use super::{Capturing, FlatToken, ForceCollect, Parser, ReplaceRange, TokenCursor}; use rustc_ast::token::{Delimiter, Token, TokenKind}; use rustc_ast::tokenstream::{AttrTokenStream, AttrTokenTree, AttrsTarget, DelimSpacing}; use rustc_ast::tokenstream::{DelimSpan, LazyAttrTokenStream, Spacing, ToAttrTokenStream}; use rustc_ast::{self as ast}; use rustc_ast::{AttrVec, Attribute, HasAttrs, HasTokens}; use rustc_errors::PResult; use rustc_session::parse::ParseSess; use rustc_span::{sym, Span, DUMMY_SP}; use std::{iter, mem}; /// A wrapper type to ensure that the parser handles outer attributes correctly. /// When we parse outer attributes, we need to ensure that we capture tokens /// for the attribute target. This allows us to perform cfg-expansion on /// a token stream before we invoke a derive proc-macro. /// /// This wrapper prevents direct access to the underlying `ast::AttrVec`. /// Parsing code can only get access to the underlying attributes /// by passing an `AttrWrapper` to `collect_tokens_trailing_tokens`. /// This makes it difficult to accidentally construct an AST node /// (which stores an `ast::AttrVec`) without first collecting tokens. /// /// This struct has its own module, to ensure that the parser code /// cannot directly access the `attrs` field #[derive(Debug, Clone)] pub struct AttrWrapper { attrs: AttrVec, // The start of the outer attributes in the token cursor. // This allows us to create a `ReplaceRange` for the entire attribute // target, including outer attributes. start_pos: u32, } impl AttrWrapper { pub(super) fn new(attrs: AttrVec, start_pos: u32) -> AttrWrapper { AttrWrapper { attrs, start_pos } } pub fn empty() -> AttrWrapper { AttrWrapper { attrs: AttrVec::new(), start_pos: u32::MAX } } pub(crate) fn take_for_recovery(self, psess: &ParseSess) -> AttrVec { psess.dcx().span_delayed_bug( self.attrs.get(0).map(|attr| attr.span).unwrap_or(DUMMY_SP), "AttrVec is taken for recovery but no error is produced", ); self.attrs } /// Prepend `self.attrs` to `attrs`. // FIXME: require passing an NT to prevent misuse of this method pub(crate) fn prepend_to_nt_inner(self, attrs: &mut AttrVec) { let mut self_attrs = self.attrs; mem::swap(attrs, &mut self_attrs); attrs.extend(self_attrs); } pub fn is_empty(&self) -> bool { self.attrs.is_empty() } pub fn is_complete(&self) -> bool { crate::parser::attr::is_complete(&self.attrs) } } /// Returns `true` if `attrs` contains a `cfg` or `cfg_attr` attribute fn has_cfg_or_cfg_attr(attrs: &[Attribute]) -> bool { // NOTE: Builtin attributes like `cfg` and `cfg_attr` cannot be renamed via imports. // Therefore, the absence of a literal `cfg` or `cfg_attr` guarantees that // we don't need to do any eager expansion. attrs.iter().any(|attr| { attr.ident().is_some_and(|ident| ident.name == sym::cfg || ident.name == sym::cfg_attr) }) } // Produces a `TokenStream` on-demand. Using `cursor_snapshot` // and `num_calls`, we can reconstruct the `TokenStream` seen // by the callback. This allows us to avoid producing a `TokenStream` // if it is never needed - for example, a captured `macro_rules!` // argument that is never passed to a proc macro. // In practice token stream creation happens rarely compared to // calls to `collect_tokens` (see some statistics in #78736), // so we are doing as little up-front work as possible. // // This also makes `Parser` very cheap to clone, since // there is no intermediate collection buffer to clone. struct LazyAttrTokenStreamImpl { start_token: (Token, Spacing), cursor_snapshot: TokenCursor, num_calls: u32, break_last_token: bool, replace_ranges: Box<[ReplaceRange]>, } impl ToAttrTokenStream for LazyAttrTokenStreamImpl { fn to_attr_token_stream(&self) -> AttrTokenStream { // The token produced by the final call to `{,inlined_}next` was not // actually consumed by the callback. The combination of chaining the // initial token and using `take` produces the desired result - we // produce an empty `TokenStream` if no calls were made, and omit the // final token otherwise. let mut cursor_snapshot = self.cursor_snapshot.clone(); let tokens = iter::once(FlatToken::Token(self.start_token.clone())) .chain(iter::repeat_with(|| FlatToken::Token(cursor_snapshot.next()))) .take(self.num_calls as usize); if self.replace_ranges.is_empty() { make_attr_token_stream(tokens, self.break_last_token) } else { let mut tokens: Vec<_> = tokens.collect(); let mut replace_ranges = self.replace_ranges.to_vec(); replace_ranges.sort_by_key(|(range, _)| range.start); #[cfg(debug_assertions)] { for [(range, tokens), (next_range, next_tokens)] in replace_ranges.array_windows() { assert!