//! Source positions and related helper functions. //! //! Important concepts in this module include: //! //! - the *span*, represented by [`SpanData`] and related types; //! - source code as represented by a [`SourceMap`]; and //! - interned strings, represented by [`Symbol`]s, with some common symbols available statically //! in the [`sym`] module. //! //! Unlike most compilers, the span contains not only the position in the source code, but also //! various other metadata, such as the edition and macro hygiene. This metadata is stored in //! [`SyntaxContext`] and [`ExpnData`]. //! //! ## Note //! //! This API is completely unstable and subject to change. // tidy-alphabetical-start #![allow(internal_features)] #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] #![doc(rust_logo)] #![feature(array_windows)] #![feature(cfg_match)] #![feature(core_io_borrowed_buf)] #![feature(hash_set_entry)] #![feature(if_let_guard)] #![feature(let_chains)] #![feature(map_try_insert)] #![feature(negative_impls)] #![feature(read_buf)] #![feature(round_char_boundary)] #![feature(rustc_attrs)] #![feature(rustdoc_internals)] #![warn(unreachable_pub)] // tidy-alphabetical-end // The code produced by the `Encodable`/`Decodable` derive macros refer to // `rustc_span::Span{Encoder,Decoder}`. That's fine outside this crate, but doesn't work inside // this crate without this line making `rustc_span` available. extern crate self as rustc_span; use derive_where::derive_where; use rustc_data_structures::{AtomicRef, outline}; use rustc_macros::{Decodable, Encodable, HashStable_Generic}; use rustc_serialize::opaque::{FileEncoder, MemDecoder}; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use tracing::debug; mod caching_source_map_view; pub mod source_map; use source_map::{SourceMap, SourceMapInputs}; pub use self::caching_source_map_view::CachingSourceMapView; use crate::fatal_error::FatalError; pub mod edition; use edition::Edition; pub mod hygiene; use hygiene::Transparency; pub use hygiene::{ DesugaringKind, ExpnData, ExpnHash, ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext, }; use rustc_data_structures::stable_hasher::HashingControls; pub mod def_id; use def_id::{CrateNum, DefId, DefIndex, DefPathHash, LOCAL_CRATE, LocalDefId, StableCrateId}; pub mod edit_distance; mod span_encoding; pub use span_encoding::{DUMMY_SP, Span}; pub mod symbol; pub use symbol::{Ident, MacroRulesNormalizedIdent, STDLIB_STABLE_CRATES, Symbol, kw, sym}; mod analyze_source_file; pub mod fatal_error; pub mod profiling; use std::borrow::Cow; use std::cmp::{self, Ordering}; use std::fmt::Display; use std::hash::Hash; use std::io::{self, Read}; use std::ops::{Add, Range, Sub}; use std::path::{Path, PathBuf}; use std::str::FromStr; use std::{fmt, iter}; use md5::{Digest, Md5}; use rustc_data_structures::stable_hasher::{Hash64, Hash128, HashStable, StableHasher}; use rustc_data_structures::sync::{FreezeLock, FreezeWriteGuard, Lock, Lrc}; use rustc_data_structures::unord::UnordMap; use sha1::Sha1; use sha2::Sha256; #[cfg(test)] mod tests; /// Per-session global variables: this struct is stored in thread-local storage /// in such a way that it is accessible without any kind of handle to all /// threads within the compilation session, but is not accessible outside the /// session. pub struct SessionGlobals { symbol_interner: symbol::Interner, span_interner: Lock, /// Maps a macro argument token into use of the corresponding metavariable in the macro body. /// Collisions are possible and processed in `maybe_use_metavar_location` on best effort basis. metavar_spans: MetavarSpansMap, hygiene_data: Lock, /// The session's source map, if there is one. This field should only be /// used in places where the `Session` is truly not available, such as /// `::fmt`. source_map: Option>, } impl SessionGlobals { pub fn new(edition: Edition, sm_inputs: Option) -> SessionGlobals { SessionGlobals { symbol_interner: symbol::Interner::fresh(), span_interner: Lock::new(span_encoding::SpanInterner::default()), metavar_spans: Default::default(), hygiene_data: Lock::new(hygiene::HygieneData::new(edition)), source_map: sm_inputs.map(|inputs| Lrc::new(SourceMap::with_inputs(inputs))), } } } pub fn create_session_globals_then( edition: Edition, sm_inputs: Option, f: impl FnOnce() -> R, ) -> R { assert!( !SESSION_GLOBALS.is_set(), "SESSION_GLOBALS should never be overwritten! \ Use another thread if you need another SessionGlobals" ); let session_globals = SessionGlobals::new(edition, sm_inputs); SESSION_GLOBALS.set(&session_globals, f) } pub fn set_session_globals_then(session_globals: &SessionGlobals, f: impl FnOnce() -> R) -> R { assert!( !SESSION_GLOBALS.is_set(), "SESSION_GLOBALS should never be overwritten! \ Use another thread if you need another SessionGlobals" ); SESSION_GLOBALS.set(session_globals, f) } /// No source map. pub fn create_session_if_not_set_then(edition: Edition, f: F) -> R where F: FnOnce(&SessionGlobals) -> R, { if !SESSION_GLOBALS.is_set() { let session_globals = SessionGlobals::new(edition, None); SESSION_GLOBALS.set(&session_globals, || SESSION_GLOBALS.with(f)) } else { SESSION_GLOBALS.with(f) } } pub fn with_session_globals(f: F) -> R where F: FnOnce(&SessionGlobals) -> R, { SESSION_GLOBALS.with(f) } /// Default edition, no source map. pub fn create_default_session_globals_then(f: impl FnOnce() -> R) -> R { create_session_globals_then(edition::DEFAULT_EDITION, None, f) } // If this ever becomes non thread-local, `decode_syntax_context` // and `decode_expn_id` will need to be updated to handle concurrent // deserialization. scoped_tls::scoped_thread_local!(static SESSION_GLOBALS: SessionGlobals); #[derive(Default)] pub struct MetavarSpansMap(FreezeLock>); impl MetavarSpansMap { pub fn insert(&self, span: Span, var_span: Span) -> bool { match self.0.write().try_insert(span, (var_span, false)) { Ok(_) => true, Err(entry) => entry.entry.get().0 == var_span, } } /// Read a span and record that it was read. pub fn get(&self, span: Span) -> Option { if let Some(mut mspans) = self.0.try_write() { if let Some((var_span, read)) = mspans.get_mut(&span) { *read = true; Some(*var_span) } else { None } } else { if let Some((span, true)) = self.0.read().get(&span) { Some(*span) } else { None } } } /// Freeze the set, and return the spans which have been read. /// /// After this is frozen, no spans that have not been read can be read. pub fn freeze_and_get_read_spans(&self) -> UnordMap { self.0.freeze().items().filter(|(_, (_, b))| *b).map(|(s1, (s2, _))| (*s1, *s2)).collect() } } #[inline] pub fn with_metavar_spans(f: impl FnOnce(&MetavarSpansMap) -> R) -> R { with_session_globals(|session_globals| f(&session_globals.metavar_spans)) } // FIXME: We should use this enum or something like it to get rid of the // use of magic `/rust/1.x/...` paths across the board. #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Decodable)] pub enum RealFileName { LocalPath(PathBuf), /// For remapped paths (namely paths into libstd that have been mapped /// to the appropriate spot on the local host's file system, and local file /// system paths that have been remapped with `FilePathMapping`), Remapped { /// `local_path` is the (host-dependent) local path to the file. This is /// None if the file was imported from another crate local_path: Option, /// `virtual_name` is the stable path rustc will store internally within /// build artifacts. virtual_name: PathBuf, }, } impl Hash for RealFileName { fn hash(&self, state: &mut H) { // To prevent #70924 from happening again we should only hash the // remapped (virtualized) path if that exists. This is because // virtualized paths to sysroot crates (/rust/$hash or /rust/$version) // remain stable even if the corresponding local_path changes self.remapped_path_if_available().hash(state) } } // This is functionally identical to #[derive(Encodable)], with the exception of // an added assert statement impl Encodable for RealFileName { fn encode(&self, encoder: &mut S) { match *self { RealFileName::LocalPath(ref local_path) => { encoder.emit_u8(0); local_path.encode(encoder); } RealFileName::Remapped { ref local_path, ref virtual_name } => { encoder.emit_u8(1); // For privacy and build reproducibility, we must not embed host-dependant path // in artifacts if they have been remapped by --remap-path-prefix assert!