err(e) => return Err(e), } let mut pollfd = libc::pollfd { fd: self.0.raw(), events: libc::POLLOUT, revents: 0, }; if timeout.as_secs() == 0 && timeout.subsec_nanos() == 0 { return Err(io::Error::new(io::ErrorKind::InvalidInput, "cannot set a 0 duration timeout")); } let start = Instant::now(); loop { let elapsed = start.elapsed(); if elapsed >= timeout { return Err(io::Error::new(io::ErrorKind::TimedOut, "connection timed out")); } let timeout = timeout - elapsed; let mut timeout = timeout.as_secs() .saturating_mul(1_000) .saturating_add(timeout.subsec_nanos() as u64 / 1_000_000); if timeout == 0 { timeout = 1; } let timeout = cmp::min(timeout, c_int::max_value() as u64) as c_int; match unsafe { libc::poll(&mut pollfd, 1, timeout) } { -1 => { let err = io::Error::last_os_error(); if err.kind() != io::ErrorKind::Interrupted { return Err(err); } } 0 => {} _ => { // linux returns POLLOUT|POLLERR|POLLHUP for refused connections (!), so look // for POLLHUP rather than read readiness if pollfd.revents & libc::POLLHUP != 0 { let e = self.take_error()? .unwrap_or_else(|| { io::Error::new(io::ErrorKind::Other, "no error set after POLLHUP") }); return Err(e); } return Ok(()); } } } } pub fn accept(&self, storage: *mut sockaddr, len: *mut socklen_t) -> io::Result { // Unfortunately the only known way right now to accept a socket and // atomically set the CLOEXEC flag is to use the `accept4` syscall on // Linux. This was added in 2.6.28, however, and because we support // 2.6.18 we must detect this support dynamically. if cfg!(target_os = "linux") { syscall! { fn accept4( fd: c_int, addr: *mut sockaddr, addr_len: *mut socklen_t, flags: c_int ) -> c_int } let res = cvt_r(|| unsafe { accept4(self.0.raw(), storage, len, SOCK_CLOEXEC) }); match res { Ok(fd) => return Ok(Socket(FileDesc::new(fd))), Err(ref e) if e.raw_os_error() == Some(libc::ENOSYS) => {} Err(e) => return Err(e), } } let fd = cvt_r(|| unsafe { libc::accept(self.0.raw(), storage, len) })?; let fd = FileDesc::new(fd); fd.set_cloexec()?; Ok(Socket(fd)) } pub fn duplicate(&self) -> io::Result { self.0.duplicate().map(Socket) } fn recv_with_flags(&self, buf: &mut [u8], flags: c_int) -> io::Result { let ret = cvt(unsafe { libc::recv(self.0.raw(), buf.as_mut_ptr() as *mut c_void, buf.len(), flags) })?; Ok(ret as usize) } pub fn read(&self, buf: &mut [u8]) -> io::Result { self.recv_with_flags(buf, 0) } pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.recv_with_flags(buf, MSG_PEEK) } pub fn read_vectored(&self, bufs: &mut [IoVecMut<'_>]) -> io::Result { self.0.read_vectored(bufs) } fn recv_from_with_flags(&self, buf: &mut [u8], flags: c_int) -> io::Result<(usize, SocketAddr)> { let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() }; let mut addrlen = mem::size_of_val(&storage) as libc::socklen_t; let n = cvt(unsafe { libc::recvfrom(self.0.raw(), buf.as_mut_ptr() as *mut c_void, buf.len(), flags, &mut storage as *mut _ as *mut _, &mut addrlen) })?; Ok((n as usize, sockaddr_to_addr(&storage, addrlen as usize)?)) } pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.recv_from_with_flags(buf, 0) } pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.recv_from_with_flags(buf, MSG_PEEK) } pub fn write(&self, buf: &[u8]) -> io::Result { self.0.write(buf) } pub fn write_vectored(&self, bufs: &[IoVec<'_>]) -> io::Result { self.0.write_vectored(bufs) } pub fn set_timeout(&self, dur: Option, kind: libc::c_int) -> io::Result<()> { let