use crate::def::{CtorKind, DefKind, Res}; use crate::def_id::{DefId, LocalDefIdMap}; pub(crate) use crate::hir_id::{HirId, ItemLocalId, ItemLocalMap, OwnerId}; use crate::intravisit::FnKind; use crate::LangItem; use rustc_ast as ast; use rustc_ast::util::parser::ExprPrecedence; use rustc_ast::{Attribute, FloatTy, IntTy, Label, LitKind, TraitObjectSyntax, UintTy}; pub use rustc_ast::{BinOp, BinOpKind, BindingMode, BorrowKind, ByRef, CaptureBy}; pub use rustc_ast::{ImplPolarity, IsAuto, Movability, Mutability, UnOp}; use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece}; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::sorted_map::SortedMap; use rustc_index::IndexVec; use rustc_macros::{Decodable, Encodable, HashStable_Generic}; use rustc_span::hygiene::MacroKind; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::ErrorGuaranteed; use rustc_span::{def_id::LocalDefId, BytePos, Span, DUMMY_SP}; use rustc_target::asm::InlineAsmRegOrRegClass; use rustc_target::spec::abi::Abi; use smallvec::SmallVec; use std::fmt; use tracing::debug; #[derive(Debug, Copy, Clone, HashStable_Generic)] pub struct Lifetime { pub hir_id: HirId, /// Either "`'a`", referring to a named lifetime definition, /// `'_` referring to an anonymous lifetime (either explicitly `'_` or `&type`), /// or "``" (i.e., `kw::Empty`) when appearing in path. /// /// See `Lifetime::suggestion_position` for practical use. pub ident: Ident, /// Semantics of this lifetime. pub res: LifetimeName, } #[derive(Debug, Copy, Clone, HashStable_Generic)] pub enum ParamName { /// Some user-given name like `T` or `'x`. Plain(Ident), /// Synthetic name generated when user elided a lifetime in an impl header. /// /// E.g., the lifetimes in cases like these: /// ```ignore (fragment) /// impl Foo for &u32 /// impl Foo<'_> for u32 /// ``` /// in that case, we rewrite to /// ```ignore (fragment) /// impl<'f> Foo for &'f u32 /// impl<'f> Foo<'f> for u32 /// ``` /// where `'f` is something like `Fresh(0)`. The indices are /// unique per impl, but not necessarily continuous. Fresh, /// Indicates an illegal name was given and an error has been /// reported (so we should squelch other derived errors). Occurs /// when, e.g., `'_` is used in the wrong place. Error, } impl ParamName { pub fn ident(&self) -> Ident { match *self { ParamName::Plain(ident) => ident, ParamName::Fresh | ParamName::Error => Ident::with_dummy_span(kw::UnderscoreLifetime), } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable_Generic)] pub enum LifetimeName { /// User-given names or fresh (synthetic) names. Param(LocalDefId), /// Implicit lifetime in a context like `dyn Foo`. This is /// distinguished from implicit lifetimes elsewhere because the /// lifetime that they default to must appear elsewhere within the /// enclosing type. This means that, in an `impl Trait` context, we /// don't have to create a parameter for them. That is, `impl /// Trait` expands to an opaque type like `type /// Foo<'a> = impl Trait`, but `impl Trait` expands to `type Foo = impl Trait`. The latter uses `ImplicitObjectLifetimeDefault` so /// that surrounding code knows not to create a lifetime /// parameter. ImplicitObjectLifetimeDefault, /// Indicates an error during lowering (usually `'_` in wrong place) /// that was already reported. Error, /// User wrote an anonymous lifetime, either `'_` or nothing. /// The semantics of this lifetime should be inferred by typechecking code. Infer, /// User wrote `'static`. Static, } impl LifetimeName { fn is_elided(&self) -> bool { match self { LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Infer => true, // It might seem surprising that `Fresh` counts as not *elided* // -- but this is because, as far as the code in the compiler is // concerned -- `Fresh` variants act equivalently to "some fresh name". // They correspond to early-bound regions on an impl, in other words. LifetimeName::Error | LifetimeName::Param(..) | LifetimeName::Static => false, } } } impl fmt::Display for Lifetime { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.ident.name != kw::Empty { self.ident.name.fmt(f) } else { "'_".fmt(f) } } } pub enum LifetimeSuggestionPosition { /// The user wrote `'a` or `'_`. Normal, /// The user wrote `&type` or `&mut type`. Ampersand, /// The user wrote `Path` and omitted the `<'_>`. ElidedPath, /// The user wrote `Path`, and omitted the `'_,`. ElidedPathArgument, /// The user wrote `dyn Trait` and omitted the `+ '_`. ObjectDefault, } impl Lifetime { pub fn is_elided(&self) -> bool { self.res.is_elided() } pub fn is_anonymous(&self) -> bool { self.ident.name == kw::Empty || self.ident.name == kw::UnderscoreLifetime } pub fn suggestion_position(&self) -> (LifetimeSuggestionPosition, Span) { if self.ident.name == kw::Empty { if self.ident.span.is_empty() { (LifetimeSuggestionPosition::ElidedPathArgument, self.ident.span) } else { (LifetimeSuggestionPosition::ElidedPath, self.ident.span.shrink_to_hi()) } } else if self.res == LifetimeName::ImplicitObjectLifetimeDefault { (LifetimeSuggestionPosition::ObjectDefault, self.ident.span) } else if self.ident.span.is_empty() { (LifetimeSuggestionPosition::Ampersand, self.ident.span) } else { (LifetimeSuggestionPosition::Normal, self.ident.span) } } } /// A `Path` is essentially Rust's notion of a name; for instance, /// `std::cmp::PartialEq`. It's represented as a sequence of identifiers, /// along with a bunch of supporting information. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Path<'hir, R = Res> { pub span: Span, /// The resolution for the path. pub res: R, /// The segments in the path: the things separated by `::`. pub segments: &'hir [PathSegment<'hir>], } /// Up to three resolutions for type, value and macro namespaces. pub type UsePath<'hir> = Path<'hir, SmallVec<[Res; 3]>>; impl Path<'_> { pub fn is_global(&self) -> bool { !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot } } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct PathSegment<'hir> { /// The identifier portion of this path segment. pub ident: Ident, pub hir_id: HirId, pub res: Res, /// Type/lifetime parameters attached to this path. They come in /// two flavors: `Path` and `Path(A,B) -> C`. Note that /// this is more than just simple syntactic sugar; the use of /// parens affects the region binding rules, so we preserve the /// distinction. pub args: Option<&'hir GenericArgs<'hir>>, /// Whether to infer remaining type parameters, if any. /// This only applies to expression and pattern paths, and /// out of those only the segments with no type parameters /// to begin with, e.g., `Vec::new` is `>::new::<..>`. pub infer_args: bool, } impl<'hir> PathSegment<'hir> { /// Converts an identifier to the corresponding segment. pub fn new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir> { PathSegment { ident, hir_id, res, infer_args: true, args: None } } pub fn invalid() -> Self { Self::new(Ident::empty(), HirId::INVALID, Res::Err) } pub fn args(&self) -> &GenericArgs<'hir> { if let Some(ref args) = self.args { args } else { const DUMMY: &GenericArgs<'_> = &GenericArgs::none(); DUMMY } } } #[derive(Clone, Copy, Debug, HashStable_Generic)] pub struct ConstArg<'hir> { pub value: &'hir AnonConst, /// Indicates whether this comes from a `~const` desugaring. pub is_desugared_from_effects: bool, } #[derive(Clone, Copy, Debug, HashStable_Generic)] pub struct InferArg { pub hir_id: HirId, pub span: Span, } impl InferArg { pub fn to_ty(&self) -> Ty<'static> { Ty { kind: TyKind::Infer, span: self.span, hir_id: self.hir_id } } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum GenericArg<'hir> { Lifetime(&'hir Lifetime), Type(&'hir Ty<'hir>), Const(ConstArg<'hir>), Infer(InferArg), } impl GenericArg<'_> { pub fn span(&self) -> Span { match self { GenericArg::Lifetime(l) => l.ident.span, GenericArg::Type(t) => t.span, GenericArg::Const(c) => c.value.span, GenericArg::Infer(i) => i.span, } } pub fn hir_id(&self) -> HirId { match self { GenericArg::Lifetime(l) => l.hir_id, GenericArg::Type(t) => t.hir_id, GenericArg::Const(c) => c.value.hir_id, GenericArg::Infer(i) => i.hir_id, } } pub fn descr(&self) -> &'static str { match self { GenericArg::Lifetime(_) => "lifetime", GenericArg::Type(_) => "type", GenericArg::Const(_) => "constant", GenericArg::Infer(_) => "inferred", } } pub fn to_ord(&self) -> ast::ParamKindOrd { match self { GenericArg::Lifetime(_) => ast::ParamKindOrd::Lifetime, GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => { ast::ParamKindOrd::TypeOrConst } } } pub fn is_ty_or_const(&self) -> bool { match self { GenericArg::Lifetime(_) => false, GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => true, } } } /// The generic arguments and associated item constraints of a path segment. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct GenericArgs<'hir> { /// The generic arguments for this path segment. pub args: &'hir [GenericArg<'hir>], /// The associated item constraints for this path segment. pub constraints: &'hir [AssocItemConstraint<'hir>], /// Whether the arguments were written in parenthesized form (e.g., `Fn(T) -> U`). /// /// This is required mostly for pretty-printing and diagnostics, /// but also for changing lifetime elision rules to be "function-like". pub parenthesized: GenericArgsParentheses, /// The span encompassing the arguments, constraints and the surrounding brackets (`<>` or `()`). /// /// For example: /// /// ```ignore (illustrative) /// Foo Fn(T, U, V) -> W /// ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ /// ``` /// /// Note that this may be: /// - empty, if there are no generic brackets (but there may be hidden lifetimes) /// - dummy, if this was generated during desugaring pub span_ext: Span, } impl<'hir> GenericArgs<'hir> { pub const fn none() -> Self { Self { args: &[], constraints: &[], parenthesized: GenericArgsParentheses::No, span_ext: DUMMY_SP, } } /// Obtain the list of input types and the output type if the generic arguments are parenthesized. /// /// Returns the `Ty0, Ty1, ...` and the `RetTy` in `Trait(Ty0, Ty1, ...) -> RetTy`. /// Panics if the parenthesized arguments have an incorrect form (this shouldn't happen). pub fn paren_sugar_inputs_output(&self) -> Option<(&[Ty<'hir>], &Ty<'hir>)> { if self.parenthesized != GenericArgsParentheses::ParenSugar { return None; } let inputs = self .args .iter() .find_map(|arg| { let GenericArg::Type(ty) = arg else { return None }; let TyKind::Tup(tys) = &ty.kind else { return None }; Some(tys) }) .unwrap(); Some((inputs, self.paren_sugar_output_inner())) } /// Obtain the output type if the generic arguments are parenthesized. /// /// Returns the `RetTy` in `Trait(Ty0, Ty1, ...) -> RetTy`. /// Panics if the parenthesized arguments have an incorrect form (this shouldn't happen). pub fn paren_sugar_output(&self) -> Option<&Ty<'hir>> { (self.parenthesized == GenericArgsParentheses::ParenSugar) .then(|| self.paren_sugar_output_inner()) } fn paren_sugar_output_inner(&self) -> &Ty<'hir> { let [constraint] = self.constraints.try_into().unwrap(); debug_assert_eq!