(local_path.is_none()); local_path.encode(encoder); virtual_name.encode(encoder); } } } } impl RealFileName { /// Returns the path suitable for reading from the file system on the local host, /// if this information exists. /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that. pub fn local_path(&self) -> Option<&Path> { match self { RealFileName::LocalPath(p) => Some(p), RealFileName::Remapped { local_path, virtual_name: _ } => local_path.as_deref(), } } /// Returns the path suitable for reading from the file system on the local host, /// if this information exists. /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that. pub fn into_local_path(self) -> Option { match self { RealFileName::LocalPath(p) => Some(p), RealFileName::Remapped { local_path: p, virtual_name: _ } => p, } } /// Returns the path suitable for embedding into build artifacts. This would still /// be a local path if it has not been remapped. A remapped path will not correspond /// to a valid file system path: see `local_path_if_available()` for something that /// is more likely to return paths into the local host file system. pub fn remapped_path_if_available(&self) -> &Path { match self { RealFileName::LocalPath(p) | RealFileName::Remapped { local_path: _, virtual_name: p } => p, } } /// Returns the path suitable for reading from the file system on the local host, /// if this information exists. Otherwise returns the remapped name. /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that. pub fn local_path_if_available(&self) -> &Path { match self { RealFileName::LocalPath(path) | RealFileName::Remapped { local_path: None, virtual_name: path } | RealFileName::Remapped { local_path: Some(path), virtual_name: _ } => path, } } /// Return the path remapped or not depending on the [`FileNameDisplayPreference`]. /// /// For the purpose of this function, local and short preference are equal. pub fn to_path(&self, display_pref: FileNameDisplayPreference) -> &Path { match display_pref { FileNameDisplayPreference::Local | FileNameDisplayPreference::Short => { self.local_path_if_available() } FileNameDisplayPreference::Remapped => self.remapped_path_if_available(), } } pub fn to_string_lossy(&self, display_pref: FileNameDisplayPreference) -> Cow<'_, str> { match display_pref { FileNameDisplayPreference::Local => self.local_path_if_available().to_string_lossy(), FileNameDisplayPreference::Remapped => { self.remapped_path_if_available().to_string_lossy() } FileNameDisplayPreference::Short => self .local_path_if_available() .file_name() .map_or_else(|| "".into(), |f| f.to_string_lossy()), } } } /// Differentiates between real files and common virtual files. #[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash, Decodable, Encodable)] pub enum FileName { Real(RealFileName), /// Strings provided as `--cfg [cfgspec]`. CfgSpec(Hash64), /// Command line. Anon(Hash64), /// Hack in `src/librustc_ast/parse.rs`. // FIXME(jseyfried) MacroExpansion(Hash64), ProcMacroSourceCode(Hash64), /// Strings provided as crate attributes in the CLI. CliCrateAttr(Hash64), /// Custom sources for explicit parser calls from plugins and drivers. Custom(String), DocTest(PathBuf, isize), /// Post-substitution inline assembly from LLVM. InlineAsm(Hash64), } impl From for FileName { fn from(p: PathBuf) -> Self { FileName::Real(RealFileName::LocalPath(p)) } } #[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)] pub enum FileNameDisplayPreference { /// Display the path after the application of rewrite rules provided via `--remap-path-prefix`. /// This is appropriate for paths that get embedded into files produced by the compiler. Remapped, /// Display the path before the application of rewrite rules provided via `--remap-path-prefix`. /// This is appropriate for use in user-facing output (such as diagnostics). Local, /// Display only the filename, as a way to reduce the verbosity of the output. /// This is appropriate for use in user-facing output (such as diagnostics). Short, } pub struct FileNameDisplay<'a> { inner: &'a FileName, display_pref: FileNameDisplayPreference, } impl fmt::Display for FileNameDisplay<'_> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { use FileName::*; match *self.inner { Real(ref name) => { write!(fmt, "{}", name.to_string_lossy(self.display_pref)) } CfgSpec(_) => write!(fmt, ""), MacroExpansion(_) => write!(fmt, ""), Anon(_) => write!(fmt, ""), ProcMacroSourceCode(_) => write!(fmt, ""), CliCrateAttr(_) => write!(fmt, ""), Custom(ref s) => write!(fmt, "<{s}>"), DocTest(ref path, _) => write!(fmt, "{}", path.display()), InlineAsm(_) => write!(fmt, ""), } } } impl<'a> FileNameDisplay<'a> { pub fn to_string_lossy(&self) -> Cow<'a, str> { match self.inner { FileName::Real(ref inner) => inner.to_string_lossy(self.display_pref), _ => Cow::from(self.to_string()), } } } impl FileName { pub fn is_real(&self) -> bool { use FileName::*; match *self { Real(_) => true, Anon(_) | MacroExpansion(_) | ProcMacroSourceCode(_) | CliCrateAttr(_) | Custom(_) | CfgSpec(_) | DocTest(_, _) | InlineAsm(_) => false, } } pub fn prefer_remapped_unconditionaly(&self) -> FileNameDisplay<'_> { FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Remapped } } /// This may include transient local filesystem information. /// Must not be embedded in build outputs. pub fn prefer_local(&self) -> FileNameDisplay<'_> { FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Local } } pub fn display(&self, display_pref: FileNameDisplayPreference) -> FileNameDisplay<'_> { FileNameDisplay { inner: self, display_pref } } pub fn macro_expansion_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::MacroExpansion(hasher.finish()) } pub fn anon_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::Anon(hasher.finish()) } pub fn proc_macro_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::ProcMacroSourceCode(hasher.finish()) } pub fn cfg_spec_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::CfgSpec(hasher.finish()) } pub fn cli_crate_attr_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::CliCrateAttr(hasher.finish()) } pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName { FileName::DocTest(path, line) } pub fn inline_asm_source_code(src: &str) -> FileName { let mut hasher = StableHasher::new(); src.hash(&mut hasher); FileName::InlineAsm(hasher.finish()) } /// Returns the path suitable for reading from the file system on the local host, /// if this information exists. /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that. pub fn into_local_path(self) -> Option { match self { FileName::Real(path) => path.into_local_path(), FileName::DocTest(path, _) => Some(path), _ => None, } } } /// Represents a span. /// /// Spans represent a region of code, used for error reporting. Positions in spans /// are *absolute* positions from the beginning of the [`SourceMap`], not positions /// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back /// to the original source. /// /// You must be careful if the span crosses more than one file, since you will not be /// able to use many of the functions on spans in source_map and you cannot assume /// that the length of the span is equal to `span.hi - span.lo`; there may be space in the /// [`BytePos`] range between files. /// /// `SpanData` is public because `Span` uses a thread-local interner and can't be /// sent to other threads, but some pieces of performance infra run in a separate thread. /// Using `Span` is generally preferred. #[derive(Clone, Copy, Hash, PartialEq, Eq)] #[derive_where(PartialOrd, Ord)] pub struct SpanData { pub lo: BytePos, pub hi: BytePos, /// Information about where the macro came from, if this piece of /// code was created by a macro expansion. #[derive_where(skip)] // `SyntaxContext` does not implement `Ord`. // The other fields are enough to determine in-file order. pub ctxt: SyntaxContext, #[derive_where(skip)] // `LocalDefId` does not implement `Ord`. // The other fields are enough to determine in-file order. pub parent: Option, } impl SpanData { #[inline] pub fn span(&self) -> Span { Span::new(self.lo, self.hi, self.ctxt, self.parent) } #[inline] pub fn with_lo(&self, lo: BytePos) -> Span { Span::new(lo, self.hi, self.ctxt, self.parent) } #[inline] pub fn with_hi(&self, hi: BytePos) -> Span { Span::new(self.lo, hi, self.ctxt, self.parent) } /// Avoid if possible, `Span::map_ctxt` should be preferred. #[inline] fn with_ctxt(&self, ctxt: SyntaxContext) -> Span { Span::new(self.lo, self.hi, ctxt, self.parent) } /// Avoid if possible, `Span::with_parent` should be preferred. #[inline] fn with_parent(&self, parent: Option) -> Span { Span::new(self.lo, self.hi, self.ctxt, parent) } /// Returns `true` if this is a dummy span with any hygienic context. #[inline] pub fn is_dummy(self) -> bool { self.lo.0 == 0 && self.hi.0 == 0 } /// Returns `true` if `self` fully encloses `other`. pub fn contains(self, other: Self) -> bool { self.lo <= other.lo && other.hi <= self.hi } } impl Default for SpanData { fn default() -> Self { Self { lo: BytePos(0), hi: BytePos(0), ctxt: SyntaxContext::root(), parent: None } } } impl PartialOrd for Span { fn partial_cmp(&self, rhs: &Self) -> Option { PartialOrd::partial_cmp(&self.data(), &rhs.data()) } } impl Ord for Span { fn cmp(&self, rhs: &Self) -> Ordering { Ord::cmp(&self.data(), &rhs.data()) } } impl Span { #[inline] pub fn lo(self) -> BytePos { self.data().lo } #[inline] pub fn with_lo(self, lo: BytePos) -> Span { self.data().with_lo(lo) } #[inline] pub fn hi(self) -> BytePos { self.data().hi } #[inline] pub fn with_hi(self, hi: BytePos) -> Span { self.data().with_hi(hi) } #[inline] pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span { self.map_ctxt(|_| ctxt) } #[inline] pub fn is_visible(self, sm: &SourceMap) -> bool { !self.is_dummy() && sm.is_span_accessible(self) } /// Returns whether `span` originates in a foreign crate's external macro. /// /// This is used to test whether a lint should not even begin to figure out whether it should /// be reported on the current node. pub fn in_external_macro(self, sm: &SourceMap) -> bool { let expn_data = self.ctxt().outer_expn_data(); match expn_data.kind { ExpnKind::Root | ExpnKind::Desugaring( DesugaringKind::ForLoop | DesugaringKind::WhileLoop | DesugaringKind::OpaqueTy | DesugaringKind::Async | DesugaringKind::Await, ) => false, ExpnKind::AstPass(_) | ExpnKind::Desugaring(_) => true, // well, it's "external" ExpnKind::Macro(MacroKind::Bang, _) => { // Dummy span for the `def_site` means it's an external macro. expn_data.def_site.is_dummy() || sm.is_imported(expn_data.def_site) } ExpnKind::Macro { .. } => true, // definitely a plugin } } /// Returns `true` if `span` originates in a derive-macro's expansion. pub fn in_derive_expansion(self) -> bool { matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _)) } /// Return whether `span` is generated by `async` or `await`. pub fn is_from_async_await(self) -> bool { matches!