//! Validates the MIR to ensure that invariants are upheld. use rustc_index::bit_set::BitSet; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::mir::interpret::Scalar; use rustc_middle::mir::traversal; use rustc_middle::mir::visit::{PlaceContext, Visitor}; use rustc_middle::mir::{ AggregateKind, BasicBlock, Body, BorrowKind, Local, Location, MirPass, MirPhase, Operand, PlaceElem, PlaceRef, ProjectionElem, Rvalue, SourceScope, Statement, StatementKind, Terminator, TerminatorKind, START_BLOCK, }; use rustc_middle::ty::fold::BottomUpFolder; use rustc_middle::ty::{self, ParamEnv, Ty, TyCtxt, TypeFoldable}; use rustc_mir_dataflow::impls::MaybeStorageLive; use rustc_mir_dataflow::storage::AlwaysLiveLocals; use rustc_mir_dataflow::{Analysis, ResultsCursor}; use rustc_target::abi::Size; #[derive(Copy, Clone, Debug)] enum EdgeKind { Unwind, Normal, } pub struct Validator { /// Describes at which point in the pipeline this validation is happening. pub when: String, /// The phase for which we are upholding the dialect. If the given phase forbids a specific /// element, this validator will now emit errors if that specific element is encountered. /// Note that phases that change the dialect cause all *following* phases to check the /// invariants of the new dialect. A phase that changes dialects never checks the new invariants /// itself. pub mir_phase: MirPhase, } impl<'tcx> MirPass<'tcx> for Validator { fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { let def_id = body.source.def_id(); let param_env = tcx.param_env(def_id); let mir_phase = self.mir_phase; let always_live_locals = AlwaysLiveLocals::new(body); let storage_liveness = MaybeStorageLive::new(always_live_locals) .into_engine(tcx, body) .iterate_to_fixpoint() .into_results_cursor(body); TypeChecker { when: &self.when, body, tcx, param_env, mir_phase, reachable_blocks: traversal::reachable_as_bitset(body), storage_liveness, place_cache: Vec::new(), } .visit_body(body); } } /// Returns whether the two types are equal up to lifetimes. /// All lifetimes, including higher-ranked ones, get ignored for this comparison. /// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.) /// /// The point of this function is to approximate "equal up to subtyping". However, /// the approximation is incorrect as variance is ignored. pub fn equal_up_to_regions( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, src: Ty<'tcx>, dest: Ty<'tcx>, ) -> bool { // Fast path. if src == dest { return true; } // Normalize lifetimes away on both sides, then compare. let param_env = param_env.with_reveal_all_normalized(tcx); let normalize = |ty: Ty<'tcx>| { tcx.normalize_erasing_regions( param_env, ty.fold_with(&mut BottomUpFolder { tcx, // FIXME: We erase all late-bound lifetimes, but this is not fully correct. // If you have a type like ` fn(&'a u32) as SomeTrait>::Assoc`, // this is not necessarily equivalent to `::Assoc`, // since one may have an `impl SomeTrait for fn(&32)` and // `impl SomeTrait for fn(&'static u32)` at the same time which // specify distinct values for Assoc. (See also #56105) lt_op: |_| tcx.lifetimes.re_erased, // Leave consts and types unchanged. ct_op: |ct| ct, ty_op: |ty| ty, }), ) }; tcx.infer_ctxt().enter(|infcx| infcx.can_eq(param_env, normalize(src), normalize(dest)).is_ok()) } struct TypeChecker<'a, 'tcx> { when: &'a str, body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, mir_phase: MirPhase, reachable_blocks: BitSet, storage_liveness: ResultsCursor<'a, 'tcx, MaybeStorageLive>, place_cache: Vec>, } impl<'a, 'tcx> TypeChecker<'a, 'tcx> { fn fail(&self, location: Location, msg: impl AsRef) { let span = self.body.source_info(location).span; // We use `delay_span_bug` as we might see broken MIR when other errors have already // occurred. self.tcx.sess.diagnostic().delay_span_bug( span, &format!( "broken MIR in {:?} ({}) at {:?