(constraint.ident.name, sym::Output); constraint.ty().unwrap() } pub fn has_err(&self) -> Option { self.args .iter() .find_map(|arg| { let GenericArg::Type(ty) = arg else { return None }; let TyKind::Err(guar) = ty.kind else { return None }; Some(guar) }) .or_else(|| { self.constraints.iter().find_map(|constraint| { let TyKind::Err(guar) = constraint.ty()?.kind else { return None }; Some(guar) }) }) } #[inline] pub fn num_lifetime_params(&self) -> usize { self.args.iter().filter(|arg| matches!(arg, GenericArg::Lifetime(_))).count() } #[inline] pub fn has_lifetime_params(&self) -> bool { self.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))) } #[inline] /// This function returns the number of type and const generic params. /// It should only be used for diagnostics. pub fn num_generic_params(&self) -> usize { self.args .iter() .filter(|arg| match arg { GenericArg::Lifetime(_) | GenericArg::Const(ConstArg { is_desugared_from_effects: true, .. }) => false, _ => true, }) .count() } /// The span encompassing the arguments and constraints[^1] inside the surrounding brackets. /// /// Returns `None` if the span is empty (i.e., no brackets) or dummy. /// /// [^1]: Unless of the form `-> Ty` (see [`GenericArgsParentheses`]). pub fn span(&self) -> Option { let span_ext = self.span_ext()?; Some(span_ext.with_lo(span_ext.lo() + BytePos(1)).with_hi(span_ext.hi() - BytePos(1))) } /// Returns span encompassing arguments and their surrounding `<>` or `()` pub fn span_ext(&self) -> Option { Some(self.span_ext).filter(|span| !span.is_empty()) } pub fn is_empty(&self) -> bool { self.args.is_empty() } } #[derive(Copy, Clone, PartialEq, Eq, Debug, HashStable_Generic)] pub enum GenericArgsParentheses { No, /// Bounds for `feature(return_type_notation)`, like `T: Trait`, /// where the args are explicitly elided with `..` ReturnTypeNotation, /// parenthesized function-family traits, like `T: Fn(u32) -> i32` ParenSugar, } /// A modifier on a trait bound. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)] pub enum TraitBoundModifier { /// `Type: Trait` None, /// `Type: !Trait` Negative, /// `Type: ?Trait` Maybe, /// `Type: const Trait` Const, /// `Type: ~const Trait` MaybeConst, } #[derive(Clone, Copy, Debug, HashStable_Generic)] pub enum GenericBound<'hir> { Trait(PolyTraitRef<'hir>, TraitBoundModifier), Outlives(&'hir Lifetime), Use(&'hir [PreciseCapturingArg<'hir>], Span), } impl GenericBound<'_> { pub fn trait_ref(&self) -> Option<&TraitRef<'_>> { match self { GenericBound::Trait(data, _) => Some(&data.trait_ref), _ => None, } } pub fn span(&self) -> Span { match self { GenericBound::Trait(t, ..) => t.span, GenericBound::Outlives(l) => l.ident.span, GenericBound::Use(_, span) => *span, } } } pub type GenericBounds<'hir> = &'hir [GenericBound<'hir>]; #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable_Generic, Debug)] pub enum MissingLifetimeKind { /// An explicit `'_`. Underscore, /// An elided lifetime `&' ty`. Ampersand, /// An elided lifetime in brackets with written brackets. Comma, /// An elided lifetime with elided brackets. Brackets, } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum LifetimeParamKind { // Indicates that the lifetime definition was explicitly declared (e.g., in // `fn foo<'a>(x: &'a u8) -> &'a u8 { x }`). Explicit, // Indication that the lifetime was elided (e.g., in both cases in // `fn foo(x: &u8) -> &'_ u8 { x }`). Elided(MissingLifetimeKind), // Indication that the lifetime name was somehow in error. Error, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum GenericParamKind<'hir> { /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`). Lifetime { kind: LifetimeParamKind, }, Type { default: Option<&'hir Ty<'hir>>, synthetic: bool, }, Const { ty: &'hir Ty<'hir>, /// Optional default value for the const generic param default: Option<&'hir AnonConst>, is_host_effect: bool, synthetic: bool, }, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct GenericParam<'hir> { pub hir_id: HirId, pub def_id: LocalDefId, pub name: ParamName, pub span: Span, pub pure_wrt_drop: bool, pub kind: GenericParamKind<'hir>, pub colon_span: Option, pub source: GenericParamSource, } impl<'hir> GenericParam<'hir> { /// Synthetic type-parameters are inserted after normal ones. /// In order for normal parameters to be able to refer to synthetic ones, /// scans them first. pub fn is_impl_trait(&self) -> bool { matches!(self.kind, GenericParamKind::Type { synthetic: true, .. }) } /// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`. /// /// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information. pub fn is_elided_lifetime(&self) -> bool { matches!(self.kind, GenericParamKind::Lifetime { kind: LifetimeParamKind::Elided(_) }) } } /// Records where the generic parameter originated from. /// /// This can either be from an item's generics, in which case it's typically /// early-bound (but can be a late-bound lifetime in functions, for example), /// or from a `for<...>` binder, in which case it's late-bound (and notably, /// does not show up in the parent item's generics). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum GenericParamSource { // Early or late-bound parameters defined on an item Generics, // Late-bound parameters defined via a `for<...>` Binder, } #[derive(Default)] pub struct GenericParamCount { pub lifetimes: usize, pub types: usize, pub consts: usize, pub infer: usize, } /// Represents lifetimes and type parameters attached to a declaration /// of a function, enum, trait, etc. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Generics<'hir> { pub params: &'hir [GenericParam<'hir>], pub predicates: &'hir [WherePredicate<'hir>], pub has_where_clause_predicates: bool, pub where_clause_span: Span, pub span: Span, } impl<'hir> Generics<'hir> { pub const fn empty() -> &'hir Generics<'hir> { const NOPE: Generics<'_> = Generics { params: &[], predicates: &[], has_where_clause_predicates: false, where_clause_span: DUMMY_SP, span: DUMMY_SP, }; &NOPE } pub fn get_named(&self, name: Symbol) -> Option<&GenericParam<'hir>> { self.params.iter().find(|¶m| name == param.name.ident().name) } /// If there are generic parameters, return where to introduce a new one. pub fn span_for_lifetime_suggestion(&self) -> Option { if let Some(first) = self.params.first() && self.span.contains(first.span) { // `fn foo(t: impl Trait)` // ^ suggest `'a, ` here Some(first.span.shrink_to_lo()) } else { None } } /// If there are generic parameters, return where to introduce a new one. pub fn span_for_param_suggestion(&self) -> Option { self.params.iter().any(|p| self.span.contains(p.span)).then(|| { // `fn foo(t: impl Trait)` // ^ suggest `, T: Trait` here self.span.with_lo(self.span.hi() - BytePos(1)).shrink_to_lo() }) } /// `Span` where further predicates would be suggested, accounting for trailing commas, like /// in `fn foo(t: T) where T: Foo,` so we don't suggest two trailing commas. pub fn tail_span_for_predicate_suggestion(&self) -> Span { let end = self.where_clause_span.shrink_to_hi(); if self.has_where_clause_predicates { self.predicates .iter() .rfind(|&p| p.in_where_clause()) .map_or(end, |p| p.span()) .shrink_to_hi() .to(end) } else { end } } pub fn add_where_or_trailing_comma(&self) -> &'static str { if self.has_where_clause_predicates { "," } else if self.where_clause_span.is_empty() { " where" } else { // No where clause predicates, but we have `where` token "" } } pub fn bounds_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator> { self.predicates.iter().filter_map(move |pred| match pred { WherePredicate::BoundPredicate(bp) if bp.is_param_bound(param_def_id.to_def_id()) => { Some(bp) } _ => None, }) } pub fn outlives_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator> { self.predicates.iter().filter_map(move |pred| match pred { WherePredicate::RegionPredicate(rp) if rp.is_param_bound(param_def_id) => Some(rp), _ => None, }) } /// Returns a suggestable empty span right after the "final" bound of the generic parameter. /// /// If that bound needs to be wrapped in parentheses to avoid ambiguity with /// subsequent bounds, it also returns an empty span for an open parenthesis /// as the second component. /// /// E.g., adding `+ 'static` after `Fn() -> dyn Future` or /// `Fn() -> &'static dyn Debug` requires parentheses: /// `Fn() -> (dyn Future) + 'static` and /// `Fn() -> &'static (dyn Debug) + 'static`, respectively. pub fn bounds_span_for_suggestions( &self, param_def_id: LocalDefId, ) -> Option<(Span, Option)> { self.bounds_for_param(param_def_id).flat_map(|bp| bp.bounds.iter().rev()).find_map( |bound| { let span_for_parentheses = if let Some(trait_ref) = bound.trait_ref() && let [.., segment] = trait_ref.path.segments && let Some(ret_ty) = segment.args().paren_sugar_output() && let ret_ty = ret_ty.peel_refs() && let TyKind::TraitObject( _, _, TraitObjectSyntax::Dyn | TraitObjectSyntax::DynStar, ) = ret_ty.kind && ret_ty.span.can_be_used_for_suggestions() { Some(ret_ty.span) } else { None }; span_for_parentheses.map_or_else( || { // We include bounds that come from a `#[derive(_)]` but point at the user's code, // as we use this method to get a span appropriate for suggestions. let bs = bound.span(); bs.can_be_used_for_suggestions().then(|| (bs.shrink_to_hi(), None)) }, |span| Some((span.shrink_to_hi(), Some(span.shrink_to_lo()))), ) }, ) } fn span_for_predicate_removal(&self, pos: usize) -> Span { let predicate = &self.predicates[pos]; let span = predicate.span(); if !predicate.in_where_clause() { // // ^^^^^^^^ return span; } // We need to find out which comma to remove. if pos < self.predicates.len() - 1 { let next_pred = &self.predicates[pos + 1]; if next_pred.in_where_clause() { // where T: ?Sized, Foo: Bar, // ^^^^^^^^^^^ return span.until(next_pred.span()); } } if pos > 0 { let prev_pred = &self.predicates[pos - 1]; if prev_pred.in_where_clause() { // where Foo: Bar, T: ?Sized, // ^^^^^^^^^^^ return prev_pred.span().shrink_to_hi().to(span); } } // This is the only predicate in the where clause. // where T: ?Sized // ^^^^^^^^^^^^^^^ self.where_clause_span } pub fn span_for_bound_removal(&self, predicate_pos: usize, bound_pos: usize) -> Span { let predicate = &self.predicates[predicate_pos]; let bounds = predicate.bounds(); if bounds.len() == 1 { return self.span_for_predicate_removal(predicate_pos); } let span = bounds[bound_pos].span(); if bound_pos == 0 { // where T: ?Sized + Bar, Foo: Bar, // ^^^^^^^^^ span.to(bounds[1].span().shrink_to_lo()) } else { // where T: Bar + ?Sized, Foo: Bar, // ^^^^^^^^^ bounds[bound_pos - 1].span().shrink_to_hi().to(span) } } } /// A single predicate in a where-clause. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum WherePredicate<'hir> { /// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`). BoundPredicate(WhereBoundPredicate<'hir>), /// A lifetime predicate (e.g., `'a: 'b + 'c`). RegionPredicate(WhereRegionPredicate<'hir>), /// An equality predicate (unsupported). EqPredicate(WhereEqPredicate<'hir>), } impl<'hir> WherePredicate<'hir> { pub fn span(&self) -> Span { match self { WherePredicate::BoundPredicate(p) => p.span, WherePredicate::RegionPredicate(p) => p.span, WherePredicate::EqPredicate(p) => p.span, } } pub fn in_where_clause(&self) -> bool { match self { WherePredicate::BoundPredicate(p) => p.origin == PredicateOrigin::WhereClause, WherePredicate::RegionPredicate(p) => p.in_where_clause, WherePredicate::EqPredicate(_) => false, } } pub fn bounds(&self) -> GenericBounds<'hir> { match self { WherePredicate::BoundPredicate(p) => p.bounds, WherePredicate::RegionPredicate(p) => p.bounds, WherePredicate::EqPredicate(_) => &[], } } } #[derive(Copy, Clone, Debug, HashStable_Generic, PartialEq, Eq)] pub enum PredicateOrigin { WhereClause, GenericParam, ImplTrait, } /// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct WhereBoundPredicate<'hir> { pub hir_id: HirId, pub span: Span, /// Origin of the predicate. pub origin: PredicateOrigin, /// Any generics from a `for` binding. pub bound_generic_params: &'hir [GenericParam<'hir>], /// The type being bounded. pub bounded_ty: &'hir Ty<'hir>, /// Trait and lifetime bounds (e.g., `Clone + Send + 'static`). pub bounds: GenericBounds<'hir>, } impl<'hir> WhereBoundPredicate<'hir> { /// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate. pub fn is_param_bound(&self, param_def_id: DefId) -> bool { self.bounded_ty.as_generic_param().is_some_and(|(def_id, _)| def_id == param_def_id) } } /// A lifetime predicate (e.g., `'a: 'b + 'c`). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct WhereRegionPredicate<'hir> { pub span: Span, pub in_where_clause: bool, pub lifetime: &'hir Lifetime, pub bounds: GenericBounds<'hir>, } impl<'hir> WhereRegionPredicate<'hir> { /// Returns `true` if `param_def_id` matches the `lifetime` of this predicate. fn is_param_bound(&self, param_def_id: LocalDefId) -> bool { self.lifetime.res == LifetimeName::Param(param_def_id) } } /// An equality predicate (e.g., `T = int`); currently unsupported. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct WhereEqPredicate<'hir> { pub span: Span, pub lhs_ty: &'hir Ty<'hir>, pub rhs_ty: &'hir Ty<'hir>, } /// HIR node coupled with its parent's id in the same HIR owner. /// /// The parent is trash when the node is a HIR owner. #[derive(Clone, Copy, Debug)] pub struct ParentedNode<'tcx> { pub parent: ItemLocalId, pub node: Node<'tcx>, } /// Attributes owned by a HIR owner. #[derive(Debug)] pub struct AttributeMap<'tcx> { pub map: SortedMap, // Only present when the crate hash is needed. pub opt_hash: Option, } impl<'tcx> AttributeMap<'tcx> { pub const EMPTY: &'static AttributeMap<'static> = &AttributeMap { map: SortedMap::new(), opt_hash: Some(Fingerprint::ZERO) }; #[inline] pub fn get(&self, id: ItemLocalId) -> &'tcx [Attribute] { self.map.get(&id).copied().unwrap_or(&[]) } } /// Map of all HIR nodes inside the current owner. /// These nodes are mapped by `ItemLocalId` alongside the index of their parent node. /// The HIR tree, including bodies, is pre-hashed. pub struct OwnerNodes<'tcx> { /// Pre-computed hash of the full HIR. Used in the crate hash. Only present /// when incr. comp. is enabled. pub opt_hash_including_bodies: Option, /// Full HIR for the current owner. // The zeroth node's parent should never be accessed: the owner's parent is computed by the // hir_owner_parent query. It is set to `ItemLocalId::INVALID` to force an ICE if accidentally // used. pub nodes: IndexVec>, /// Content of local bodies. pub bodies: SortedMap>, } impl<'tcx> OwnerNodes<'tcx> { pub fn node(&self) -> OwnerNode<'tcx> { // Indexing must ensure it is an OwnerNode. self.nodes[ItemLocalId::ZERO].node.as_owner().unwrap() } } impl fmt::Debug for OwnerNodes<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OwnerNodes") // Do not print all the pointers to all the nodes, as it would be unreadable. .field("node", &self.nodes[ItemLocalId::ZERO]) .field( "parents", &self .nodes .iter_enumerated() .map(|(id, parented_node)| { debug_fn(move |f| write!(f, "({id:?}, {:?})", parented_node.parent)) }) .collect::>(), ) .field("bodies", &self.bodies) .field("opt_hash_including_bodies", &self.opt_hash_including_bodies) .finish() } } /// Full information resulting from lowering an AST node. #[derive(Debug, HashStable_Generic)] pub struct OwnerInfo<'hir> { /// Contents of the HIR. pub nodes: OwnerNodes<'hir>, /// Map from each nested owner to its parent's local id. pub parenting: LocalDefIdMap, /// Collected attributes of the HIR nodes. pub attrs: AttributeMap<'hir>, /// Map indicating what traits are in scope for places where this /// is relevant; generated by resolve. pub trait_map: ItemLocalMap>, } impl<'tcx> OwnerInfo<'tcx> { #[inline] pub fn node(&self) -> OwnerNode<'tcx> { self.nodes.node() } } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum MaybeOwner<'tcx> { Owner(&'tcx OwnerInfo<'tcx>), NonOwner(HirId), /// Used as a placeholder for unused LocalDefId. Phantom, } impl<'tcx> MaybeOwner<'tcx> { pub fn as_owner(self) -> Option<&'tcx OwnerInfo<'tcx>> { match self { MaybeOwner::Owner(i) => Some(i), MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => None, } } pub fn unwrap(self) -> &'tcx OwnerInfo<'tcx> { self.as_owner().unwrap_or_else(|| panic!("Not a HIR owner")) } } /// The top-level data structure that stores the entire contents of /// the crate currently being compiled. /// /// For more details, see the [rustc dev guide]. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/hir.html #[derive(Debug)] pub struct Crate<'hir> { pub owners: IndexVec>, // Only present when incr. comp. is enabled. pub opt_hir_hash: Option, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Closure<'hir> { pub def_id: LocalDefId, pub binder: ClosureBinder, pub constness: Constness, pub capture_clause: CaptureBy, pub bound_generic_params: &'hir [GenericParam<'hir>], pub fn_decl: &'hir FnDecl<'hir>, pub body: BodyId, /// The span of the declaration block: 'move |...| -> ...' pub fn_decl_span: Span, /// The span of the argument block `|...|` pub fn_arg_span: Option, pub kind: ClosureKind, } #[derive(Clone, PartialEq, Eq, Debug, Copy, Hash, HashStable_Generic, Encodable, Decodable)] pub enum ClosureKind { /// This is a plain closure expression. Closure, /// This is a coroutine expression -- i.e. a closure expression in which /// we've found a `yield`. These can arise either from "plain" coroutine /// usage (e.g. `let x = || { yield (); }`) or from a desugared expression /// (e.g. `async` and `gen` blocks). Coroutine(CoroutineKind), /// This is a coroutine-closure, which is a special sugared closure that /// returns one of the sugared coroutine (`async`/`gen`/`async gen`). It /// additionally allows capturing the coroutine's upvars by ref, and therefore /// needs to be specially treated during analysis and borrowck. CoroutineClosure(CoroutineDesugaring), } /// A block of statements `{ .. }`, which may have a label (in this case the /// `targeted_by_break` field will be `true`) and may be `unsafe` by means of /// the `rules` being anything but `DefaultBlock`. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Block<'hir> { /// Statements in a block. pub stmts: &'hir [Stmt<'hir>], /// An expression at the end of the block /// without a semicolon, if any. pub expr: Option<&'hir Expr<'hir>>, #[stable_hasher(ignore)] pub hir_id: HirId, /// Distinguishes between `unsafe { ... }` and `{ ... }`. pub rules: BlockCheckMode, /// The span includes the curly braces `{` and `}` around the block. pub span: Span, /// If true, then there may exist `break 'a` values that aim to /// break out of this block early. /// Used by `'label: {}` blocks and by `try {}` blocks. pub targeted_by_break: bool, } impl<'hir> Block<'hir> { pub fn innermost_block(&self) -> &Block<'hir> { let mut block = self; while let Some(Expr { kind: ExprKind::Block(inner_block, _), .. }) = block.expr { block = inner_block; } block } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Pat<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub kind: PatKind<'hir>, pub span: Span, /// Whether to use default binding modes. /// At present, this is false only for destructuring assignment. pub default_binding_modes: bool, } impl<'hir> Pat<'hir> { fn walk_short_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) -> bool { if !it(self) { return false; } use PatKind::*; match self.kind { Wild | Never | Lit(_) | Range(..) | Binding(.., None) | Path(_) | Err(_) => true, Box(s) | Deref(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_short_(it), Struct(_, fields, _) => fields.iter().all(|field| field.pat.walk_short_(it)), TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().all(|p| p.walk_short_(it)), Slice(before, slice, after) => { before.iter().chain(slice).chain(after.iter()).all(|p| p.walk_short_(it)) } } } /// Walk the pattern in left-to-right order, /// short circuiting (with `.all(..)