( self.ctxt().outer_expn_data().kind, ExpnKind::Desugaring(DesugaringKind::Async | DesugaringKind::Await), ) } /// Gate suggestions that would not be appropriate in a context the user didn't write. pub fn can_be_used_for_suggestions(self) -> bool { !self.from_expansion() // FIXME: If this span comes from a `derive` macro but it points at code the user wrote, // the callsite span and the span will be pointing at different places. It also means that // we can safely provide suggestions on this span. || (self.in_derive_expansion() && self.parent_callsite().map(|p| (p.lo(), p.hi())) != Some((self.lo(), self.hi()))) } #[inline] pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span { Span::new(lo, hi, SyntaxContext::root(), None) } /// Returns a new span representing an empty span at the beginning of this span. #[inline] pub fn shrink_to_lo(self) -> Span { let span = self.data_untracked(); span.with_hi(span.lo) } /// Returns a new span representing an empty span at the end of this span. #[inline] pub fn shrink_to_hi(self) -> Span { let span = self.data_untracked(); span.with_lo(span.hi) } #[inline] /// Returns `true` if `hi == lo`. pub fn is_empty(self) -> bool { let span = self.data_untracked(); span.hi == span.lo } /// Returns `self` if `self` is not the dummy span, and `other` otherwise. pub fn substitute_dummy(self, other: Span) -> Span { if self.is_dummy() { other } else { self } } /// Returns `true` if `self` fully encloses `other`. pub fn contains(self, other: Span) -> bool { let span = self.data(); let other = other.data(); span.contains(other) } /// Returns `true` if `self` touches `other`. pub fn overlaps(self, other: Span) -> bool { let span = self.data(); let other = other.data(); span.lo < other.hi && other.lo < span.hi } /// Returns `true` if `self` touches or adjoins `other`. pub fn overlaps_or_adjacent(self, other: Span) -> bool { let span = self.data(); let other = other.data(); span.lo <= other.hi && other.lo <= span.hi } /// Returns `true` if the spans are equal with regards to the source text. /// /// Use this instead of `==` when either span could be generated code, /// and you only care that they point to the same bytes of source text. pub fn source_equal(self, other: Span) -> bool { let span = self.data(); let other = other.data(); span.lo == other.lo && span.hi == other.hi } /// Returns `Some(span)`, where the start is trimmed by the end of `other`. pub fn trim_start(self, other: Span) -> Option { let span = self.data(); let other = other.data(); if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None } } /// Returns `Some(span)`, where the end is trimmed by the start of `other`. pub fn trim_end(self, other: Span) -> Option { let span = self.data(); let other = other.data(); if span.lo < other.lo { Some(span.with_hi(cmp::min(span.hi, other.lo))) } else { None } } /// Returns the source span -- this is either the supplied span, or the span for /// the macro callsite that expanded to it. pub fn source_callsite(self) -> Span { let ctxt = self.ctxt(); if !ctxt.is_root() { ctxt.outer_expn_data().call_site.source_callsite() } else { self } } /// The `Span` for the tokens in the previous macro expansion from which `self` was generated, /// if any. pub fn parent_callsite(self) -> Option { let ctxt = self.ctxt(); (!ctxt.is_root()).then(|| ctxt.outer_expn_data().call_site) } /// Walk down the expansion ancestors to find a span that's contained within `outer`. /// /// The span returned by this method may have a different [`SyntaxContext`] as `outer`. /// If you need to extend the span, use [`find_ancestor_inside_same_ctxt`] instead, /// because joining spans with different syntax contexts can create unexpected results. /// /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt pub fn find_ancestor_inside(mut self, outer: Span) -> Option { while !outer.contains(self) { self = self.parent_callsite()?; } Some(self) } /// Walk down the expansion ancestors to find a span with the same [`SyntaxContext`] as /// `other`. /// /// Like [`find_ancestor_inside_same_ctxt`], but specifically for when spans might not /// overlap. Take care when using this, and prefer [`find_ancestor_inside`] or /// [`find_ancestor_inside_same_ctxt`] when you know that the spans are nested (modulo /// macro expansion). /// /// [`find_ancestor_inside`]: Self::find_ancestor_inside /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt pub fn find_ancestor_in_same_ctxt(mut self, other: Span) -> Option { while !self.eq_ctxt(other) { self = self.parent_callsite()?; } Some(self) } /// Walk down the expansion ancestors to find a span that's contained within `outer` and /// has the same [`SyntaxContext`] as `outer`. /// /// This method is the combination of [`find_ancestor_inside`] and /// [`find_ancestor_in_same_ctxt`] and should be preferred when extending the returned span. /// If you do not need to modify the span, use [`find_ancestor_inside`] instead. /// /// [`find_ancestor_inside`]: Self::find_ancestor_inside /// [`find_ancestor_in_same_ctxt`]: Self::find_ancestor_in_same_ctxt pub fn find_ancestor_inside_same_ctxt(mut self, outer: Span) -> Option { while !outer.contains(self) || !self.eq_ctxt(outer) { self = self.parent_callsite()?; } Some(self) } /// Recursively walk down the expansion ancestors to find the oldest ancestor span with the same /// [`SyntaxContext`] the initial span. /// /// This method is suitable for peeling through *local* macro expansions to find the "innermost" /// span that is still local and shares the same [`SyntaxContext`]. For example, given /// /// ```ignore (illustrative example, contains type error) /// macro_rules! outer { /// ($x: expr) => { /// inner!($x) /// } /// } /// /// macro_rules! inner { /// ($x: expr) => { /// format!("error: {}", $x) /// //~^ ERROR mismatched types /// } /// } /// /// fn bar(x: &str) -> Result<(), Box> { /// Err(outer!(x)) /// } /// ``` /// /// if provided the initial span of `outer!(x)` inside `bar`, this method will recurse /// the parent callsites until we reach `format!("error: {}", $x)`, at which point it is the /// oldest ancestor span that is both still local and shares the same [`SyntaxContext`] as the /// initial span. pub fn find_oldest_ancestor_in_same_ctxt(self) -> Span { let mut cur = self; while cur.eq_ctxt(self) && let Some(parent_callsite) = cur.parent_callsite() { cur = parent_callsite; } cur } /// Edition of the crate from which this span came. pub fn edition(self) -> edition::Edition { self.ctxt().edition() } /// Is this edition 2015? #[inline] pub fn is_rust_2015(self) -> bool { self.edition().is_rust_2015() } /// Are we allowed to use features from the Rust 2018 edition? #[inline] pub fn at_least_rust_2018(self) -> bool { self.edition().at_least_rust_2018() } /// Are we allowed to use features from the Rust 2021 edition? #[inline] pub fn at_least_rust_2021(self) -> bool { self.edition().at_least_rust_2021() } /// Are we allowed to use features from the Rust 2024 edition? #[inline] pub fn at_least_rust_2024(self) -> bool { self.edition().at_least_rust_2024() } /// Returns the source callee. /// /// Returns `None` if the supplied span has no expansion trace, /// else returns the `ExpnData` for the macro definition /// corresponding to the source callsite. pub fn source_callee(self) -> Option { let mut ctxt = self.ctxt(); let mut opt_expn_data = None; while !ctxt.is_root() { let expn_data = ctxt.outer_expn_data(); ctxt = expn_data.call_site.ctxt(); opt_expn_data = Some(expn_data); } opt_expn_data } /// Checks if a span is "internal" to a macro in which `#[unstable]` /// items can be used (that is, a macro marked with /// `#[allow_internal_unstable]`). pub fn allows_unstable(self, feature: Symbol) -> bool { self.ctxt() .outer_expn_data() .allow_internal_unstable .is_some_and(|features| features.iter().any(|&f| f == feature)) } /// Checks if this span arises from a compiler desugaring of kind `kind`. pub fn is_desugaring(self, kind: DesugaringKind) -> bool { match self.ctxt().outer_expn_data().kind { ExpnKind::Desugaring(k) => k == kind, _ => false, } } /// Returns the compiler desugaring that created this span, or `None` /// if this span is not from a desugaring. pub fn desugaring_kind(self) -> Option { match self.ctxt().outer_expn_data().kind { ExpnKind::Desugaring(k) => Some(k), _ => None, } } /// Checks if a span is "internal" to a macro in which `unsafe` /// can be used without triggering the `unsafe_code` lint. /// (that is, a macro marked with `#[allow_internal_unsafe]`). pub fn allows_unsafe(self) -> bool { self.ctxt().outer_expn_data().allow_internal_unsafe } pub fn macro_backtrace(mut self) -> impl Iterator { let mut prev_span = DUMMY_SP; iter::from_fn(move || { loop { let ctxt = self.ctxt(); if ctxt.is_root() { return None; } let expn_data = ctxt.outer_expn_data(); let is_recursive = expn_data.call_site.source_equal(prev_span); prev_span = self; self = expn_data.call_site; // Don't print recursive invocations. if !is_recursive { return Some(expn_data); } } }) } /// Splits a span into two composite spans around a certain position. pub fn split_at(self, pos: u32) -> (Span, Span) { let len = self.hi().0 - self.lo().0; debug_assert!