( range.end <= next_range.start || range.end >= next_range.end, "Replace ranges should either be disjoint or nested: ({:?}, {:?}) ({:?}, {:?})", range, tokens, next_range, next_tokens, ); } } // Process the replace ranges, starting from the highest start // position and working our way back. If have tokens like: // // `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }` // // Then we will generate replace ranges for both // the `#[cfg(FALSE)] field: bool` and the entire // `#[cfg(FALSE)] struct Foo { #[cfg(FALSE)] field: bool }` // // By starting processing from the replace range with the greatest // start position, we ensure that any replace range which encloses // another replace range will capture the *replaced* tokens for the inner // range, not the original tokens. for (range, target) in replace_ranges.into_iter().rev() { assert!(!range.is_empty(), "Cannot replace an empty range: {range:?}"); // Replace the tokens in range with zero or one `FlatToken::AttrsTarget`s, plus // enough `FlatToken::Empty`s to fill up the rest of the range. This keeps the // total length of `tokens` constant throughout the replacement process, allowing // us to use all of the `ReplaceRanges` entries without adjusting indices. let target_len = target.is_some() as usize; tokens.splice( (range.start as usize)..(range.end as usize), target .into_iter() .map(|target| FlatToken::AttrsTarget(target)) .chain(iter::repeat(FlatToken::Empty).take(range.len() - target_len)), ); } make_attr_token_stream(tokens.into_iter(), self.break_last_token) } } } impl<'a> Parser<'a> { /// Records all tokens consumed by the provided callback, /// including the current token. These tokens are collected /// into a `LazyAttrTokenStream`, and returned along with the first part of /// the callback's result. The second (bool) part of the callback's result /// indicates if an extra token should be captured, e.g. a comma or /// semicolon. /// /// The `attrs` passed in are in `AttrWrapper` form, which is opaque. The /// `AttrVec` within is passed to `f`. See the comment on `AttrWrapper` for /// details. /// /// Note: If your callback consumes an opening delimiter /// (including the case where you call `collect_tokens` /// when the current token is an opening delimiter), /// you must also consume the corresponding closing delimiter. /// /// That is, you can consume /// `something ([{ }])` or `([{}])`, but not `([{}]` /// /// This restriction shouldn't be an issue in practice, /// since this function is used to record the tokens for /// a parsed AST item, which always has matching delimiters. pub fn collect_tokens_trailing_token( &mut self, attrs: AttrWrapper, force_collect: ForceCollect, f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, (R, bool)>, ) -> PResult<'a, R> { // We only bail out when nothing could possibly observe the collected tokens: // 1. We cannot be force collecting tokens (since force-collecting requires tokens // by definition if matches!