`) if `false` is returned. /// /// Note that when visiting e.g. `Tuple(ps)`, /// if visiting `ps[0]` returns `false`, /// then `ps[1]` will not be visited. pub fn walk_short(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) -> bool { self.walk_short_(&mut it) } fn walk_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) { if !it(self) { return; } use PatKind::*; match self.kind { Wild | Never | Lit(_) | Range(..) | Binding(.., None) | Path(_) | Err(_) => {} Box(s) | Deref(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_(it), Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk_(it)), TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().for_each(|p| p.walk_(it)), Slice(before, slice, after) => { before.iter().chain(slice).chain(after.iter()).for_each(|p| p.walk_(it)) } } } /// Walk the pattern in left-to-right order. /// /// If `it(pat)` returns `false`, the children are not visited. pub fn walk(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) { self.walk_(&mut it) } /// Walk the pattern in left-to-right order. /// /// If you always want to recurse, prefer this method over `walk`. pub fn walk_always(&self, mut it: impl FnMut(&Pat<'_>)) { self.walk(|p| { it(p); true }) } /// Whether this a never pattern. pub fn is_never_pattern(&self) -> bool { let mut is_never_pattern = false; self.walk(|pat| match &pat.kind { PatKind::Never => { is_never_pattern = true; false } PatKind::Or(s) => { is_never_pattern = s.iter().all(|p| p.is_never_pattern()); false } _ => true, }); is_never_pattern } } /// A single field in a struct pattern. /// /// Patterns like the fields of Foo `{ x, ref y, ref mut z }` /// are treated the same as` x: x, y: ref y, z: ref mut z`, /// except `is_shorthand` is true. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct PatField<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, /// The identifier for the field. pub ident: Ident, /// The pattern the field is destructured to. pub pat: &'hir Pat<'hir>, pub is_shorthand: bool, pub span: Span, } #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)] pub enum RangeEnd { Included, Excluded, } impl fmt::Display for RangeEnd { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { RangeEnd::Included => "..=", RangeEnd::Excluded => "..", }) } } // Equivalent to `Option`. That type takes up 16 bytes on 64-bit, but // this type only takes up 4 bytes, at the cost of being restricted to a // maximum value of `u32::MAX - 1`. In practice, this is more than enough. #[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable_Generic)] pub struct DotDotPos(u32); impl DotDotPos { /// Panics if n >= u32::MAX. pub fn new(n: Option) -> Self { match n { Some(n) => { assert!(n < u32::MAX as usize); Self(n as u32) } None => Self(u32::MAX), } } pub fn as_opt_usize(&self) -> Option { if self.0 == u32::MAX { None } else { Some(self.0 as usize) } } } impl fmt::Debug for DotDotPos { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.as_opt_usize().fmt(f) } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum PatKind<'hir> { /// Represents a wildcard pattern (i.e., `_`). Wild, /// A fresh binding `ref mut binding @ OPT_SUBPATTERN`. /// The `HirId` is the canonical ID for the variable being bound, /// (e.g., in `Ok(x) | Err(x)`, both `x` use the same canonical ID), /// which is the pattern ID of the first `x`. Binding(BindingMode, HirId, Ident, Option<&'hir Pat<'hir>>), /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`). /// The `bool` is `true` in the presence of a `..`. Struct(QPath<'hir>, &'hir [PatField<'hir>], bool), /// A tuple struct/variant pattern `Variant(x, y, .., z)`. /// If the `..` pattern fragment is present, then `DotDotPos` denotes its position. /// `0 <= position <= subpats.len()` TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], DotDotPos), /// An or-pattern `A | B | C`. /// Invariant: `pats.len() >= 2`. Or(&'hir [Pat<'hir>]), /// A never pattern `!`. Never, /// A path pattern for a unit struct/variant or a (maybe-associated) constant. Path(QPath<'hir>), /// A tuple pattern (e.g., `(a, b)`). /// If the `..` pattern fragment is present, then `Option` denotes its position. /// `0 <= position <= subpats.len()` Tuple(&'hir [Pat<'hir>], DotDotPos), /// A `box` pattern. Box(&'hir Pat<'hir>), /// A `deref` pattern (currently `deref!()` macro-based syntax). Deref(&'hir Pat<'hir>), /// A reference pattern (e.g., `&mut (a, b)`). Ref(&'hir Pat<'hir>, Mutability), /// A literal. Lit(&'hir Expr<'hir>), /// A range pattern (e.g., `1..=2` or `1..2`). Range(Option<&'hir Expr<'hir>>, Option<&'hir Expr<'hir>>, RangeEnd), /// A slice pattern, `[before_0, ..., before_n, (slice, after_0, ..., after_n)?]`. /// /// Here, `slice` is lowered from the syntax `($binding_mode $ident @)? ..`. /// If `slice` exists, then `after` can be non-empty. /// /// The representation for e.g., `[a, b, .., c, d]` is: /// ```ignore (illustrative) /// PatKind::Slice([Binding(a), Binding(b)], Some(Wild), [Binding(c), Binding(d)]) /// ``` Slice(&'hir [Pat<'hir>], Option<&'hir Pat<'hir>>, &'hir [Pat<'hir>]), /// A placeholder for a pattern that wasn't well formed in some way. Err(ErrorGuaranteed), } /// A statement. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Stmt<'hir> { pub hir_id: HirId, pub kind: StmtKind<'hir>, pub span: Span, } /// The contents of a statement. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum StmtKind<'hir> { /// A local (`let`) binding. Let(&'hir LetStmt<'hir>), /// An item binding. Item(ItemId), /// An expression without a trailing semi-colon (must have unit type). Expr(&'hir Expr<'hir>), /// An expression with a trailing semi-colon (may have any type). Semi(&'hir Expr<'hir>), } /// Represents a `let` statement (i.e., `let : = ;`). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct LetStmt<'hir> { pub pat: &'hir Pat<'hir>, /// Type annotation, if any (otherwise the type will be inferred). pub ty: Option<&'hir Ty<'hir>>, /// Initializer expression to set the value, if any. pub init: Option<&'hir Expr<'hir>>, /// Else block for a `let...else` binding. pub els: Option<&'hir Block<'hir>>, pub hir_id: HirId, pub span: Span, /// Can be `ForLoopDesugar` if the `let` statement is part of a `for` loop /// desugaring. Otherwise will be `Normal`. pub source: LocalSource, } /// Represents a single arm of a `match` expression, e.g. /// ` (if ) => `. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Arm<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub span: Span, /// If this pattern and the optional guard matches, then `body` is evaluated. pub pat: &'hir Pat<'hir>, /// Optional guard clause. pub guard: Option<&'hir Expr<'hir>>, /// The expression the arm evaluates to if this arm matches. pub body: &'hir Expr<'hir>, } /// Represents a `let [: ] = ` expression (not a [`LetStmt`]), occurring in an `if-let` /// or `let-else`, evaluating to a boolean. Typically the pattern is refutable. /// /// In an `if let`, imagine it as `if (let = ) { ... }`; in a let-else, it is part of /// the desugaring to if-let. Only let-else supports the type annotation at present. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct LetExpr<'hir> { pub span: Span, pub pat: &'hir Pat<'hir>, pub ty: Option<&'hir Ty<'hir>>, pub init: &'hir Expr<'hir>, /// `Recovered::Yes` when this let expressions is not in a syntanctically valid location. /// Used to prevent building MIR in such situations. pub recovered: ast::Recovered, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct ExprField<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub ident: Ident, pub expr: &'hir Expr<'hir>, pub span: Span, pub is_shorthand: bool, } #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock(UnsafeSource), } #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)] pub struct BodyId { pub hir_id: HirId, } /// The body of a function, closure, or constant value. In the case of /// a function, the body contains not only the function body itself /// (which is an expression), but also the argument patterns, since /// those are something that the caller doesn't really care about. /// /// # Examples /// /// ``` /// fn foo((x, y): (u32, u32)) -> u32 { /// x + y /// } /// ``` /// /// Here, the `Body` associated with `foo()` would contain: /// /// - an `params` array containing the `(x, y)` pattern /// - a `value` containing the `x + y` expression (maybe wrapped in a block) /// - `coroutine_kind` would be `None` /// /// All bodies have an **owner**, which can be accessed via the HIR /// map using `body_owner_def_id()`. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Body<'hir> { pub params: &'hir [Param<'hir>], pub value: &'hir Expr<'hir>, } impl<'hir> Body<'hir> { pub fn id(&self) -> BodyId { BodyId { hir_id: self.value.hir_id } } } /// The type of source expression that caused this coroutine to be created. #[derive(Clone, PartialEq, Eq, Debug, Copy, Hash, HashStable_Generic, Encodable, Decodable)] pub enum CoroutineKind { /// A coroutine that comes from a desugaring. Desugared(CoroutineDesugaring, CoroutineSource), /// A coroutine literal created via a `yield` inside a closure. Coroutine(Movability), } impl CoroutineKind { pub fn movability(self) -> Movability { match self { CoroutineKind::Desugared(CoroutineDesugaring::Async, _) | CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => Movability::Static, CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => Movability::Movable, CoroutineKind::Coroutine(mov) => mov, } } } impl CoroutineKind { pub fn is_fn_like(self) -> bool { matches!(self, CoroutineKind::Desugared(_, CoroutineSource::Fn)) } } impl fmt::Display for CoroutineKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CoroutineKind::Desugared(d, k) => { d.fmt(f)?; k.fmt(f) } CoroutineKind::Coroutine(_) => f.write_str("coroutine"), } } } /// In the case of a coroutine created as part of an async/gen construct, /// which kind of async/gen construct caused it to be created? /// /// This helps error messages but is also used to drive coercions in /// type-checking (see #60424). #[derive(Clone, PartialEq, Eq, Hash, Debug, Copy, HashStable_Generic, Encodable, Decodable)] pub enum CoroutineSource { /// An explicit `async`/`gen` block written by the user. Block, /// An explicit `async`/`gen` closure written by the user. Closure, /// The `async`/`gen` block generated as the body of an async/gen function. Fn, } impl fmt::Display for CoroutineSource { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CoroutineSource::Block => "block", CoroutineSource::Closure => "closure body", CoroutineSource::Fn => "fn body", } .fmt(f) } } #[derive(Clone, PartialEq, Eq, Debug, Copy, Hash, HashStable_Generic, Encodable, Decodable)] pub enum CoroutineDesugaring { /// An explicit `async` block or the body of an `async` function. Async, /// An explicit `gen` block or the body of a `gen` function. Gen, /// An explicit `async gen` block or the body of an `async gen` function, /// which is able to both `yield` and `.await`. AsyncGen, } impl fmt::Display for CoroutineDesugaring { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CoroutineDesugaring::Async => { if f.alternate() { f.write_str("`async` ")?; } else { f.write_str("async ")? } } CoroutineDesugaring::Gen => { if f.alternate() { f.write_str("`gen` ")?; } else { f.write_str("gen ")? } } CoroutineDesugaring::AsyncGen => { if f.alternate() { f.write_str("`async gen` ")?; } else { f.write_str("async gen ")? } } } Ok(()) } } #[derive(Copy, Clone, Debug)] pub enum BodyOwnerKind { /// Functions and methods. Fn, /// Closures Closure, /// Constants and associated constants, also including inline constants. Const { inline: bool }, /// Initializer of a `static` item. Static(Mutability), } impl BodyOwnerKind { pub fn is_fn_or_closure(self) -> bool { match self { BodyOwnerKind::Fn | BodyOwnerKind::Closure => true, BodyOwnerKind::Const { .. } | BodyOwnerKind::Static(_) => false, } } } /// The kind of an item that requires const-checking. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum ConstContext { /// A `const fn`. ConstFn, /// A `static` or `static mut`. Static(Mutability), /// A `const`, associated `const`, or other const context. /// /// Other contexts include: /// - Array length expressions /// - Enum discriminants /// - Const generics /// /// For the most part, other contexts are treated just like a regular `const`, so they are /// lumped into the same category. Const { inline: bool }, } impl ConstContext { /// A description of this const context that can appear between backticks in an error message. /// /// E.g. `const` or `static mut`. pub fn keyword_name(self) -> &'static str { match self { Self::Const { .. } => "const", Self::Static(Mutability::Not) => "static", Self::Static(Mutability::Mut) => "static mut", Self::ConstFn => "const fn", } } } /// A colloquial, trivially pluralizable description of this const context for use in error /// messages. impl fmt::Display for ConstContext { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Self::Const { .. } => write!(f, "constant"), Self::Static(_) => write!(f, "static"), Self::ConstFn => write!(f, "constant function"), } } } // NOTE: `IntoDiagArg` impl for `ConstContext` lives in `rustc_errors` // due to a cyclical dependency between hir that crate. /// A literal. pub type Lit = Spanned; #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum ArrayLen<'hir> { Infer(InferArg), Body(&'hir AnonConst), } impl ArrayLen<'_> { pub fn hir_id(&self) -> HirId { match self { ArrayLen::Infer(InferArg { hir_id, .. }) | ArrayLen::Body(AnonConst { hir_id, .. }) => { *hir_id } } } } /// A constant (expression) that's not an item or associated item, /// but needs its own `DefId` for type-checking, const-eval, etc. /// These are usually found nested inside types (e.g., array lengths) /// or expressions (e.g., repeat counts), and also used to define /// explicit discriminant values for enum variants. /// /// You can check if this anon const is a default in a const param /// `const N: usize = { ... }` with `tcx.hir().opt_const_param_default_param_def_id(..)` #[derive(Copy, Clone, Debug, HashStable_Generic)] pub struct AnonConst { pub hir_id: HirId, pub def_id: LocalDefId, pub body: BodyId, pub span: Span, } /// An inline constant expression `const { something }`. #[derive(Copy, Clone, Debug, HashStable_Generic)] pub struct ConstBlock { pub hir_id: HirId, pub def_id: LocalDefId, pub body: BodyId, } /// An expression. /// /// For more details, see the [rust lang reference]. /// Note that the reference does not document nightly-only features. /// There may be also slight differences in the names and representation of AST nodes between /// the compiler and the reference. /// /// [rust lang reference]: https://doc.rust-lang.org/reference/expressions.html #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Expr<'hir> { pub hir_id: HirId, pub kind: ExprKind<'hir>, pub span: Span, } impl Expr<'_> { pub fn precedence(&self) -> ExprPrecedence { match self.kind { ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock, ExprKind::Array(_) => ExprPrecedence::Array, ExprKind::Call(..) => ExprPrecedence::Call, ExprKind::MethodCall(..) => ExprPrecedence::MethodCall, ExprKind::Tup(_) => ExprPrecedence::Tup, ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node), ExprKind::Unary(..) => ExprPrecedence::Unary, ExprKind::Lit(_) => ExprPrecedence::Lit, ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast, ExprKind::DropTemps(ref expr, ..) => expr.precedence(), ExprKind::If(..) => ExprPrecedence::If, ExprKind::Let(..) => ExprPrecedence::Let, ExprKind::Loop(..) => ExprPrecedence::Loop, ExprKind::Match(..) => ExprPrecedence::Match, ExprKind::Closure { .. } => ExprPrecedence::Closure, ExprKind::Block(..) => ExprPrecedence::Block, ExprKind::Assign(..) => ExprPrecedence::Assign, ExprKind::AssignOp(..) => ExprPrecedence::AssignOp, ExprKind::Field(..) => ExprPrecedence::Field, ExprKind::Index(..) => ExprPrecedence::Index, ExprKind::Path(..) => ExprPrecedence::Path, ExprKind::AddrOf(..) => ExprPrecedence::AddrOf, ExprKind::Break(..) => ExprPrecedence::Break, ExprKind::Continue(..) => ExprPrecedence::Continue, ExprKind::Ret(..) => ExprPrecedence::Ret, ExprKind::Become(..) => ExprPrecedence::Become, ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm, ExprKind::OffsetOf(..) => ExprPrecedence::OffsetOf, ExprKind::Struct(..) => ExprPrecedence::Struct, ExprKind::Repeat(..) => ExprPrecedence::Repeat, ExprKind::Yield(..) => ExprPrecedence::Yield, ExprKind::Err(_) => ExprPrecedence::Err, } } /// Whether this looks like a place expr, without checking for deref /// adjustments. /// This will return `true` in some potentially surprising cases such as /// `CONSTANT.field`. pub fn is_syntactic_place_expr(&self) -> bool { self.is_place_expr(|_| true) } /// Whether this is a place expression. /// /// `allow_projections_from` should return `true` if indexing a field or index expression based /// on the given expression should be considered a place expression. pub fn is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool { match self.kind { ExprKind::Path(QPath::Resolved(_, ref path)) => { matches!(path.res, Res::Local(..) | Res::Def(DefKind::Static { .. }, _) | Res::Err) } // Type ascription inherits its place expression kind from its // operand. See: // https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md#type-ascription-and-temporaries ExprKind::Type(ref e, _) => e.is_place_expr(allow_projections_from), ExprKind::Unary(UnOp::Deref, _) => true, ExprKind::Field(ref base, _) | ExprKind::Index(ref base, _, _) => { allow_projections_from(base) || base.is_place_expr(allow_projections_from) } // Lang item paths cannot currently be local variables or statics. ExprKind::Path(QPath::LangItem(..)) => false, // Partially qualified paths in expressions can only legally // refer to associated items which are always rvalues. ExprKind::Path(QPath::TypeRelative(..)) | ExprKind::Call(..) | ExprKind::MethodCall(..) | ExprKind::Struct(..) | ExprKind::Tup(..) | ExprKind::If(..) | ExprKind::Match(..) | ExprKind::Closure { .. } | ExprKind::Block(..) | ExprKind::Repeat(..) | ExprKind::Array(..) | ExprKind::Break(..) | ExprKind::Continue(..) | ExprKind::Ret(..) | ExprKind::Become(..) | ExprKind::Let(..) | ExprKind::Loop(..) | ExprKind::Assign(..) | ExprKind::InlineAsm(..) | ExprKind::OffsetOf(..) | ExprKind::AssignOp(..) | ExprKind::Lit(_) | ExprKind::ConstBlock(..) | ExprKind::Unary(..) | ExprKind::AddrOf(..) | ExprKind::Binary(..) | ExprKind::Yield(..) | ExprKind::Cast(..) | ExprKind::DropTemps(..) | ExprKind::Err(_) => false, } } /// If `Self.kind` is `ExprKind::DropTemps(expr)`, drill down until we get a non-`DropTemps` /// `Expr`. This is used in suggestions to ignore this `ExprKind` as it is semantically /// silent, only signaling the ownership system. By doing this, suggestions that check the /// `ExprKind` of any given `Expr` for presentation don't have to care about `DropTemps` /// beyond remembering to call this function before doing analysis on it. pub fn peel_drop_temps(&self) -> &Self { let mut expr = self; while let ExprKind::DropTemps(inner) = &expr.kind { expr = inner; } expr } pub fn peel_blocks(&self) -> &Self { let mut expr = self; while let ExprKind::Block(Block { expr: Some(inner), .. }, _) = &expr.kind { expr = inner; } expr } pub fn peel_borrows(&self) -> &Self { let mut expr = self; while let ExprKind::AddrOf(.., inner) = &expr.kind { expr = inner; } expr } pub fn can_have_side_effects(&self) -> bool { match self.peel_drop_temps().kind { ExprKind::Path(_) | ExprKind::Lit(_) | ExprKind::OffsetOf(..) => false, ExprKind::Type(base, _) | ExprKind::Unary(_, base) | ExprKind::Field(base, _) | ExprKind::Index(base, _, _) | ExprKind::AddrOf(.., base) | ExprKind::Cast(base, _) => { // This isn't exactly true for `Index` and all `Unary`, but we are using this // method exclusively for diagnostics and there's a *cultural* pressure against // them being used only for its side-effects. base.can_have_side_effects() } ExprKind::Struct(_, fields, init) => { fields.iter().map(|field| field.expr).chain(init).any(|e| e.can_have_side_effects()) } ExprKind::Array(args) | ExprKind::Tup(args) | ExprKind::Call( Expr { kind: ExprKind::Path(QPath::Resolved( None, Path { res: Res::Def(DefKind::Ctor(_, CtorKind::Fn), _), .. }, )), .. }, args, ) => args.iter().any(|arg| arg.can_have_side_effects()), ExprKind::If(..) | ExprKind::Match(..) | ExprKind::MethodCall(..) | ExprKind::Call(..) | ExprKind::Closure { .. } | ExprKind::Block(..) | ExprKind::Repeat(..) | ExprKind::Break(..) | ExprKind::Continue(..) | ExprKind::Ret(..) | ExprKind::Become(..) | ExprKind::Let(..) | ExprKind::Loop(..) | ExprKind::Assign(..) | ExprKind::InlineAsm(..) | ExprKind::AssignOp(..) | ExprKind::ConstBlock(..) | ExprKind::Binary(..) | ExprKind::Yield(..) | ExprKind::DropTemps(..) | ExprKind::Err(_) => true, } } /// To a first-order approximation, is this a pattern? pub fn is_approximately_pattern(&self) -> bool { match &self.kind { ExprKind::Array(_) | ExprKind::Call(..) | ExprKind::Tup(_) | ExprKind::Lit(_) | ExprKind::Path(_) | ExprKind::Struct(..) => true, _ => false, } } /// Whether this and the `other` expression are the same for purposes of an indexing operation. /// /// This is only used for diagnostics to see if we have things like `foo[i]` where `foo` is /// borrowed multiple times with `i`. pub fn equivalent_for_indexing(&self, other: &Expr<'_>) -> bool { match (self.kind, other.kind) { (ExprKind::Lit(lit1), ExprKind::Lit(lit2)) => lit1.node == lit2.node, ( ExprKind::Path(QPath::LangItem(item1, _)), ExprKind::Path(QPath::LangItem(item2, _)), ) => item1 == item2, ( ExprKind::Path(QPath::Resolved(None, path1)), ExprKind::Path(QPath::Resolved(None, path2)), ) => path1.res == path2.res, ( ExprKind::Struct(QPath::LangItem(LangItem::RangeTo, _), [val1], None), ExprKind::Struct(QPath::LangItem(LangItem::RangeTo, _), [val2], None), ) | ( ExprKind::Struct(QPath::LangItem(LangItem::RangeToInclusive, _), [val1], None), ExprKind::Struct(QPath::LangItem(LangItem::RangeToInclusive, _), [val2], None), ) | ( ExprKind::Struct(QPath::LangItem(LangItem::RangeFrom, _), [val1], None), ExprKind::Struct(QPath::LangItem(LangItem::RangeFrom, _), [val2], None), ) => val1.expr.equivalent_for_indexing(val2.expr), ( ExprKind::Struct(QPath::LangItem(LangItem::Range, _), [val1, val3], None), ExprKind::Struct(QPath::LangItem(LangItem::Range, _), [val2, val4], None), ) => { val1.expr.equivalent_for_indexing(val2.expr) && val3.expr.equivalent_for_indexing(val4.expr) } _ => false, } } pub fn method_ident(&self) -> Option { match self.kind { ExprKind::MethodCall(receiver_method, ..) => Some(receiver_method.ident), ExprKind::Unary(_, expr) | ExprKind::AddrOf(.., expr) => expr.method_ident(), _ => None, } } } /// Checks if the specified expression is a built-in range literal. /// (See: `LoweringContext::lower_expr()`). pub fn is_range_literal(expr: &Expr<'_>) -> bool { match expr.kind { // All built-in range literals but `..