(pos <= len); let split_pos = BytePos(self.lo().0 + pos); ( Span::new(self.lo(), split_pos, self.ctxt(), self.parent()), Span::new(split_pos, self.hi(), self.ctxt(), self.parent()), ) } /// Check if you can select metavar spans for the given spans to get matching contexts. fn try_metavars(a: SpanData, b: SpanData, a_orig: Span, b_orig: Span) -> (SpanData, SpanData) { match with_metavar_spans(|mspans| (mspans.get(a_orig), mspans.get(b_orig))) { (None, None) => {} (Some(meta_a), None) => { let meta_a = meta_a.data(); if meta_a.ctxt == b.ctxt { return (meta_a, b); } } (None, Some(meta_b)) => { let meta_b = meta_b.data(); if a.ctxt == meta_b.ctxt { return (a, meta_b); } } (Some(meta_a), Some(meta_b)) => { let meta_b = meta_b.data(); if a.ctxt == meta_b.ctxt { return (a, meta_b); } let meta_a = meta_a.data(); if meta_a.ctxt == b.ctxt { return (meta_a, b); } else if meta_a.ctxt == meta_b.ctxt { return (meta_a, meta_b); } } } (a, b) } /// Prepare two spans to a combine operation like `to` or `between`. fn prepare_to_combine( a_orig: Span, b_orig: Span, ) -> Result<(SpanData, SpanData, Option), Span> { let (a, b) = (a_orig.data(), b_orig.data()); if a.ctxt == b.ctxt { return Ok((a, b, if a.parent == b.parent { a.parent } else { None })); } let (a, b) = Span::try_metavars(a, b, a_orig, b_orig); if a.ctxt == b.ctxt { return Ok((a, b, if a.parent == b.parent { a.parent } else { None })); } // Context mismatches usually happen when procedural macros combine spans copied from // the macro input with spans produced by the macro (`Span::*_site`). // In that case we consider the combined span to be produced by the macro and return // the original macro-produced span as the result. // Otherwise we just fall back to returning the first span. // Combining locations typically doesn't make sense in case of context mismatches. // `is_root` here is a fast path optimization. let a_is_callsite = a.ctxt.is_root() || a.ctxt == b.span().source_callsite().ctxt(); Err(if a_is_callsite { b_orig } else { a_orig }) } /// This span, but in a larger context, may switch to the metavariable span if suitable. pub fn with_neighbor(self, neighbor: Span) -> Span { match Span::prepare_to_combine(self, neighbor) { Ok((this, ..)) => this.span(), Err(_) => self, } } /// Returns a `Span` that would enclose both `self` and `end`. /// /// Note that this can also be used to extend the span "backwards": /// `start.to(end)` and `end.to(start)` return the same `Span`. /// /// ```text /// ____ ___ /// self lorem ipsum end /// ^^^^^^^^^^^^^^^^^^^^ /// ``` pub fn to(self, end: Span) -> Span { match Span::prepare_to_combine(self, end) { Ok((from, to, parent)) => { Span::new(cmp::min(from.lo, to.lo), cmp::max(from.hi, to.hi), from.ctxt, parent) } Err(fallback) => fallback, } } /// Returns a `Span` between the end of `self` to the beginning of `end`. /// /// ```text /// ____ ___ /// self lorem ipsum end /// ^^^^^^^^^^^^^ /// ``` pub fn between(self, end: Span) -> Span { match Span::prepare_to_combine(self, end) { Ok((from, to, parent)) => { Span::new(cmp::min(from.hi, to.hi), cmp::max(from.lo, to.lo), from.ctxt, parent) } Err(fallback) => fallback, } } /// Returns a `Span` from the beginning of `self` until the beginning of `end`. /// /// ```text /// ____ ___ /// self lorem ipsum end /// ^^^^^^^^^^^^^^^^^ /// ``` pub fn until(self, end: Span) -> Span { match Span::prepare_to_combine(self, end) { Ok((from, to, parent)) => { Span::new(cmp::min(from.lo, to.lo), cmp::max(from.lo, to.lo), from.ctxt, parent) } Err(fallback) => fallback, } } pub fn from_inner(self, inner: InnerSpan) -> Span { let span = self.data(); Span::new( span.lo + BytePos::from_usize(inner.start), span.lo + BytePos::from_usize(inner.end), span.ctxt, span.parent, ) } /// Equivalent of `Span::def_site` from the proc macro API, /// except that the location is taken from the `self` span. pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span { self.with_ctxt_from_mark(expn_id, Transparency::Opaque) } /// Equivalent of `Span::call_site` from the proc macro API, /// except that the location is taken from the `self` span. pub fn with_call_site_ctxt(self, expn_id: ExpnId) -> Span { self.with_ctxt_from_mark(expn_id, Transparency::Transparent) } /// Equivalent of `Span::mixed_site` from the proc macro API, /// except that the location is taken from the `self` span. pub fn with_mixed_site_ctxt(self, expn_id: ExpnId) -> Span { self.with_ctxt_from_mark(expn_id, Transparency::SemiTransparent) } /// Produces a span with the same location as `self` and context produced by a macro with the /// given ID and transparency, assuming that macro was defined directly and not produced by /// some other macro (which is the case for built-in and procedural macros). fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span { self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency)) } #[inline] pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span { self.map_ctxt(|ctxt| ctxt.apply_mark(expn_id, transparency)) } #[inline] pub fn remove_mark(&mut self) -> ExpnId { let mut mark = ExpnId::root(); *self = self.map_ctxt(|mut ctxt| { mark = ctxt.remove_mark(); ctxt }); mark } #[inline] pub fn adjust(&mut self, expn_id: ExpnId) -> Option { let mut mark = None; *self = self.map_ctxt(|mut ctxt| { mark = ctxt.adjust(expn_id); ctxt }); mark } #[inline] pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option { let mut mark = None; *self = self.map_ctxt(|mut ctxt| { mark = ctxt.normalize_to_macros_2_0_and_adjust(expn_id); ctxt }); mark } #[inline] pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option> { let mut mark = None; *self = self.map_ctxt(|mut ctxt| { mark = ctxt.glob_adjust(expn_id, glob_span); ctxt }); mark } #[inline] pub fn reverse_glob_adjust( &mut self, expn_id: ExpnId, glob_span: Span, ) -> Option> { let mut mark = None; *self = self.map_ctxt(|mut ctxt| { mark = ctxt.reverse_glob_adjust(expn_id, glob_span); ctxt }); mark } #[inline] pub fn normalize_to_macros_2_0(self) -> Span { self.map_ctxt(|ctxt| ctxt.normalize_to_macros_2_0()) } #[inline] pub fn normalize_to_macro_rules(self) -> Span { self.map_ctxt(|ctxt| ctxt.normalize_to_macro_rules()) } } impl Default for Span { fn default() -> Self { DUMMY_SP } } rustc_index::newtype_index! { #[orderable] #[debug_format = "AttrId({})"] pub struct AttrId {} } /// This trait is used to allow encoder specific encodings of certain types. /// It is similar to rustc_type_ir's TyEncoder. pub trait SpanEncoder: Encoder { fn encode_span(&mut self, span: Span); fn encode_symbol(&mut self, symbol: Symbol); fn encode_expn_id(&mut self, expn_id: ExpnId); fn encode_syntax_context(&mut self, syntax_context: SyntaxContext); /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx. /// Therefore, make sure to include the context when encode a `CrateNum`. fn encode_crate_num(&mut self, crate_num: CrateNum); fn encode_def_index(&mut self, def_index: DefIndex); fn encode_def_id(&mut self, def_id: DefId); } impl SpanEncoder for FileEncoder { fn encode_span(&mut self, span: Span) { let span = span.data(); span.lo.encode(self); span.hi.encode(self); } fn encode_symbol(&mut self, symbol: Symbol) { self.emit_str(symbol.as_str()); } fn encode_expn_id(&mut self, _expn_id: ExpnId) { panic!("cannot encode `ExpnId` with `FileEncoder`"); } fn encode_syntax_context(&mut self, _syntax_context: SyntaxContext) { panic!("cannot encode `SyntaxContext` with `FileEncoder`"); } fn encode_crate_num(&mut self, crate_num: CrateNum) { self.emit_u32(crate_num.as_u32()); } fn encode_def_index(&mut self, _def_index: DefIndex) { panic!("cannot encode `DefIndex` with `FileEncoder`"); } fn encode_def_id(&mut self, def_id: DefId) { def_id.krate.encode(self); def_id.index.encode(self); } } impl Encodable for Span { fn encode(&self, s: &mut E) { s.encode_span(*self); } } impl Encodable for Symbol { fn encode(&self, s: &mut E) { s.encode_symbol(*self); } } impl Encodable for ExpnId { fn encode(&self, s: &mut E) { s.encode_expn_id(*self) } } impl Encodable for SyntaxContext { fn encode(&self, s: &mut E) { s.encode_syntax_context(*self) } } impl Encodable for CrateNum { fn encode(&self, s: &mut E) { s.encode_crate_num(*self) } } impl Encodable for DefIndex { fn encode(&self, s: &mut E) { s.encode_def_index(*self) } } impl Encodable for DefId { fn encode(&self, s: &mut E) { s.encode_def_id(*self) } } impl Encodable for AttrId { fn encode(&self, _s: &mut E) { // A fresh id will be generated when decoding } } /// This trait is used to allow decoder specific encodings of certain types. /// It is similar to rustc_type_ir's TyDecoder. pub trait SpanDecoder: Decoder { fn decode_span(&mut self) -> Span; fn decode_symbol(&mut self) -> Symbol; fn decode_expn_id(&mut self) -> ExpnId; fn decode_syntax_context(&mut self) -> SyntaxContext; fn decode_crate_num(&mut self) -> CrateNum; fn decode_def_index(&mut self) -> DefIndex; fn decode_def_id(&mut self) -> DefId; fn decode_attr_id(&mut self) -> AttrId; } impl SpanDecoder for MemDecoder<'_> { fn decode_span(&mut self) -> Span { let lo = Decodable::decode(self); let hi = Decodable::decode(self); Span::new(lo, hi, SyntaxContext::root(), None) } fn decode_symbol(&mut self) -> Symbol { Symbol::intern(self.read_str()) } fn decode_expn_id(&mut self) -> ExpnId { panic!("cannot decode `ExpnId` with `MemDecoder`"); } fn decode_syntax_context(&mut self) -> SyntaxContext { panic!("cannot decode `SyntaxContext` with `MemDecoder`"); } fn decode_crate_num(&mut self) -> CrateNum { CrateNum::from_u32(self.read_u32()) } fn decode_def_index(&mut self) -> DefIndex { panic!