}:\n{}", self.body.source.instance, self.when, location, msg.as_ref() ), ); } fn check_edge(&self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) { if bb == START_BLOCK { self.fail(location, "start block must not have predecessors") } if let Some(bb) = self.body.basic_blocks().get(bb) { let src = self.body.basic_blocks().get(location.block).unwrap(); match (src.is_cleanup, bb.is_cleanup, edge_kind) { // Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges (false, false, EdgeKind::Normal) // Non-cleanup blocks can jump to cleanup blocks along unwind edges | (false, true, EdgeKind::Unwind) // Cleanup blocks can jump to cleanup blocks along non-unwind edges | (true, true, EdgeKind::Normal) => {} // All other jumps are invalid _ => { self.fail( location, format!( "{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})", edge_kind, bb, src.is_cleanup, bb.is_cleanup, ) ) } } } else { self.fail(location, format!("encountered jump to invalid basic block {:?}", bb)) } } /// Check if src can be assigned into dest. /// This is not precise, it will accept some incorrect assignments. fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool { // Fast path before we normalize. if src == dest { // Equal types, all is good. return true; } // Normalize projections and things like that. // FIXME: We need to reveal_all, as some optimizations change types in ways // that require unfolding opaque types. let param_env = self.param_env.with_reveal_all_normalized(self.tcx); let src = self.tcx.normalize_erasing_regions(param_env, src); let dest = self.tcx.normalize_erasing_regions(param_env, dest); // Type-changing assignments can happen when subtyping is used. While // all normal lifetimes are erased, higher-ranked types with their // late-bound lifetimes are still around and can lead to type // differences. So we compare ignoring lifetimes. equal_up_to_regions(self.tcx, param_env, src, dest) } } impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> { fn visit_local(&mut self, local: &Local, context: PlaceContext, location: Location) { if self.body.local_decls.get(*local).is_none() { self.fail( location, format!("local {:?} has no corresponding declaration in `body.local_decls`", local), ); } if self.reachable_blocks.contains(location.block) && context.is_use() { // Uses of locals must occur while the local's storage is allocated. self.storage_liveness.seek_after_primary_effect(location); let locals_with_storage = self.storage_liveness.get(); if !locals_with_storage.contains(*local) { self.fail(location, format!("use of local {:?}, which has no storage here", local)); } } } fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) { // This check is somewhat expensive, so only run it when -Zvalidate-mir is passed. if self.tcx.sess.opts.debugging_opts.validate_mir { // `Operand::Copy` is only supposed to be used with `Copy` types. if let Operand::Copy(place) = operand { let ty = place.ty(&self.body.local_decls, self.tcx).ty; let span = self.body.source_info(location).span; if !ty.is_copy_modulo_regions(self.tcx.at(span), self.param_env) { self.fail(location, format!("`Operand::Copy` with non-`Copy` type {}", ty)); } } } self.super_operand(operand, location); } fn visit_projection_elem( &mut self, local: Local, proj_base: &[PlaceElem<'tcx>], elem: PlaceElem<'tcx>, context: PlaceContext, location: Location, ) { if let ProjectionElem::Index(index) = elem { let index_ty = self.body.local_decls[index].ty; if index_ty != self.tcx.types.usize { self.fail(location, format!("bad index ({:?} != usize)", index_ty)) } } self.super_projection_elem(local, proj_base, elem, context, location); } fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) { match &statement.kind { StatementKind::Assign(box (dest, rvalue)) => { // LHS and RHS of the assignment must have the same type. let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty; let right_ty = rvalue.ty(&self.body.local_decls, self.tcx); if !self.mir_assign_valid_types(right_ty, left_ty) { self.fail( location, format!