=` and `..` desugar to `Struct`s. ExprKind::Struct(ref qpath, _, _) => matches!( **qpath, QPath::LangItem( LangItem::Range | LangItem::RangeTo | LangItem::RangeFrom | LangItem::RangeFull | LangItem::RangeToInclusive, .. ) ), // `..=` desugars into `::std::ops::RangeInclusive::new(...)`. ExprKind::Call(ref func, _) => { matches!(func.kind, ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..))) } _ => false, } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum ExprKind<'hir> { /// Allow anonymous constants from an inline `const` block ConstBlock(ConstBlock), /// An array (e.g., `[a, b, c, d]`). Array(&'hir [Expr<'hir>]), /// A function call. /// /// The first field resolves to the function itself (usually an `ExprKind::Path`), /// and the second field is the list of arguments. /// This also represents calling the constructor of /// tuple-like ADTs such as tuple structs and enum variants. Call(&'hir Expr<'hir>, &'hir [Expr<'hir>]), /// A method call (e.g., `x.foo::<'static, Bar, Baz>(a, b, c, d)`). /// /// The `PathSegment` represents the method name and its generic arguments /// (within the angle brackets). /// The `&Expr` is the expression that evaluates /// to the object on which the method is being called on (the receiver), /// and the `&[Expr]` is the rest of the arguments. /// Thus, `x.foo::(a, b, c, d)` is represented as /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, x, [a, b, c, d], span)`. /// The final `Span` represents the span of the function and arguments /// (e.g. `foo::(a, b, c, d)` in `x.foo::(a, b, c, d)` /// /// To resolve the called method to a `DefId`, call [`type_dependent_def_id`] with /// the `hir_id` of the `MethodCall` node itself. /// /// [`type_dependent_def_id`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.type_dependent_def_id MethodCall(&'hir PathSegment<'hir>, &'hir Expr<'hir>, &'hir [Expr<'hir>], Span), /// A tuple (e.g., `(a, b, c, d)`). Tup(&'hir [Expr<'hir>]), /// A binary operation (e.g., `a + b`, `a * b`). Binary(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>), /// A unary operation (e.g., `!x`, `*x`). Unary(UnOp, &'hir Expr<'hir>), /// A literal (e.g., `1`, `"foo"`). Lit(&'hir Lit), /// A cast (e.g., `foo as f64`). Cast(&'hir Expr<'hir>, &'hir Ty<'hir>), /// A type ascription (e.g., `x: Foo`). See RFC 3307. Type(&'hir Expr<'hir>, &'hir Ty<'hir>), /// Wraps the expression in a terminating scope. /// This makes it semantically equivalent to `{ let _t = expr; _t }`. /// /// This construct only exists to tweak the drop order in AST lowering. /// An example of that is the desugaring of `for` loops. DropTemps(&'hir Expr<'hir>), /// A `let $pat = $expr` expression. /// /// These are not [`LetStmt`] and only occur as expressions. /// The `let Some(x) = foo()` in `if let Some(x) = foo()` is an example of `Let(..)`. Let(&'hir LetExpr<'hir>), /// An `if` block, with an optional else block. /// /// I.e., `if { } else { }`. If(&'hir Expr<'hir>, &'hir Expr<'hir>, Option<&'hir Expr<'hir>>), /// A conditionless loop (can be exited with `break`, `continue`, or `return`). /// /// I.e., `'label: loop { }`. /// /// The `Span` is the loop header (`for x in y`/`while let pat = expr`). Loop(&'hir Block<'hir>, Option` /// * the `G = Ty` in `Trait = Ty>` /// * the `A: Bound` in `Trait` /// * the `RetTy` in `Trait(ArgTy, ArgTy) -> RetTy` /// * the `C = { Ct }` in `Trait` (feature `associated_const_equality`) /// * the `f(): Bound` in `Trait` (feature `return_type_notation`) #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct AssocItemConstraint<'hir> { pub hir_id: HirId, pub ident: Ident, pub gen_args: &'hir GenericArgs<'hir>, pub kind: AssocItemConstraintKind<'hir>, pub span: Span, } impl<'hir> AssocItemConstraint<'hir> { /// Obtain the type on the RHS of an assoc ty equality constraint if applicable. pub fn ty(self) -> Option<&'hir Ty<'hir>> { match self.kind { AssocItemConstraintKind::Equality { term: Term::Ty(ty) } => Some(ty), _ => None, } } /// Obtain the const on the RHS of an assoc const equality constraint if applicable. pub fn ct(self) -> Option<&'hir AnonConst> { match self.kind { AssocItemConstraintKind::Equality { term: Term::Const(ct) } => Some(ct), _ => None, } } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum Term<'hir> { Ty(&'hir Ty<'hir>), Const(&'hir AnonConst), } impl<'hir> From<&'hir Ty<'hir>> for Term<'hir> { fn from(ty: &'hir Ty<'hir>) -> Self { Term::Ty(ty) } } impl<'hir> From<&'hir AnonConst> for Term<'hir> { fn from(c: &'hir AnonConst) -> Self { Term::Const(c) } } /// The kind of [associated item constraint][AssocItemConstraint]. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum AssocItemConstraintKind<'hir> { /// An equality constraint for an associated item (e.g., `AssocTy = Ty` in `Trait`). /// /// Also known as an *associated item binding* (we *bind* an associated item to a term). /// /// Furthermore, associated type equality constraints can also be referred to as *associated type /// bindings*. Similarly with associated const equality constraints and *associated const bindings*. Equality { term: Term<'hir> }, /// A bound on an associated type (e.g., `AssocTy: Bound` in `Trait`). Bound { bounds: &'hir [GenericBound<'hir>] }, } impl<'hir> AssocItemConstraintKind<'hir> { pub fn descr(&self) -> &'static str { match self { AssocItemConstraintKind::Equality { .. } => "binding", AssocItemConstraintKind::Bound { .. } => "constraint", } } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Ty<'hir> { pub hir_id: HirId, pub kind: TyKind<'hir>, pub span: Span, } impl<'hir> Ty<'hir> { /// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate. pub fn as_generic_param(&self) -> Option<(DefId, Ident)> { let TyKind::Path(QPath::Resolved(None, path)) = self.kind else { return None; }; let [segment] = &path.segments else { return None; }; match path.res { Res::Def(DefKind::TyParam, def_id) | Res::SelfTyParam { trait_: def_id } => { Some((def_id, segment.ident)) } _ => None, } } pub fn peel_refs(&self) -> &Self { let mut final_ty = self; while let TyKind::Ref(_, MutTy { ty, .. }) = &final_ty.kind { final_ty = ty; } final_ty } pub fn find_self_aliases(&self) -> Vec { use crate::intravisit::Visitor; struct MyVisitor(Vec); impl<'v> Visitor<'v> for MyVisitor { fn visit_ty(&mut self, t: &'v Ty<'v>) { if matches!( &t.kind, TyKind::Path(QPath::Resolved( _, Path { res: crate::def::Res::SelfTyAlias { .. }, .. }, )) ) { self.0.push(t.span); return; } crate::intravisit::walk_ty(self, t); } } let mut my_visitor = MyVisitor(vec![]); my_visitor.visit_ty(self); my_visitor.0 } /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to /// use inference to provide suggestions for the appropriate type if possible. pub fn is_suggestable_infer_ty(&self) -> bool { fn are_suggestable_generic_args(generic_args: &[GenericArg<'_>]) -> bool { generic_args.iter().any(|arg| match arg { GenericArg::Type(ty) => ty.is_suggestable_infer_ty(), GenericArg::Infer(_) => true, _ => false, }) } debug!(?self); match &self.kind { TyKind::Infer => true, TyKind::Slice(ty) => ty.is_suggestable_infer_ty(), TyKind::Array(ty, length) => { ty.is_suggestable_infer_ty() || matches!(length, ArrayLen::Infer(..)) } TyKind::Tup(tys) => tys.iter().any(Self::is_suggestable_infer_ty), TyKind::Ptr(mut_ty) | TyKind::Ref(_, mut_ty) => mut_ty.ty.is_suggestable_infer_ty(), TyKind::OpaqueDef(_, generic_args, _) => are_suggestable_generic_args(generic_args), TyKind::Path(QPath::TypeRelative(ty, segment)) => { ty.is_suggestable_infer_ty() || are_suggestable_generic_args(segment.args().args) } TyKind::Path(QPath::Resolved(ty_opt, Path { segments, .. })) => { ty_opt.is_some_and(Self::is_suggestable_infer_ty) || segments .iter() .any(|segment| are_suggestable_generic_args(segment.args().args)) } _ => false, } } } /// Not represented directly in the AST; referred to by name through a `ty_path`. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)] pub enum PrimTy { Int(IntTy), Uint(UintTy), Float(FloatTy), Str, Bool, Char, } impl PrimTy { /// All of the primitive types pub const ALL: [Self; 19] = [ // any changes here should also be reflected in `PrimTy::from_name` Self::Int(IntTy::I8), Self::Int(IntTy::I16), Self::Int(IntTy::I32), Self::Int(IntTy::I64), Self::Int(IntTy::I128), Self::Int(IntTy::Isize), Self::Uint(UintTy::U8), Self::Uint(UintTy::U16), Self::Uint(UintTy::U32), Self::Uint(UintTy::U64), Self::Uint(UintTy::U128), Self::Uint(UintTy::Usize), Self::Float(FloatTy::F16), Self::Float(FloatTy::F32), Self::Float(FloatTy::F64), Self::Float(FloatTy::F128), Self::Bool, Self::Char, Self::Str, ]; /// Like [`PrimTy::name`], but returns a &str instead of a symbol. /// /// Used by clippy. pub fn name_str(self) -> &'static str { match self { PrimTy::Int(i) => i.name_str(), PrimTy::Uint(u) => u.name_str(), PrimTy::Float(f) => f.name_str(), PrimTy::Str => "str", PrimTy::Bool => "bool", PrimTy::Char => "char", } } pub fn name(self) -> Symbol { match self { PrimTy::Int(i) => i.name(), PrimTy::Uint(u) => u.name(), PrimTy::Float(f) => f.name(), PrimTy::Str => sym::str, PrimTy::Bool => sym::bool, PrimTy::Char => sym::char, } } /// Returns the matching `PrimTy` for a `Symbol` such as "str" or "i32". /// Returns `None` if no matching type is found. pub fn from_name(name: Symbol) -> Option { let ty = match name { // any changes here should also be reflected in `PrimTy::ALL` sym::i8 => Self::Int(IntTy::I8), sym::i16 => Self::Int(IntTy::I16), sym::i32 => Self::Int(IntTy::I32), sym::i64 => Self::Int(IntTy::I64), sym::i128 => Self::Int(IntTy::I128), sym::isize => Self::Int(IntTy::Isize), sym::u8 => Self::Uint(UintTy::U8), sym::u16 => Self::Uint(UintTy::U16), sym::u32 => Self::Uint(UintTy::U32), sym::u64 => Self::Uint(UintTy::U64), sym::u128 => Self::Uint(UintTy::U128), sym::usize => Self::Uint(UintTy::Usize), sym::f16 => Self::Float(FloatTy::F16), sym::f32 => Self::Float(FloatTy::F32), sym::f64 => Self::Float(FloatTy::F64), sym::f128 => Self::Float(FloatTy::F128), sym::bool => Self::Bool, sym::char => Self::Char, sym::str => Self::Str, _ => return None, }; Some(ty) } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct BareFnTy<'hir> { pub safety: Safety, pub abi: Abi, pub generic_params: &'hir [GenericParam<'hir>], pub decl: &'hir FnDecl<'hir>, pub param_names: &'hir [Ident], } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct OpaqueTy<'hir> { pub generics: &'hir Generics<'hir>, pub bounds: GenericBounds<'hir>, pub origin: OpaqueTyOrigin, /// Return-position impl traits (and async futures) must "reify" any late-bound /// lifetimes that are captured from the function signature they originate from. /// /// This is done by generating a new early-bound lifetime parameter local to the /// opaque which is instantiated in the function signature with the late-bound /// lifetime. /// /// This mapping associated a captured lifetime (first parameter) with the new /// early-bound lifetime that was generated for the opaque. pub lifetime_mapping: &'hir [(&'hir Lifetime, LocalDefId)], /// Whether the opaque is a return-position impl trait (or async future) /// originating from a trait method. This makes it so that the opaque is /// lowered as an associated type. pub in_trait: bool, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum PreciseCapturingArg<'hir> { Lifetime(&'hir Lifetime), /// Non-lifetime argument (type or const) Param(PreciseCapturingNonLifetimeArg), } impl PreciseCapturingArg<'_> { pub fn hir_id(self) -> HirId { match self { PreciseCapturingArg::Lifetime(lt) => lt.hir_id, PreciseCapturingArg::Param(param) => param.hir_id, } } } /// We need to have a [`Node`] for the [`HirId`] that we attach the type/const param /// resolution to. Lifetimes don't have this problem, and for them, it's actually /// kind of detrimental to use a custom node type versus just using [`Lifetime`], /// since resolve_bound_vars operates on `Lifetime`s. // FIXME(precise_capturing): Investigate storing this as a path instead? #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct PreciseCapturingNonLifetimeArg { pub hir_id: HirId, pub ident: Ident, pub res: Res, } /// From whence the opaque type came. #[derive(Copy, Clone, PartialEq, Eq, Debug, HashStable_Generic)] pub enum OpaqueTyOrigin { /// `-> impl Trait` FnReturn(LocalDefId), /// `async fn` AsyncFn(LocalDefId), /// type aliases: `type Foo = impl Trait;` TyAlias { /// The type alias or associated type parent of the TAIT/ATPIT parent: LocalDefId, /// associated types in impl blocks for traits. in_assoc_ty: bool, }, } #[derive(Debug, Clone, Copy, PartialEq, Eq, HashStable_Generic)] pub enum InferDelegationKind { Input(usize), Output, } /// The various kinds of types recognized by the compiler. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum TyKind<'hir> { /// Actual type should be inherited from `DefId` signature InferDelegation(DefId, InferDelegationKind), /// A variable length slice (i.e., `[T]`). Slice(&'hir Ty<'hir>), /// A fixed length array (i.e., `[T; n]`). Array(&'hir Ty<'hir>, ArrayLen<'hir>), /// A raw pointer (i.e., `*const T` or `*mut T`). Ptr(MutTy<'hir>), /// A reference (i.e., `&'a T` or `&'a mut T`). Ref(&'hir Lifetime, MutTy<'hir>), /// A bare function (e.g., `fn(usize) -> bool`). BareFn(&'hir BareFnTy<'hir>), /// The never type (`!`). Never, /// A tuple (`(A, B, C, D, ...)`). Tup(&'hir [Ty<'hir>]), /// An anonymous struct or union type i.e. `struct { foo: Type }` or `union { foo: Type }` AnonAdt(ItemId), /// A path to a type definition (`module::module::...::Type`), or an /// associated type (e.g., ` as Trait>::Type` or `::Target`). /// /// Type parameters may be stored in each `PathSegment`. Path(QPath<'hir>), /// An opaque type definition itself. This is only used for `impl Trait`. /// /// The generic argument list contains the lifetimes (and in the future /// possibly parameters) that are actually bound on the `impl Trait`. /// /// The last parameter specifies whether this opaque appears in a trait definition. OpaqueDef(ItemId, &'hir [GenericArg<'hir>], bool), /// A trait object type `Bound1 + Bound2 + Bound3` /// where `Bound` is a trait or a lifetime. TraitObject(&'hir [PolyTraitRef<'hir>], &'hir Lifetime, TraitObjectSyntax), /// Unused for now. Typeof(&'hir AnonConst), /// `TyKind::Infer` means the type should be inferred instead of it having been /// specified. This can appear anywhere in a type. Infer, /// Placeholder for a type that has failed to be defined. Err(rustc_span::ErrorGuaranteed), /// Pattern types (`pattern_type!(u32 is 1..)`) Pat(&'hir Ty<'hir>, &'hir Pat<'hir>), } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum InlineAsmOperand<'hir> { In { reg: InlineAsmRegOrRegClass, expr: &'hir Expr<'hir>, }, Out { reg: InlineAsmRegOrRegClass, late: bool, expr: Option<&'hir Expr<'hir>>, }, InOut { reg: InlineAsmRegOrRegClass, late: bool, expr: &'hir Expr<'hir>, }, SplitInOut { reg: InlineAsmRegOrRegClass, late: bool, in_expr: &'hir Expr<'hir>, out_expr: Option<&'hir Expr<'hir>>, }, Const { anon_const: &'hir AnonConst, }, SymFn { anon_const: &'hir AnonConst, }, SymStatic { path: QPath<'hir>, def_id: DefId, }, Label { block: &'hir Block<'hir>, }, } impl<'hir> InlineAsmOperand<'hir> { pub fn reg(&self) -> Option { match *self { Self::In { reg, .. } | Self::Out { reg, .. } | Self::InOut { reg, .. } | Self::SplitInOut { reg, .. } => Some(reg), Self::Const { .. } | Self::SymFn { .. } | Self::SymStatic { .. } | Self::Label { .. } => None, } } pub fn is_clobber(&self) -> bool { matches!( self, InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(_), late: _, expr: None } ) } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct InlineAsm<'hir> { pub template: &'hir [InlineAsmTemplatePiece], pub template_strs: &'hir [(Symbol, Option, Span)], pub operands: &'hir [(InlineAsmOperand<'hir>, Span)], pub options: InlineAsmOptions, pub line_spans: &'hir [Span], } impl InlineAsm<'_> { pub fn contains_label(&self) -> bool { self.operands.iter().any(|x| matches!(x.0, InlineAsmOperand::Label { .. })) } } /// Represents a parameter in a function header. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Param<'hir> { pub hir_id: HirId, pub pat: &'hir Pat<'hir>, pub ty_span: Span, pub span: Span, } /// Represents the header (not the body) of a function declaration. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct FnDecl<'hir> { /// The types of the function's parameters. /// /// Additional argument data is stored in the function's [body](Body::params). pub inputs: &'hir [Ty<'hir>], pub output: FnRetTy<'hir>, pub c_variadic: bool, /// Does the function have an implicit self? pub implicit_self: ImplicitSelfKind, /// Is lifetime elision allowed. pub lifetime_elision_allowed: bool, } /// Represents what type of implicit self a function has, if any. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)] pub enum ImplicitSelfKind { /// Represents a `fn x(self);`. Imm, /// Represents a `fn x(mut self);`. Mut, /// Represents a `fn x(&self);`. RefImm, /// Represents a `fn x(&mut self);`. RefMut, /// Represents when a function does not have a self argument or /// when a function has a `self: X` argument. None, } impl ImplicitSelfKind { /// Does this represent an implicit self? pub fn has_implicit_self(&self) -> bool { !matches!(*self, ImplicitSelfKind::None) } } #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)] pub enum IsAsync { Async(Span), NotAsync, } impl IsAsync { pub fn is_async(self) -> bool { matches!(self, IsAsync::Async(_)) } } #[derive(Copy, Clone, PartialEq, Eq, Debug, Encodable, Decodable, HashStable_Generic)] pub enum Defaultness { Default { has_value: bool }, Final, } impl Defaultness { pub fn has_value(&self) -> bool { match *self { Defaultness::Default { has_value } => has_value, Defaultness::Final => true, } } pub fn is_final(&self) -> bool { *self == Defaultness::Final } pub fn is_default(&self) -> bool { matches!(*self, Defaultness::Default { .. }) } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum FnRetTy<'hir> { /// Return type is not specified. /// /// Functions default to `()` and /// closures default to inference. Span points to where return /// type would be inserted. DefaultReturn(Span), /// Everything else. Return(&'hir Ty<'hir>), } impl<'hir> FnRetTy<'hir> { #[inline] pub fn span(&self) -> Span { match *self { Self::DefaultReturn(span) => span, Self::Return(ref ty) => ty.span, } } pub fn get_infer_ret_ty(&self) -> Option<&'hir Ty<'hir>> { if let Self::Return(ty) = self { if ty.is_suggestable_infer_ty() { return Some(*ty); } } None } } /// Represents `for<...>` binder before a closure #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum ClosureBinder { /// Binder is not specified. Default, /// Binder is specified. /// /// Span points to the whole `for<...>`. For { span: Span }, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Mod<'hir> { pub spans: ModSpans, pub item_ids: &'hir [ItemId], } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub struct ModSpans { /// A span from the first token past `{` to the last token until `}`. /// For `mod foo;`, the inner span ranges from the first token /// to the last token in the external file. pub inner_span: Span, pub inject_use_span: Span, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct EnumDef<'hir> { pub variants: &'hir [Variant<'hir>], } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Variant<'hir> { /// Name of the variant. pub ident: Ident, /// Id of the variant (not the constructor, see `VariantData::ctor_hir_id()`). pub hir_id: HirId, pub def_id: LocalDefId, /// Fields and constructor id of the variant. pub data: VariantData<'hir>, /// Explicit discriminant (e.g., `Foo = 1`). pub disr_expr: Option<&'hir AnonConst>, /// Span pub span: Span, } #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)] pub enum UseKind { /// One import, e.g., `use foo::bar` or `use foo::bar as baz`. /// Also produced for each element of a list `use`, e.g. /// `use foo::{a, b}` lowers to `use foo::a; use foo::b;`. Single, /// Glob import, e.g., `use foo::*`. Glob, /// Degenerate list import, e.g., `use foo::{a, b}` produces /// an additional `use foo::{}` for performing checks such as /// unstable feature gating. May be removed in the future. ListStem, } /// References to traits in impls. /// /// `resolve` maps each `TraitRef`'s `ref_id` to its defining trait; that's all /// that the `ref_id` is for. Note that `ref_id`'s value is not the `HirId` of the /// trait being referred to but just a unique `HirId` that serves as a key /// within the resolution map. #[derive(Clone, Debug, Copy, HashStable_Generic)] pub struct TraitRef<'hir> { pub path: &'hir Path<'hir>, // Don't hash the `ref_id`. It is tracked via the thing it is used to access. #[stable_hasher(ignore)] pub hir_ref_id: HirId, } impl TraitRef<'_> { /// Gets the `DefId` of the referenced trait. It _must_ actually be a trait or trait alias. pub fn trait_def_id(&self) -> Option { match self.path.res { Res::Def(DefKind::Trait | DefKind::TraitAlias, did) => Some(did), Res::Err => None, res => panic!