(force_collect, ForceCollect::No) // None of our outer attributes can require tokens (e.g. a proc-macro) && attrs.is_complete() // If our target supports custom inner attributes, then we cannot bail // out early, since we may need to capture tokens for a custom inner attribute // invocation. && !R::SUPPORTS_CUSTOM_INNER_ATTRS // Never bail out early in `capture_cfg` mode, since there might be `#[cfg]` // or `#[cfg_attr]` attributes. && !self.capture_cfg { return Ok(f(self, attrs.attrs)?.0); } let start_token = (self.token.clone(), self.token_spacing); let cursor_snapshot = self.token_cursor.clone(); let start_pos = self.num_bump_calls; let has_outer_attrs = !attrs.attrs.is_empty(); let replace_ranges_start = self.capture_state.replace_ranges.len(); let (mut ret, capture_trailing) = { let prev_capturing = mem::replace(&mut self.capture_state.capturing, Capturing::Yes); let ret_and_trailing = f(self, attrs.attrs); self.capture_state.capturing = prev_capturing; ret_and_trailing? }; // When we're not in `capture-cfg` mode, then bail out early if: // 1. Our target doesn't support tokens at all (e.g we're parsing an `NtIdent`) // so there's nothing for us to do. // 2. Our target already has tokens set (e.g. we've parsed something // like `#[my_attr] $item`). The actual parsing code takes care of // prepending any attributes to the nonterminal, so we don't need to // modify the already captured tokens. // Note that this check is independent of `force_collect`- if we already // have tokens, or can't even store them, then there's never a need to // force collection of new tokens. if !self.capture_cfg && matches!(ret.tokens_mut(), None | Some(Some(_))) { return Ok(ret); } // This is very similar to the bail out check at the start of this function. // Now that we've parsed an AST node, we have more information available. if matches!(force_collect, ForceCollect::No) // We now have inner attributes available, so this check is more precise // than `attrs.is_complete()` at the start of the function. // As a result, we don't need to check `R::SUPPORTS_CUSTOM_INNER_ATTRS` && crate::parser::attr::is_complete(ret.attrs()) // Subtle: We call `has_cfg_or_cfg_attr` with the attrs from `ret`. // This ensures that we consider inner attributes (e.g. `#![cfg]`), // which require us to have tokens available // We also call `has_cfg_or_cfg_attr` at the beginning of this function, // but we only bail out if there's no possibility of inner attributes // (!R::SUPPORTS_CUSTOM_INNER_ATTRS) // We only capture about `#[cfg]` or `#[cfg_attr]` in `capture_cfg` // mode - during normal parsing, we don't need any special capturing // for those attributes, since they're builtin. && !(self.capture_cfg && has_cfg_or_cfg_attr(ret.attrs())) { return Ok(ret); } let mut inner_attr_replace_ranges = Vec::new(); // Take the captured ranges for any inner attributes that we parsed. for inner_attr in ret.attrs().iter().filter(|a| a.style == ast::AttrStyle::Inner) { if let Some(attr_range) = self.capture_state.inner_attr_ranges.remove(&inner_attr.id) { inner_attr_replace_ranges.push((attr_range, None)); } else { self.dcx().span_delayed_bug(inner_attr.span, "Missing token range for attribute"); } } let replace_ranges_end = self.capture_state.replace_ranges.len(); assert!( !(self.break_last_token && capture_trailing), "Cannot set break_last_token and have trailing token" ); let end_pos = self.num_bump_calls + capture_trailing as u32 // If we 'broke' the last token (e.g. breaking a '>>' token to two '>' tokens), then // extend the range of captured tokens to include it, since the parser was not actually // bumped past it. When the `LazyAttrTokenStream` gets converted into an // `AttrTokenStream`, we will create the proper token. + self.break_last_token as u32; let num_calls = end_pos - start_pos; // This is hot enough for `deep-vector` that checking the conditions for an empty iterator // is measurably faster than actually executing the iterator. let replace_ranges: Box<[ReplaceRange]> = if replace_ranges_start == replace_ranges_end && inner_attr_replace_ranges.is_empty() { Box::new([]) } else { // Grab any replace ranges that occur *inside* the current AST node. // We will perform the actual replacement when we convert the `LazyAttrTokenStream` // to an `AttrTokenStream`. self.capture_state.replace_ranges[replace_ranges_start..replace_ranges_end] .iter() .cloned() .chain(inner_attr_replace_ranges.iter().cloned()) .map(|(range, data)| ((range.start - start_pos)..