("cannot decode `DefIndex` with `MemDecoder`"); } fn decode_def_id(&mut self) -> DefId { DefId { krate: Decodable::decode(self), index: Decodable::decode(self) } } fn decode_attr_id(&mut self) -> AttrId { panic!("cannot decode `AttrId` with `MemDecoder`"); } } impl Decodable for Span { fn decode(s: &mut D) -> Span { s.decode_span() } } impl Decodable for Symbol { fn decode(s: &mut D) -> Symbol { s.decode_symbol() } } impl Decodable for ExpnId { fn decode(s: &mut D) -> ExpnId { s.decode_expn_id() } } impl Decodable for SyntaxContext { fn decode(s: &mut D) -> SyntaxContext { s.decode_syntax_context() } } impl Decodable for CrateNum { fn decode(s: &mut D) -> CrateNum { s.decode_crate_num() } } impl Decodable for DefIndex { fn decode(s: &mut D) -> DefIndex { s.decode_def_index() } } impl Decodable for DefId { fn decode(s: &mut D) -> DefId { s.decode_def_id() } } impl Decodable for AttrId { fn decode(s: &mut D) -> AttrId { s.decode_attr_id() } } impl fmt::Debug for Span { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Use the global `SourceMap` to print the span. If that's not // available, fall back to printing the raw values. fn fallback(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Span") .field("lo", &span.lo()) .field("hi", &span.hi()) .field("ctxt", &span.ctxt()) .finish() } if SESSION_GLOBALS.is_set() { with_session_globals(|session_globals| { if let Some(source_map) = &session_globals.source_map { write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(*self), self.ctxt()) } else { fallback(*self, f) } }) } else { fallback(*self, f) } } } impl fmt::Debug for SpanData { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&self.span(), f) } } /// Identifies an offset of a multi-byte character in a `SourceFile`. #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)] pub struct MultiByteChar { /// The relative offset of the character in the `SourceFile`. pub pos: RelativeBytePos, /// The number of bytes, `>= 2`. pub bytes: u8, } /// Identifies an offset of a character that was normalized away from `SourceFile`. #[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)] pub struct NormalizedPos { /// The relative offset of the character in the `SourceFile`. pub pos: RelativeBytePos, /// The difference between original and normalized string at position. pub diff: u32, } #[derive(PartialEq, Eq, Clone, Debug)] pub enum ExternalSource { /// No external source has to be loaded, since the `SourceFile` represents a local crate. Unneeded, Foreign { kind: ExternalSourceKind, /// Index of the file inside metadata. metadata_index: u32, }, } /// The state of the lazy external source loading mechanism of a `SourceFile`. #[derive(PartialEq, Eq, Clone, Debug)] pub enum ExternalSourceKind { /// The external source has been loaded already. Present(Lrc), /// No attempt has been made to load the external source. AbsentOk, /// A failed attempt has been made to load the external source. AbsentErr, } impl ExternalSource { pub fn get_source(&self) -> Option<&str> { match self { ExternalSource::Foreign { kind: ExternalSourceKind::Present(ref src), .. } => Some(src), _ => None, } } } #[derive(Debug)] pub struct OffsetOverflowError; #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)] #[derive(HashStable_Generic)] pub enum SourceFileHashAlgorithm { Md5, Sha1, Sha256, Blake3, } impl Display for SourceFileHashAlgorithm { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { Self::Md5 => "md5", Self::Sha1 => "sha1", Self::Sha256 => "sha256", Self::Blake3 => "blake3", }) } } impl FromStr for SourceFileHashAlgorithm { type Err = (); fn from_str(s: &str) -> Result { match s { "md5" => Ok(SourceFileHashAlgorithm::Md5), "sha1" => Ok(SourceFileHashAlgorithm::Sha1), "sha256" => Ok(SourceFileHashAlgorithm::Sha256), "blake3" => Ok(SourceFileHashAlgorithm::Blake3), _ => Err(()), } } } /// The hash of the on-disk source file used for debug info and cargo freshness checks. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] #[derive(HashStable_Generic, Encodable, Decodable)] pub struct SourceFileHash { pub kind: SourceFileHashAlgorithm, value: [u8; 32], } impl Display for SourceFileHash { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}=", self.kind)?; for byte in self.value[0..self.hash_len()].into_iter() { write!(f, "{byte:02x}")?; } Ok(()) } } impl SourceFileHash { pub fn new_in_memory(kind: SourceFileHashAlgorithm, src: impl AsRef<[u8]>) -> SourceFileHash { let mut hash = SourceFileHash { kind, value: Default::default() }; let len = hash.hash_len(); let value = &mut hash.value[..len]; let data = src.as_ref(); match kind { SourceFileHashAlgorithm::Md5 => { value.copy_from_slice(&Md5::digest(data)); } SourceFileHashAlgorithm::Sha1 => { value.copy_from_slice(&Sha1::digest(data)); } SourceFileHashAlgorithm::Sha256 => { value.copy_from_slice(&Sha256::digest(data)); } SourceFileHashAlgorithm::Blake3 => value.copy_from_slice(blake3::hash(data).as_bytes()), }; hash } pub fn new(kind: SourceFileHashAlgorithm, src: impl Read) -> Result { let mut hash = SourceFileHash { kind, value: Default::default() }; let len = hash.hash_len(); let value = &mut hash.value[..len]; // Buffer size is the recommended amount to fully leverage SIMD instructions on AVX-512 as per // blake3 documentation. let mut buf = vec![0; 16 * 1024]; fn digest( mut hasher: T, mut update: impl FnMut(&mut T, &[u8]), finish: impl FnOnce(T, &mut [u8]), mut src: impl Read, buf: &mut [u8], value: &mut [u8], ) -> Result<(), io::Error> { loop { let bytes_read = src.read(buf)?; if bytes_read == 0 { break; } update(&mut hasher, &buf[0..bytes_read]); } finish(hasher, value); Ok(()) } match kind { SourceFileHashAlgorithm::Sha256 => { digest( Sha256::new(), |h, b| { h.update(b); }, |h, out| out.copy_from_slice(&h.finalize()), src, &mut buf, value, )?; } SourceFileHashAlgorithm::Sha1 => { digest( Sha1::new(), |h, b| { h.update(b); }, |h, out| out.copy_from_slice(&h.finalize()), src, &mut buf, value, )?; } SourceFileHashAlgorithm::Md5 => { digest( Md5::new(), |h, b| { h.update(b); }, |h, out| out.copy_from_slice(&h.finalize()), src, &mut buf, value, )?; } SourceFileHashAlgorithm::Blake3 => { digest( blake3::Hasher::new(), |h, b| { h.update(b); }, |h, out| out.copy_from_slice(h.finalize().as_bytes()), src, &mut buf, value, )?; } } Ok(hash) } /// Check if the stored hash matches the hash of the string. pub fn matches(&self, src: &str) -> bool { Self::new_in_memory(self.kind, src.as_bytes()) == *self } /// The bytes of the hash. pub fn hash_bytes(&self) -> &[u8] { let len = self.hash_len(); &self.value[..len] } fn hash_len(&self) -> usize { match self.kind { SourceFileHashAlgorithm::Md5 => 16, SourceFileHashAlgorithm::Sha1 => 20, SourceFileHashAlgorithm::Sha256 | SourceFileHashAlgorithm::Blake3 => 32, } } } #[derive(Clone)] pub enum SourceFileLines { /// The source file lines, in decoded (random-access) form. Lines(Vec), /// The source file lines, in undecoded difference list form. Diffs(SourceFileDiffs), } impl SourceFileLines { pub fn is_lines(&self) -> bool { matches!(self, SourceFileLines::Lines(_)) } } /// The source file lines in difference list form. This matches the form /// used within metadata, which saves space by exploiting the fact that the /// lines list is sorted and individual lines are usually not that long. /// /// We read it directly from metadata and only decode it into `Lines` form /// when necessary. This is a significant performance win, especially for /// small crates where very little of `std`'s metadata is used. #[derive(Clone)] pub struct SourceFileDiffs { /// Always 1, 2, or 4. Always as small as possible, while being big /// enough to hold the length of the longest line in the source file. /// The 1 case is by far the most common. bytes_per_diff: usize, /// The number of diffs encoded in `raw_diffs`. Always one less than /// the number of lines in the source file. num_diffs: usize, /// The diffs in "raw" form. Each segment of `bytes_per_diff` length /// encodes one little-endian diff. Note that they aren't LEB128 /// encoded. This makes for much faster decoding. Besides, the /// bytes_per_diff==1 case is by far the most common, and LEB128 /// encoding has no effect on that case. raw_diffs: Vec, } /// A single source in the [`SourceMap`]. pub struct SourceFile { /// The name of the file that the source came from. Source that doesn't /// originate from files has names between angle brackets by convention /// (e.g., ``). pub name: FileName, /// The complete source code. pub src: Option>, /// The source code's hash. pub src_hash: SourceFileHash, /// Used to enable cargo to use checksums to check if a crate is fresh rather /// than mtimes. This might be the same as `src_hash`, and if the requested algorithm /// is identical we won't compute it twice. pub checksum_hash: Option, /// The external source code (used for external crates, which will have a `None` /// value as `self.src`. pub external_src: FreezeLock, /// The start position of this source in the `SourceMap`. pub start_pos: BytePos, /// The byte length of this source. pub source_len: RelativeBytePos, /// Locations of lines beginnings in the source code. pub lines: FreezeLock, /// Locations of multi-byte characters in the source code. pub multibyte_chars: Vec, /// Locations of characters removed during normalization. pub normalized_pos: Vec, /// A hash of the filename & crate-id, used for uniquely identifying source /// files within the crate graph and for speeding up hashing in incremental /// compilation. pub stable_id: StableSourceFileId, /// Indicates which crate this `SourceFile` was imported from. pub cnum: CrateNum, } impl Clone for SourceFile { fn clone(&self) -> Self { Self { name: self.name.clone(), src: self.src.clone(), src_hash: self.src_hash, checksum_hash: self.checksum_hash, external_src: self.external_src.clone(), start_pos: self.start_pos, source_len: self.source_len, lines: self.lines.clone(), multibyte_chars: self.multibyte_chars.clone(), normalized_pos: self.normalized_pos.clone(), stable_id: self.stable_id, cnum: self.cnum, } } } impl Encodable for SourceFile { fn encode(&self, s: &mut S) { self.name.encode(s); self.src_hash.encode(s); self.checksum_hash.encode(s); // Do not encode `start_pos` as it's global state for this session. self.source_len.encode(s); // We are always in `Lines` form by the time we reach here. assert!