( "encountered `{:?}` with incompatible types:\n\ left-hand side has type: {}\n\ right-hand side has type: {}", statement.kind, left_ty, right_ty, ), ); } match rvalue { // The sides of an assignment must not alias. Currently this just checks whether the places // are identical. Rvalue::Use(Operand::Copy(src) | Operand::Move(src)) => { if dest == src { self.fail( location, "encountered `Assign` statement with overlapping memory", ); } } // The deaggregator currently does not deaggreagate arrays. // So for now, we ignore them here. Rvalue::Aggregate(box AggregateKind::Array { .. }, _) => {} // All other aggregates must be gone after some phases. Rvalue::Aggregate(box kind, _) => { if self.mir_phase > MirPhase::DropLowering && !matches!(kind, AggregateKind::Generator(..)) { // Generators persist until the state machine transformation, but all // other aggregates must have been lowered. self.fail( location, format!("{:?} have been lowered to field assignments", rvalue), ) } else if self.mir_phase > MirPhase::GeneratorLowering { // No more aggregates after drop and generator lowering. self.fail( location, format!("{:?} have been lowered to field assignments", rvalue), ) } } Rvalue::Ref(_, BorrowKind::Shallow, _) => { if self.mir_phase > MirPhase::DropLowering { self.fail( location, "`Assign` statement with a `Shallow` borrow should have been removed after drop lowering phase", ); } } _ => {} } } StatementKind::AscribeUserType(..) => { if self.mir_phase > MirPhase::DropLowering { self.fail( location, "`AscribeUserType` should have been removed after drop lowering phase", ); } } StatementKind::FakeRead(..) => { if self.mir_phase > MirPhase::DropLowering { self.fail( location, "`FakeRead` should have been removed after drop lowering phase", ); } } StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping { ref src, ref dst, ref count, }) => { let src_ty = src.ty(&self.body.local_decls, self.tcx); let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) { src_deref.ty } else { self.fail( location, format!("Expected src to be ptr in copy_nonoverlapping, got: {}", src_ty), ); return; }; let dst_ty = dst.ty(&self.body.local_decls, self.tcx); let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) { dst_deref.ty } else { self.fail( location, format!("Expected dst to be ptr in copy_nonoverlapping, got: {}", dst_ty), ); return; }; // since CopyNonOverlapping is parametrized by 1 type, // we only need to check that they are equal and not keep an extra parameter. if op_src_ty != op_dst_ty { self.fail(location, format!("bad arg ({:?} != {:?})", op_src_ty, op_dst_ty)); } let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx); if op_cnt_ty != self.tcx.types.usize { self.fail(location, format!("bad arg ({:?} != usize)", op_cnt_ty)) } } StatementKind::SetDiscriminant { .. } | StatementKind::StorageLive(..) | StatementKind::StorageDead(..) | StatementKind::LlvmInlineAsm(..) | StatementKind::Retag(_, _) | StatementKind::Coverage(_) | StatementKind::Nop => {} } self.super_statement(statement, location); } fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) { match &terminator.kind { TerminatorKind::Goto { target } => { self.check_edge(location, *target, EdgeKind::Normal); } TerminatorKind::SwitchInt { targets, switch_ty, discr } => { let ty = discr.ty(&self.body.local_decls, self.tcx); if ty != *switch_ty { self.fail( location, format!( "encountered `SwitchInt` terminator with type mismatch: {:?} != {:?}", ty, switch_ty, ), ); } let target_width = self.tcx.sess.target.pointer_width; let size = Size::from_bits(match switch_ty.kind() { ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(), ty::Int(int) => int.normalize(target_width).bit_width().unwrap(), ty::Char => 32, ty::Bool => 1, other => bug!("unhandled type: {:?