(range.end - start_pos), data)) .collect() }; let tokens = LazyAttrTokenStream::new(LazyAttrTokenStreamImpl { start_token, num_calls, cursor_snapshot, break_last_token: self.break_last_token, replace_ranges, }); // If we support tokens and don't already have them, store the newly captured tokens. if let Some(target_tokens @ None) = ret.tokens_mut() { *target_tokens = Some(tokens.clone()); } let final_attrs = ret.attrs(); // If `capture_cfg` is set and we're inside a recursive call to // `collect_tokens_trailing_token`, then we need to register a replace range // if we have `#[cfg]` or `#[cfg_attr]`. This allows us to run eager cfg-expansion // on the captured token stream. if self.capture_cfg && matches!(self.capture_state.capturing, Capturing::Yes) && has_cfg_or_cfg_attr(final_attrs) { assert!(!self.break_last_token, "Should not have unglued last token with cfg attr"); // Replace the entire AST node that we just parsed, including attributes, with // `target`. If this AST node is inside an item that has `#[derive]`, then this will // allow us to cfg-expand this AST node. let start_pos = if has_outer_attrs { attrs.start_pos } else { start_pos }; let target = AttrsTarget { attrs: final_attrs.iter().cloned().collect(), tokens }; self.capture_state.replace_ranges.push((start_pos..end_pos, Some(target))); self.capture_state.replace_ranges.extend(inner_attr_replace_ranges); } else if matches!(self.capture_state.capturing, Capturing::No) { // Only clear the ranges once we've finished capturing entirely. self.capture_state.replace_ranges.clear(); self.capture_state.inner_attr_ranges.clear(); } Ok(ret) } } /// Converts a flattened iterator of tokens (including open and close delimiter tokens) into an /// `AttrTokenStream`, creating an `AttrTokenTree::Delimited` for each matching pair of open and /// close delims. fn make_attr_token_stream( iter: impl Iterator, break_last_token: bool, ) -> AttrTokenStream { #[derive(Debug)] struct FrameData { // This is `None` for the first frame, `Some` for all others. open_delim_sp: Option<(Delimiter, Span, Spacing)>, inner: Vec, } // The stack always has at least one element. Storing it separately makes for shorter code. let mut stack_top = FrameData { open_delim_sp: None, inner: vec![] }; let mut stack_rest = vec![]; for flat_token in iter { match flat_token { FlatToken::Token((Token { kind: TokenKind::OpenDelim(delim), span }, spacing)) => { stack_rest.push(mem::replace( &mut stack_top, FrameData { open_delim_sp: Some((delim, span, spacing)), inner: vec![] }, )); } FlatToken::Token((Token { kind: TokenKind::CloseDelim(delim), span }, spacing)) => { let frame_data = mem::replace(&mut stack_top, stack_rest.pop().unwrap()); let (open_delim, open_sp, open_spacing) = frame_data.open_delim_sp.unwrap(); assert_eq!( open_delim, delim, "Mismatched open/close delims: open={open_delim:?} close={span:?}" ); let dspan = DelimSpan::from_pair(open_sp, span); let dspacing = DelimSpacing::new(open_spacing, spacing); let stream = AttrTokenStream::new(frame_data.inner); let delimited = AttrTokenTree::Delimited(dspan, dspacing, delim, stream); stack_top.inner.push(delimited); } FlatToken::Token((token, spacing)) => { stack_top.inner.push(AttrTokenTree::Token(token, spacing)) } FlatToken::AttrsTarget(target) => { stack_top.inner.push(AttrTokenTree::AttrsTarget(target)) } FlatToken::Empty => {} } } if break_last_token { let last_token = stack_top.inner.pop().unwrap(); if let AttrTokenTree::Token(last_token, spacing) = last_token { let unglued_first = last_token.kind.break_two_token_op().unwrap().0; // An 'unglued' token is always two ASCII characters let mut first_span = last_token.span.shrink_to_lo(); first_span = first_span.with_hi(first_span.lo() + rustc_span::BytePos(1)); stack_top .inner .push(AttrTokenTree::Token(Token::new(unglued_first, first_span), spacing)); } else { panic!("Unexpected last token {last_token:?}") } } AttrTokenStream::new(stack_top.inner) } // Some types are used a lot. Make sure they don't unintentionally get bigger. #[cfg(target_pointer_width = "64")] mod size_asserts { use super::*; use rustc_data_structures::static_assert_size; // tidy-alphabetical-start static_assert_size!(AttrWrapper, 16); static_assert_size!(LazyAttrTokenStreamImpl, 96); // tidy-alphabetical-end }