(self.lines.read().is_lines()); let lines = self.lines(); // Store the length. s.emit_u32(lines.len() as u32); // Compute and store the difference list. if lines.len() != 0 { let max_line_length = if lines.len() == 1 { 0 } else { lines .array_windows() .map(|&[fst, snd]| snd - fst) .map(|bp| bp.to_usize()) .max() .unwrap() }; let bytes_per_diff: usize = match max_line_length { 0..=0xFF => 1, 0x100..=0xFFFF => 2, _ => 4, }; // Encode the number of bytes used per diff. s.emit_u8(bytes_per_diff as u8); // Encode the first element. assert_eq!(lines[0], RelativeBytePos(0)); // Encode the difference list. let diff_iter = lines.array_windows().map(|&[fst, snd]| snd - fst); let num_diffs = lines.len() - 1; let mut raw_diffs; match bytes_per_diff { 1 => { raw_diffs = Vec::with_capacity(num_diffs); for diff in diff_iter { raw_diffs.push(diff.0 as u8); } } 2 => { raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs); for diff in diff_iter { raw_diffs.extend_from_slice(&(diff.0 as u16).to_le_bytes()); } } 4 => { raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs); for diff in diff_iter { raw_diffs.extend_from_slice(&(diff.0).to_le_bytes()); } } _ => unreachable!(), } s.emit_raw_bytes(&raw_diffs); } self.multibyte_chars.encode(s); self.stable_id.encode(s); self.normalized_pos.encode(s); self.cnum.encode(s); } } impl Decodable for SourceFile { fn decode(d: &mut D) -> SourceFile { let name: FileName = Decodable::decode(d); let src_hash: SourceFileHash = Decodable::decode(d); let checksum_hash: Option = Decodable::decode(d); let source_len: RelativeBytePos = Decodable::decode(d); let lines = { let num_lines: u32 = Decodable::decode(d); if num_lines > 0 { // Read the number of bytes used per diff. let bytes_per_diff = d.read_u8() as usize; // Read the difference list. let num_diffs = num_lines as usize - 1; let raw_diffs = d.read_raw_bytes(bytes_per_diff * num_diffs).to_vec(); SourceFileLines::Diffs(SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs }) } else { SourceFileLines::Lines(vec![]) } }; let multibyte_chars: Vec = Decodable::decode(d); let stable_id = Decodable::decode(d); let normalized_pos: Vec = Decodable::decode(d); let cnum: CrateNum = Decodable::decode(d); SourceFile { name, start_pos: BytePos::from_u32(0), source_len, src: None, src_hash, checksum_hash, // Unused - the metadata decoder will construct // a new SourceFile, filling in `external_src` properly external_src: FreezeLock::frozen(ExternalSource::Unneeded), lines: FreezeLock::new(lines), multibyte_chars, normalized_pos, stable_id, cnum, } } } impl fmt::Debug for SourceFile { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { write!(fmt, "SourceFile({:?})", self.name) } } /// This is a [SourceFile] identifier that is used to correlate source files between /// subsequent compilation sessions (which is something we need to do during /// incremental compilation). /// /// It is a hash value (so we can efficiently consume it when stable-hashing /// spans) that consists of the `FileName` and the `StableCrateId` of the crate /// the source file is from. The crate id is needed because sometimes the /// `FileName` is not unique within the crate graph (think `src/lib.rs`, for /// example). /// /// The way the crate-id part is handled is a bit special: source files of the /// local crate are hashed as `(filename, None)`, while source files from /// upstream crates have a hash of `(filename, Some(stable_crate_id))`. This /// is because SourceFiles for the local crate are allocated very early in the /// compilation process when the `StableCrateId` is not yet known. If, due to /// some refactoring of the compiler, the `StableCrateId` of the local crate /// were to become available, it would be better to uniformly make this a /// hash of `(filename, stable_crate_id)`. /// /// When `SourceFile`s are exported in crate metadata, the `StableSourceFileId` /// is updated to incorporate the `StableCrateId` of the exporting crate. #[derive( Debug, Clone, Copy, Hash, PartialEq, Eq, HashStable_Generic, Encodable, Decodable, Default, PartialOrd, Ord )] pub struct StableSourceFileId(Hash128); impl StableSourceFileId { fn from_filename_in_current_crate(filename: &FileName) -> Self { Self::from_filename_and_stable_crate_id(filename, None) } pub fn from_filename_for_export( filename: &FileName, local_crate_stable_crate_id: StableCrateId, ) -> Self { Self::from_filename_and_stable_crate_id(filename, Some(local_crate_stable_crate_id)) } fn from_filename_and_stable_crate_id( filename: &FileName, stable_crate_id: Option, ) -> Self { let mut hasher = StableHasher::new(); filename.hash(&mut hasher); stable_crate_id.hash(&mut hasher); StableSourceFileId(hasher.finish()) } } impl SourceFile { const MAX_FILE_SIZE: u32 = u32::MAX - 1; pub fn new( name: FileName, mut src: String, hash_kind: SourceFileHashAlgorithm, checksum_hash_kind: Option, ) -> Result { // Compute the file hash before any normalization. let src_hash = SourceFileHash::new_in_memory(hash_kind, src.as_bytes()); let checksum_hash = checksum_hash_kind.map(|checksum_hash_kind| { if checksum_hash_kind == hash_kind { src_hash } else { SourceFileHash::new_in_memory(checksum_hash_kind, src.as_bytes()) } }); let normalized_pos = normalize_src(&mut src); let stable_id = StableSourceFileId::from_filename_in_current_crate(&name); let source_len = src.len(); let source_len = u32::try_from(source_len).map_err(|_| OffsetOverflowError)?; if source_len > Self::MAX_FILE_SIZE { return Err(OffsetOverflowError); } let (lines, multibyte_chars) = analyze_source_file::analyze_source_file(&src); Ok(SourceFile { name, src: Some(Lrc::new(src)), src_hash, checksum_hash, external_src: FreezeLock::frozen(ExternalSource::Unneeded), start_pos: BytePos::from_u32(0), source_len: RelativeBytePos::from_u32(source_len), lines: FreezeLock::frozen(SourceFileLines::Lines(lines)), multibyte_chars, normalized_pos, stable_id, cnum: LOCAL_CRATE, }) } /// This converts the `lines` field to contain `SourceFileLines::Lines` if needed and freezes /// it. fn convert_diffs_to_lines_frozen(&self) { let mut guard = if let Some(guard) = self.lines.try_write() { guard } else { return }; let SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs } = match &*guard { SourceFileLines::Diffs(diffs) => diffs, SourceFileLines::Lines(..) => { FreezeWriteGuard::freeze(guard); return; } }; // Convert from "diffs" form to "lines" form. let num_lines = num_diffs + 1; let mut lines = Vec::with_capacity(num_lines); let mut line_start = RelativeBytePos(0); lines.push(line_start); assert_eq!(*num_diffs, raw_diffs.len() / bytes_per_diff); match bytes_per_diff { 1 => { lines.extend(raw_diffs.into_iter().map(|&diff| { line_start = line_start + RelativeBytePos(diff as u32); line_start })); } 2 => { lines.extend((0..*num_diffs).map(|i| { let pos = bytes_per_diff * i; let bytes = [raw_diffs[pos], raw_diffs[pos + 1]]; let diff = u16::from_le_bytes(bytes); line_start = line_start + RelativeBytePos(diff as u32); line_start })); } 4 => { lines.extend((0..*num_diffs).map(|i| { let pos = bytes_per_diff * i; let bytes = [ raw_diffs[pos], raw_diffs[pos + 1], raw_diffs[pos + 2], raw_diffs[pos + 3], ]; let diff = u32::from_le_bytes(bytes); line_start = line_start + RelativeBytePos(diff); line_start })); } _ => unreachable!(), } *guard = SourceFileLines::Lines(lines); FreezeWriteGuard::freeze(guard); } pub fn lines(&self) -> &[RelativeBytePos] { if let Some(SourceFileLines::Lines(lines)) = self.lines.get() { return &lines[..]; } outline(|| { self.convert_diffs_to_lines_frozen(); if let Some(SourceFileLines::Lines(lines)) = self.lines.get() { return &lines[..]; } unreachable!() }) } /// Returns the `BytePos` of the beginning of the current line. pub fn line_begin_pos(&self, pos: BytePos) -> BytePos { let pos = self.relative_position(pos); let line_index = self.lookup_line(pos).unwrap(); let line_start_pos = self.lines()[line_index]; self.absolute_position(line_start_pos) } /// Add externally loaded source. /// If the hash of the input doesn't match or no input is supplied via None, /// it is interpreted as an error and the corresponding enum variant is set. /// The return value signifies whether some kind of source is present. pub fn add_external_src(&self, get_src: F) -> bool where F: FnOnce() -> Option, { if !self.external_src.is_frozen() { let src = get_src(); let src = src.and_then(|mut src| { // The src_hash needs to be computed on the pre-normalized src. self.src_hash.matches(&src).then(|| { normalize_src(&mut src); src }) }); self.external_src.try_write().map(|mut external_src| { if let ExternalSource::Foreign { kind: src_kind @ ExternalSourceKind::AbsentOk, .. } = &mut *external_src { *src_kind = if let Some(src) = src { ExternalSourceKind::Present(Lrc::new(src)) } else { ExternalSourceKind::AbsentErr }; } else { panic!