timeout = match dur { Some(dur) => { if dur.as_secs() == 0 && dur.subsec_nanos() == 0 { return Err(io::Error::new(io::ErrorKind::InvalidInput, "cannot set a 0 duration timeout")); } let secs = if dur.as_secs() > libc::time_t::max_value() as u64 { libc::time_t::max_value() } else { dur.as_secs() as libc::time_t }; let mut timeout = libc::timeval { tv_sec: secs, tv_usec: (dur.subsec_nanos() / 1000) as libc::suseconds_t, }; if timeout.tv_sec == 0 && timeout.tv_usec == 0 { timeout.tv_usec = 1; } timeout } None => { libc::timeval { tv_sec: 0, tv_usec: 0, } } }; setsockopt(self, libc::SOL_SOCKET, kind, timeout) } pub fn timeout(&self, kind: libc::c_int) -> io::Result> { let raw: libc::timeval = getsockopt(self, libc::SOL_SOCKET, kind)?; if raw.tv_sec == 0 && raw.tv_usec == 0 { Ok(None) } else { let sec = raw.tv_sec as u64; let nsec = (raw.tv_usec as u32) * 1000; Ok(Some(Duration::new(sec, nsec))) } } pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { let how = match how { Shutdown::Write => libc::SHUT_WR, Shutdown::Read => libc::SHUT_RD, Shutdown::Both => libc::SHUT_RDWR, }; cvt(unsafe { libc::shutdown(self.0.raw(), how) })?; Ok(()) } pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { setsockopt(self, libc::IPPROTO_TCP, libc::TCP_NODELAY, nodelay as c_int) } pub fn nodelay(&self) -> io::Result { let raw: c_int = getsockopt(self, libc::IPPROTO_TCP, libc::TCP_NODELAY)?; Ok(raw != 0) } pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { let mut nonblocking = nonblocking as libc::c_int; cvt(unsafe { libc::ioctl(*self.as_inner(), libc::FIONBIO, &mut nonblocking) }).map(|_| ()) } pub fn take_error(&self) -> io::Result> { let raw: c_int = getsockopt(self, libc::SOL_SOCKET, libc::SO_ERROR)?; if raw == 0 { Ok(None) } else { Ok(Some(io::Error::from_raw_os_error(raw as i32))) } } } impl AsInner for Socket { fn as_inner(&self) -> &c_int { self.0.as_inner() } } impl FromInner for Socket { fn from_inner(fd: c_int) -> Socket { Socket(FileDesc::new(fd)) } } impl IntoInner for Socket { fn into_inner(self) -> c_int { self.0.into_raw() } } // In versions of glibc prior to 2.26, there's a bug where the DNS resolver // will cache the contents of /etc/resolv.conf, so changes to that file on disk // can be ignored by a long-running program. That can break DNS lookups on e.g. // laptops where the network comes and goes. See // https://sourceware.org/bugzilla/show_bug.cgi?id=984. Note however that some // distros including Debian have patched glibc to fix this for a long time. // // A workaround for this bug is to call the res_init libc function, to clear // the cached configs. Unfortunately, while we believe glibc's implementation // of res_init is thread-safe, we know that other implementations are not // (https://github.com/rust-lang/rust/issues/43592). Code here in libstd could // try to synchronize its res_init calls with a Mutex, but that wouldn't // protect programs that call into libc in other ways. So instead of calling // res_init unconditionally, we call it only when we detect we're linking // against glibc version < 2.26. (That is, when we both know its needed and // believe it's thread-safe). #[cfg(target_env = "gnu")] fn on_resolver_failure() { use crate::sys; // If the version fails to parse, we treat it the same as "not glibc". if let Some(version) = sys::os::glibc_version() { if version < (2, 26) { unsafe { libc::res_init() }; } } } #[cfg(not(target_env = "gnu"))] fn on_resolver_failure() {}