}", other), }); for (value, target) in targets.iter() { if Scalar::<()>::try_from_uint(value, size).is_none() { self.fail( location, format!("the value {:#x} is not a proper {:?}", value, switch_ty), ) } self.check_edge(location, target, EdgeKind::Normal); } self.check_edge(location, targets.otherwise(), EdgeKind::Normal); } TerminatorKind::Drop { target, unwind, .. } => { self.check_edge(location, *target, EdgeKind::Normal); if let Some(unwind) = unwind { self.check_edge(location, *unwind, EdgeKind::Unwind); } } TerminatorKind::DropAndReplace { target, unwind, .. } => { if self.mir_phase > MirPhase::DropLowering { self.fail( location, "`DropAndReplace` is not permitted to exist after drop elaboration", ); } self.check_edge(location, *target, EdgeKind::Normal); if let Some(unwind) = unwind { self.check_edge(location, *unwind, EdgeKind::Unwind); } } TerminatorKind::Call { func, args, destination, cleanup, .. } => { let func_ty = func.ty(&self.body.local_decls, self.tcx); match func_ty.kind() { ty::FnPtr(..) | ty::FnDef(..) => {} _ => self.fail( location, format!("encountered non-callable type {} in `Call` terminator", func_ty), ), } if let Some((_, target)) = destination { self.check_edge(location, *target, EdgeKind::Normal); } if let Some(cleanup) = cleanup { self.check_edge(location, *cleanup, EdgeKind::Unwind); } // The call destination place and Operand::Move place used as an argument might be // passed by a reference to the callee. Consequently they must be non-overlapping. // Currently this simply checks for duplicate places. self.place_cache.clear(); if let Some((destination, _)) = destination { self.place_cache.push(destination.as_ref()); } for arg in args { if let Operand::Move(place) = arg { self.place_cache.push(place.as_ref()); } } let all_len = self.place_cache.len(); self.place_cache.sort_unstable(); self.place_cache.dedup(); let has_duplicates = all_len != self.place_cache.len(); if has_duplicates { self.fail( location, format!( "encountered overlapping memory in `Call` terminator: {:?}", terminator.kind, ), ); } } TerminatorKind::Assert { cond, target, cleanup, .. } => { let cond_ty = cond.ty(&self.body.local_decls, self.tcx); if cond_ty != self.tcx.types.bool { self.fail( location, format!( "encountered non-boolean condition of type {} in `Assert` terminator", cond_ty ), ); } self.check_edge(location, *target, EdgeKind::Normal); if let Some(cleanup) = cleanup { self.check_edge(location, *cleanup, EdgeKind::Unwind); } } TerminatorKind::Yield { resume, drop, .. } => { if self.mir_phase > MirPhase::GeneratorLowering { self.fail(location, "`Yield` should have been replaced by generator lowering"); } self.check_edge(location, *resume, EdgeKind::Normal); if let Some(drop) = drop { self.check_edge(location, *drop, EdgeKind::Normal); } } TerminatorKind::FalseEdge { real_target, imaginary_target } => { self.check_edge(location, *real_target, EdgeKind::Normal); self.check_edge(location, *imaginary_target, EdgeKind::Normal); } TerminatorKind::FalseUnwind { real_target, unwind } => { self.check_edge(location, *real_target, EdgeKind::Normal); if let Some(unwind) = unwind { self.check_edge(location, *unwind, EdgeKind::Unwind); } } TerminatorKind::InlineAsm { destination, cleanup, .. } => { if let Some(destination) = destination { self.check_edge(location, *destination, EdgeKind::Normal); } if let Some(cleanup) = cleanup { self.check_edge(location, *cleanup, EdgeKind::Unwind); } } // Nothing to validate for these. TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::GeneratorDrop => {} } self.super_terminator(terminator, location); } fn visit_source_scope(&mut self, scope: &SourceScope) { if self.body.source_scopes.get(*scope).is_none() { self.tcx.sess.diagnostic().delay_span_bug( self.body.span, &format!( "broken MIR in {:?} ({}):\ninvalid source scope {:?}", self.body.source.instance, self.when, scope, ), ); } } }