("unexpected state {:?}", *external_src) } // Freeze this so we don't try to load the source again. FreezeWriteGuard::freeze(external_src) }); } self.src.is_some() || self.external_src.read().get_source().is_some() } /// Gets a line from the list of pre-computed line-beginnings. /// The line number here is 0-based. pub fn get_line(&self, line_number: usize) -> Option> { fn get_until_newline(src: &str, begin: usize) -> &str { // We can't use `lines.get(line_number+1)` because we might // be parsing when we call this function and thus the current // line is the last one we have line info for. let slice = &src[begin..]; match slice.find('\n') { Some(e) => &slice[..e], None => slice, } } let begin = { let line = self.lines().get(line_number).copied()?; line.to_usize() }; if let Some(ref src) = self.src { Some(Cow::from(get_until_newline(src, begin))) } else { self.external_src .borrow() .get_source() .map(|src| Cow::Owned(String::from(get_until_newline(src, begin)))) } } pub fn is_real_file(&self) -> bool { self.name.is_real() } #[inline] pub fn is_imported(&self) -> bool { self.src.is_none() } pub fn count_lines(&self) -> usize { self.lines().len() } #[inline] pub fn absolute_position(&self, pos: RelativeBytePos) -> BytePos { BytePos::from_u32(pos.to_u32() + self.start_pos.to_u32()) } #[inline] pub fn relative_position(&self, pos: BytePos) -> RelativeBytePos { RelativeBytePos::from_u32(pos.to_u32() - self.start_pos.to_u32()) } #[inline] pub fn end_position(&self) -> BytePos { self.absolute_position(self.source_len) } /// Finds the line containing the given position. The return value is the /// index into the `lines` array of this `SourceFile`, not the 1-based line /// number. If the source_file is empty or the position is located before the /// first line, `None` is returned. pub fn lookup_line(&self, pos: RelativeBytePos) -> Option { self.lines().partition_point(|x| x <= &pos).checked_sub(1) } pub fn line_bounds(&self, line_index: usize) -> Range { if self.is_empty() { return self.start_pos..self.start_pos; } let lines = self.lines(); assert!(line_index < lines.len()); if line_index == (lines.len() - 1) { self.absolute_position(lines[line_index])..self.end_position() } else { self.absolute_position(lines[line_index])..self.absolute_position(lines[line_index + 1]) } } /// Returns whether or not the file contains the given `SourceMap` byte /// position. The position one past the end of the file is considered to be /// contained by the file. This implies that files for which `is_empty` /// returns true still contain one byte position according to this function. #[inline] pub fn contains(&self, byte_pos: BytePos) -> bool { byte_pos >= self.start_pos && byte_pos <= self.end_position() } #[inline] pub fn is_empty(&self) -> bool { self.source_len.to_u32() == 0 } /// Calculates the original byte position relative to the start of the file /// based on the given byte position. pub fn original_relative_byte_pos(&self, pos: BytePos) -> RelativeBytePos { let pos = self.relative_position(pos); // Diff before any records is 0. Otherwise use the previously recorded // diff as that applies to the following characters until a new diff // is recorded. let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) { Ok(i) => self.normalized_pos[i].diff, Err(0) => 0, Err(i) => self.normalized_pos[i - 1].diff, }; RelativeBytePos::from_u32(pos.0 + diff) } /// Calculates a normalized byte position from a byte offset relative to the /// start of the file. /// /// When we get an inline assembler error from LLVM during codegen, we /// import the expanded assembly code as a new `SourceFile`, which can then /// be used for error reporting with spans. However the byte offsets given /// to us by LLVM are relative to the start of the original buffer, not the /// normalized one. Hence we need to convert those offsets to the normalized /// form when constructing spans. pub fn normalized_byte_pos(&self, offset: u32) -> BytePos { let diff = match self .normalized_pos .binary_search_by(|np| (np.pos.0 + np.diff).cmp(&(self.start_pos.0 + offset))) { Ok(i) => self.normalized_pos[i].diff, Err(0) => 0, Err(i) => self.normalized_pos[i - 1].diff, }; BytePos::from_u32(self.start_pos.0 + offset - diff) } /// Converts an relative `RelativeBytePos` to a `CharPos` relative to the `SourceFile`. fn bytepos_to_file_charpos(&self, bpos: RelativeBytePos) -> CharPos { // The number of extra bytes due to multibyte chars in the `SourceFile`. let mut total_extra_bytes = 0; for mbc in self.multibyte_chars.iter() { debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos); if mbc.pos < bpos { // Every character is at least one byte, so we only // count the actual extra bytes. total_extra_bytes += mbc.bytes as u32 - 1; // We should never see a byte position in the middle of a // character. assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32); } else { break; } } assert!(total_extra_bytes <= bpos.to_u32()); CharPos(bpos.to_usize() - total_extra_bytes as usize) } /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a /// given `RelativeBytePos`. fn lookup_file_pos(&self, pos: RelativeBytePos) -> (usize, CharPos) { let chpos = self.bytepos_to_file_charpos(pos); match self.lookup_line(pos) { Some(a) => { let line = a + 1; // Line numbers start at 1 let linebpos = self.lines()[a]; let linechpos = self.bytepos_to_file_charpos(linebpos); let col = chpos - linechpos; debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos); debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos); debug!("byte is on line: {}", line); assert!(chpos >= linechpos); (line, col) } None => (0, chpos), } } /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based) /// column offset when displayed, for a given `BytePos`. pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) { let pos = self.relative_position(pos); let (line, col_or_chpos) = self.lookup_file_pos(pos); if line > 0 { let Some(code) = self.get_line(line - 1) else { // If we don't have the code available, it is ok as a fallback to return the bytepos // instead of the "display" column, which is only used to properly show underlines // in the terminal. // FIXME: we'll want better handling of this in the future for the sake of tools // that want to use the display col instead of byte offsets to modify Rust code, but // that is a problem for another day, the previous code was already incorrect for // both displaying *and* third party tools using the json output naïvely. tracing::info!("couldn't find line {line} {:?}", self.name); return (line, col_or_chpos, col_or_chpos.0); }; let display_col = code.chars().take(col_or_chpos.0).map(|ch| char_width(ch)).sum(); (line, col_or_chpos, display_col) } else { // This is never meant to happen? (0, col_or_chpos, col_or_chpos.0) } } } pub fn char_width(ch: char) -> usize { // FIXME: `unicode_width` sometimes disagrees with terminals on how wide a `char` is. For now, // just accept that sometimes the code line will be longer than desired. match ch { '\t' => 4, // Keep the following list in sync with `rustc_errors::emitter::OUTPUT_REPLACEMENTS`. These // are control points that we replace before printing with a visible codepoint for the sake // of being able to point at them with underlines. '\u{0000}' | '\u{0001}' | '\u{0002}' | '\u{0003}' | '\u{0004}' | '\u{0005}' | '\u{0006}' | '\u{0007}' | '\u{0008}' | '\u{000B}' | '\u{000C}' | '\u{000D}' | '\u{000E}' | '\u{000F}' | '\u{0010}' | '\u{0011}' | '\u{0012}' | '\u{0013}' | '\u{0014}' | '\u{0015}' | '\u{0016}' | '\u{0017}' | '\u{0018}' | '\u{0019}' | '\u{001A}' | '\u{001B}' | '\u{001C}' | '\u{001D}' | '\u{001E}' | '\u{001F}' | '\u{007F}' | '\u{202A}' | '\u{202B}' | '\u{202D}' | '\u{202E}' | '\u{2066}' | '\u{2067}' | '\u{2068}' | '\u{202C}' | '\u{2069}' => 1, _ => unicode_width::UnicodeWidthChar::width(ch).unwrap_or(1), } } pub fn str_width(s: &str) -> usize { s.chars().map(char_width).sum() } /// Normalizes the source code and records the normalizations. fn normalize_src(src: &mut String) -> Vec { let mut normalized_pos = vec![]; remove_bom(src, &mut normalized_pos); normalize_newlines(src, &mut normalized_pos); normalized_pos } /// Removes UTF-8 BOM, if any. fn remove_bom(src: &mut String, normalized_pos: &mut Vec) { if src.starts_with('\u{feff}') { src.drain(..3); normalized_pos.push(NormalizedPos { pos: RelativeBytePos(0), diff: 3 }); } } /// Replaces `\r\n` with `\n` in-place in `src`. /// /// Leaves any occurrences of lone `\r` unchanged. fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec) { if !src.as_bytes().contains(&b'\r') { return; } // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding. // While we *can* call `as_mut_vec` and do surgery on the live string // directly, let's rather steal the contents of `src`. This makes the code // safe even if a panic occurs. let mut buf = std::mem::replace(src, String::new()).into_bytes(); let mut gap_len = 0; let mut tail = buf.as_mut_slice(); let mut cursor = 0; let original_gap = normalized_pos.last().map_or(0, |l| l.diff); loop { let idx = match find_crlf(&tail[gap_len..]) { None => tail.len(), Some(idx) => idx + gap_len, }; tail.copy_within(gap_len..idx, 0); tail = &mut tail[idx - gap_len..]; if tail.len() == gap_len { break; } cursor += idx - gap_len; gap_len += 1; normalized_pos.push(NormalizedPos { pos: RelativeBytePos::from_usize(cursor + 1), diff: original_gap + gap_len as u32, }); } // Account for removed `\r`. // After `set_len`, `buf` is guaranteed to contain utf-8 again. let new_len = buf.len() - gap_len; unsafe { buf.set_len(new_len); *src = String::from_utf8_unchecked(buf); } fn find_crlf(src: &[u8]) -> Option { let mut search_idx = 0; while let Some(idx) = find_cr(&src[search_idx..]) { if src[search_idx..].get(idx + 1) != Some(&b'\n') { search_idx += idx + 1; continue; } return Some(search_idx + idx); } None } fn find_cr(src: &[u8]) -> Option { src.iter().position(|&b| b == b'\r') } } // _____________________________________________________________________________ // Pos, BytePos, CharPos // pub trait Pos { fn from_usize(n: usize) -> Self; fn to_usize(&self) -> usize; fn from_u32(n: u32) -> Self; fn to_u32(&self) -> u32; } macro_rules! impl_pos { ( $( $(#[$attr:meta])* $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty); )* ) => { $( $(#[$attr])* $vis struct $ident($inner_vis $inner_ty); impl Pos for $ident { #[inline(always)] fn from_usize(n: usize) -> $ident { $ident(n as $inner_ty) } #[inline(always)] fn to_usize(&self) -> usize { self.0 as usize } #[inline(always)] fn from_u32(n: u32) -> $ident { $ident(n as $inner_ty) } #[inline(always)] fn to_u32(&self) -> u32 { self.0 as u32 } } impl Add for $ident { type Output = $ident; #[inline(always)] fn add(self, rhs: $ident) -> $ident { $ident(self.0 + rhs.0) } } impl Sub for $ident { type Output = $ident; #[inline(always)] fn sub(self, rhs: $ident) -> $ident { $ident(self.0 - rhs.0) } } )* }; } impl_pos! { /// A byte offset. /// /// Keep this small (currently 32-bits), as AST contains a lot of them. #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)] pub struct BytePos(pub u32); /// A byte offset relative to file beginning. #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)] pub struct RelativeBytePos(pub u32); /// A character offset. /// /// Because of multibyte UTF-8 characters, a byte offset /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`] /// values to `CharPos` values as necessary. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)] pub struct CharPos(pub usize); } impl Encodable for BytePos { fn encode(&self, s: &mut S) { s.emit_u32(self.0); } } impl Decodable for BytePos { fn decode(d: &mut D) -> BytePos { BytePos(d.read_u32()) } } impl HashStable for RelativeBytePos { fn hash_stable(&self, hcx: &mut H, hasher: &mut StableHasher) { self.0.hash_stable(hcx, hasher); } } impl Encodable for RelativeBytePos { fn encode(&self, s: &mut S) { s.emit_u32(self.0); } } impl Decodable for RelativeBytePos { fn decode(d: &mut D) -> RelativeBytePos { RelativeBytePos(d.read_u32()) } } // _____________________________________________________________________________ // Loc, SourceFileAndLine, SourceFileAndBytePos // /// A source code location used for error reporting. #[derive(Debug, Clone)] pub struct Loc { /// Information about the original source. pub file: Lrc, /// The (1-based) line number. pub line: usize, /// The (0-based) column offset. pub col: CharPos, /// The (0-based) column offset when displayed. pub col_display: usize, } // Used to be structural records. #[derive(Debug)] pub struct SourceFileAndLine { pub sf: Lrc, /// Index of line, starting from 0. pub line: usize, } #[derive(Debug)] pub struct SourceFileAndBytePos { pub sf: Lrc, pub pos: BytePos, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct LineInfo { /// Index of line, starting from 0. pub line_index: usize, /// Column in line where span begins, starting from 0. pub start_col: CharPos, /// Column in line where span ends, starting from 0, exclusive. pub end_col: CharPos, } pub struct FileLines { pub file: Lrc, pub lines: Vec, } pub static SPAN_TRACK: AtomicRef = AtomicRef::new(&((|_| {}) as fn(_))); // _____________________________________________________________________________ // SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions // pub type FileLinesResult = Result; #[derive(Clone, PartialEq, Eq, Debug)] pub enum SpanLinesError { DistinctSources(Box), } #[derive(Clone, PartialEq, Eq, Debug)] pub enum SpanSnippetError { IllFormedSpan(Span), DistinctSources(Box), MalformedForSourcemap(MalformedSourceMapPositions), SourceNotAvailable { filename: FileName }, } #[derive(Clone, PartialEq, Eq, Debug)] pub struct DistinctSources { pub begin: (FileName, BytePos), pub end: (FileName, BytePos), } #[derive(Clone, PartialEq, Eq, Debug)] pub struct MalformedSourceMapPositions { pub name: FileName, pub source_len: usize, pub begin_pos: BytePos, pub end_pos: BytePos, } /// Range inside of a `Span` used for diagnostics when we only have access to relative positions. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct InnerSpan { pub start: usize, pub end: usize, } impl InnerSpan { pub fn new(start: usize, end: usize) -> InnerSpan { InnerSpan { start, end } } } /// Requirements for a `StableHashingContext` to be used in this crate. /// /// This is a hack to allow using the [`HashStable_Generic`] derive macro /// instead of implementing everything in rustc_middle. pub trait HashStableContext { fn def_path_hash(&self, def_id: DefId) -> DefPathHash; fn hash_spans(&self) -> bool; /// Accesses `sess.opts.unstable_opts.incremental_ignore_spans` since /// we don't have easy access to a `Session` fn unstable_opts_incremental_ignore_spans(&self) -> bool; fn def_span(&self, def_id: LocalDefId) -> Span; fn span_data_to_lines_and_cols( &mut self, span: &SpanData, ) -> Option<(Lrc, usize, BytePos, usize, BytePos)>; fn hashing_controls(&self) -> HashingControls; } impl HashStable for Span where CTX: HashStableContext, { /// Hashes a span in a stable way. We can't directly hash the span's `BytePos` /// fields (that would be similar to hashing pointers, since those are just /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column) /// triple, which stays the same even if the containing `SourceFile` has moved /// within the `SourceMap`. /// /// Also note that we are hashing byte offsets for the column, not unicode /// codepoint offsets. For the purpose of the hash that's sufficient. /// Also, hashing filenames is expensive so we avoid doing it twice when the /// span starts and ends in the same file, which is almost always the case. fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) { const TAG_VALID_SPAN: u8 = 0; const TAG_INVALID_SPAN: u8 = 1; const TAG_RELATIVE_SPAN: u8 = 2; if !ctx.hash_spans() { return; } let span = self.data_untracked(); span.ctxt.hash_stable(ctx, hasher); span.parent.hash_stable(ctx, hasher); if span.is_dummy() { Hash::hash(&TAG_INVALID_SPAN, hasher); return; } if let Some(parent) = span.parent { let def_span = ctx.def_span(parent).data_untracked(); if def_span.contains(span) { // This span is enclosed in a definition: only hash the relative position. Hash::hash(&TAG_RELATIVE_SPAN, hasher); (span.lo - def_span.lo).to_u32().hash_stable(ctx, hasher); (span.hi - def_span.lo).to_u32().hash_stable(ctx, hasher); return; } } // If this is not an empty or invalid span, we want to hash the last // position that belongs to it, as opposed to hashing the first // position past it. let Some((file, line_lo, col_lo, line_hi, col_hi)) = ctx.span_data_to_lines_and_cols(&span) else { Hash::hash(&TAG_INVALID_SPAN, hasher); return; }; Hash::hash(&TAG_VALID_SPAN, hasher); Hash::hash(&file.stable_id, hasher); // Hash both the length and the end location (line/column) of a span. If we // hash only the length, for example, then two otherwise equal spans with // different end locations will have the same hash. This can cause a problem // during incremental compilation wherein a previous result for a query that // depends on the end location of a span will be incorrectly reused when the // end location of the span it depends on has changed (see issue #74890). A // similar analysis applies if some query depends specifically on the length // of the span, but we only hash the end location. So hash both. let col_lo_trunc = (col_lo.0 as u64) & 0xFF; let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8; let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32; let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40; let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc; let len = (span.hi - span.lo).0; Hash::hash(&col_line, hasher); Hash::hash(&len, hasher); } } /// Useful type to use with `Result<>` indicate that an error has already /// been reported to the user, so no need to continue checking. /// /// The `()` field is necessary: it is non-`pub`, which means values of this /// type cannot be constructed outside of this crate. #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)] #[derive(HashStable_Generic)] pub struct ErrorGuaranteed(()); impl ErrorGuaranteed { /// Don't use this outside of `DiagCtxtInner::emit_diagnostic`! #[deprecated = "should only be used in `DiagCtxtInner::emit_diagnostic`"] pub fn unchecked_error_guaranteed() -> Self { ErrorGuaranteed(()) } pub fn raise_fatal(self) -> ! { FatalError.raise() } } impl Encodable for ErrorGuaranteed { #[inline] fn encode(&self, _e: &mut E) { panic!( "should never serialize an `ErrorGuaranteed`, as we do not write metadata or \ incremental caches in case errors occurred" ) } } impl Decodable for ErrorGuaranteed { #[inline] fn decode(_d: &mut D) -> ErrorGuaranteed { panic!( "`ErrorGuaranteed` should never have been serialized to metadata or incremental caches" ) } }