("{res:?} did not resolve to a trait or trait alias"), } } } #[derive(Clone, Debug, Copy, HashStable_Generic)] pub struct PolyTraitRef<'hir> { /// The `'a` in `for<'a> Foo<&'a T>`. pub bound_generic_params: &'hir [GenericParam<'hir>], /// The `Foo<&'a T>` in `for<'a> Foo<&'a T>`. pub trait_ref: TraitRef<'hir>, pub span: Span, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct FieldDef<'hir> { pub span: Span, pub vis_span: Span, pub ident: Ident, pub hir_id: HirId, pub def_id: LocalDefId, pub ty: &'hir Ty<'hir>, } impl FieldDef<'_> { // Still necessary in couple of places pub fn is_positional(&self) -> bool { self.ident.as_str().as_bytes()[0].is_ascii_digit() } } /// Fields and constructor IDs of enum variants and structs. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum VariantData<'hir> { /// A struct variant. /// /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`. Struct { fields: &'hir [FieldDef<'hir>], recovered: ast::Recovered }, /// A tuple variant. /// /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`. Tuple(&'hir [FieldDef<'hir>], HirId, LocalDefId), /// A unit variant. /// /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`. Unit(HirId, LocalDefId), } impl<'hir> VariantData<'hir> { /// Return the fields of this variant. pub fn fields(&self) -> &'hir [FieldDef<'hir>] { match *self { VariantData::Struct { fields, .. } | VariantData::Tuple(fields, ..) => fields, _ => &[], } } pub fn ctor(&self) -> Option<(CtorKind, HirId, LocalDefId)> { match *self { VariantData::Tuple(_, hir_id, def_id) => Some((CtorKind::Fn, hir_id, def_id)), VariantData::Unit(hir_id, def_id) => Some((CtorKind::Const, hir_id, def_id)), VariantData::Struct { .. } => None, } } #[inline] pub fn ctor_kind(&self) -> Option { self.ctor().map(|(kind, ..)| kind) } /// Return the `HirId` of this variant's constructor, if it has one. #[inline] pub fn ctor_hir_id(&self) -> Option { self.ctor().map(|(_, hir_id, _)| hir_id) } /// Return the `LocalDefId` of this variant's constructor, if it has one. #[inline] pub fn ctor_def_id(&self) -> Option { self.ctor().map(|(.., def_id)| def_id) } } // The bodies for items are stored "out of line", in a separate // hashmap in the `Crate`. Here we just record the hir-id of the item // so it can fetched later. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash, HashStable_Generic)] pub struct ItemId { pub owner_id: OwnerId, } impl ItemId { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } } /// An item /// /// The name might be a dummy name in case of anonymous items /// /// For more details, see the [rust lang reference]. /// Note that the reference does not document nightly-only features. /// There may be also slight differences in the names and representation of AST nodes between /// the compiler and the reference. /// /// [rust lang reference]: https://doc.rust-lang.org/reference/items.html #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Item<'hir> { pub ident: Ident, pub owner_id: OwnerId, pub kind: ItemKind<'hir>, pub span: Span, pub vis_span: Span, } impl<'hir> Item<'hir> { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } pub fn item_id(&self) -> ItemId { ItemId { owner_id: self.owner_id } } /// Check if this is an [`ItemKind::Enum`], [`ItemKind::Struct`] or /// [`ItemKind::Union`]. pub fn is_adt(&self) -> bool { matches!(self.kind, ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..)) } /// Check if this is an [`ItemKind::Struct`] or [`ItemKind::Union`]. pub fn is_struct_or_union(&self) -> bool { matches!(self.kind, ItemKind::Struct(..) | ItemKind::Union(..)) } expect_methods_self_kind! { expect_extern_crate, Option, ItemKind::ExternCrate(s), *s; expect_use, (&'hir UsePath<'hir>, UseKind), ItemKind::Use(p, uk), (p, *uk); expect_static, (&'hir Ty<'hir>, Mutability, BodyId), ItemKind::Static(ty, mutbl, body), (ty, *mutbl, *body); expect_const, (&'hir Ty<'hir>, &'hir Generics<'hir>, BodyId), ItemKind::Const(ty, gen, body), (ty, gen, *body); expect_fn, (&FnSig<'hir>, &'hir Generics<'hir>, BodyId), ItemKind::Fn(sig, gen, body), (sig, gen, *body); expect_macro, (&ast::MacroDef, MacroKind), ItemKind::Macro(def, mk), (def, *mk); expect_mod, &'hir Mod<'hir>, ItemKind::Mod(m), m; expect_foreign_mod, (Abi, &'hir [ForeignItemRef]), ItemKind::ForeignMod { abi, items }, (*abi, items); expect_global_asm, &'hir InlineAsm<'hir>, ItemKind::GlobalAsm(asm), asm; expect_ty_alias, (&'hir Ty<'hir>, &'hir Generics<'hir>), ItemKind::TyAlias(ty, gen), (ty, gen); expect_opaque_ty, &OpaqueTy<'hir>, ItemKind::OpaqueTy(ty), ty; expect_enum, (&EnumDef<'hir>, &'hir Generics<'hir>), ItemKind::Enum(def, gen), (def, gen); expect_struct, (&VariantData<'hir>, &'hir Generics<'hir>), ItemKind::Struct(data, gen), (data, gen); expect_union, (&VariantData<'hir>, &'hir Generics<'hir>), ItemKind::Union(data, gen), (data, gen); expect_trait, (IsAuto, Safety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]), ItemKind::Trait(is_auto, safety, gen, bounds, items), (*is_auto, *safety, gen, bounds, items); expect_trait_alias, (&'hir Generics<'hir>, GenericBounds<'hir>), ItemKind::TraitAlias(gen, bounds), (gen, bounds); expect_impl, &'hir Impl<'hir>, ItemKind::Impl(imp), imp; } } #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] #[derive(Encodable, Decodable, HashStable_Generic)] pub enum Safety { Unsafe, Safe, } impl Safety { pub fn prefix_str(self) -> &'static str { match self { Self::Unsafe => "unsafe ", Self::Safe => "", } } } impl fmt::Display for Safety { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match *self { Self::Unsafe => "unsafe", Self::Safe => "safe", }) } } #[derive(Copy, Clone, PartialEq, Eq, Debug, Encodable, Decodable, HashStable_Generic)] pub enum Constness { Const, NotConst, } impl fmt::Display for Constness { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match *self { Self::Const => "const", Self::NotConst => "non-const", }) } } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub struct FnHeader { pub safety: Safety, pub constness: Constness, pub asyncness: IsAsync, pub abi: Abi, } impl FnHeader { pub fn is_async(&self) -> bool { matches!(&self.asyncness, IsAsync::Async(_)) } pub fn is_const(&self) -> bool { matches!(&self.constness, Constness::Const) } pub fn is_unsafe(&self) -> bool { matches!(&self.safety, Safety::Unsafe) } } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum ItemKind<'hir> { /// An `extern crate` item, with optional *original* crate name if the crate was renamed. /// /// E.g., `extern crate foo` or `extern crate foo_bar as foo`. ExternCrate(Option), /// `use foo::bar::*;` or `use foo::bar::baz as quux;` /// /// or just /// /// `use foo::bar::baz;` (with `as baz` implicitly on the right). Use(&'hir UsePath<'hir>, UseKind), /// A `static` item. Static(&'hir Ty<'hir>, Mutability, BodyId), /// A `const` item. Const(&'hir Ty<'hir>, &'hir Generics<'hir>, BodyId), /// A function declaration. Fn(FnSig<'hir>, &'hir Generics<'hir>, BodyId), /// A MBE macro definition (`macro_rules!` or `macro`). Macro(&'hir ast::MacroDef, MacroKind), /// A module. Mod(&'hir Mod<'hir>), /// An external module, e.g. `extern { .. }`. ForeignMod { abi: Abi, items: &'hir [ForeignItemRef] }, /// Module-level inline assembly (from `global_asm!`). GlobalAsm(&'hir InlineAsm<'hir>), /// A type alias, e.g., `type Foo = Bar`. TyAlias(&'hir Ty<'hir>, &'hir Generics<'hir>), /// An opaque `impl Trait` type alias, e.g., `type Foo = impl Bar;`. OpaqueTy(&'hir OpaqueTy<'hir>), /// An enum definition, e.g., `enum Foo {C, D}`. Enum(EnumDef<'hir>, &'hir Generics<'hir>), /// A struct definition, e.g., `struct Foo {x: A}`. Struct(VariantData<'hir>, &'hir Generics<'hir>), /// A union definition, e.g., `union Foo {x: A, y: B}`. Union(VariantData<'hir>, &'hir Generics<'hir>), /// A trait definition. Trait(IsAuto, Safety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]), /// A trait alias. TraitAlias(&'hir Generics<'hir>, GenericBounds<'hir>), /// An implementation, e.g., `impl Trait for Foo { .. }`. Impl(&'hir Impl<'hir>), } /// Represents an impl block declaration. /// /// E.g., `impl $Type { .. }` or `impl $Trait for $Type { .. }` /// Refer to [`ImplItem`] for an associated item within an impl block. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct Impl<'hir> { pub constness: Constness, pub safety: Safety, pub polarity: ImplPolarity, pub defaultness: Defaultness, // We do not put a `Span` in `Defaultness` because it breaks foreign crate metadata // decoding as `Span`s cannot be decoded when a `Session` is not available. pub defaultness_span: Option, pub generics: &'hir Generics<'hir>, /// The trait being implemented, if any. pub of_trait: Option>, pub self_ty: &'hir Ty<'hir>, pub items: &'hir [ImplItemRef], } impl ItemKind<'_> { pub fn generics(&self) -> Option<&Generics<'_>> { Some(match *self { ItemKind::Fn(_, ref generics, _) | ItemKind::TyAlias(_, ref generics) | ItemKind::Const(_, ref generics, _) | ItemKind::OpaqueTy(OpaqueTy { ref generics, .. }) | ItemKind::Enum(_, ref generics) | ItemKind::Struct(_, ref generics) | ItemKind::Union(_, ref generics) | ItemKind::Trait(_, _, ref generics, _, _) | ItemKind::TraitAlias(ref generics, _) | ItemKind::Impl(Impl { ref generics, .. }) => generics, _ => return None, }) } pub fn descr(&self) -> &'static str { match self { ItemKind::ExternCrate(..) => "extern crate", ItemKind::Use(..) => "`use` import", ItemKind::Static(..) => "static item", ItemKind::Const(..) => "constant item", ItemKind::Fn(..) => "function", ItemKind::Macro(..) => "macro", ItemKind::Mod(..) => "module", ItemKind::ForeignMod { .. } => "extern block", ItemKind::GlobalAsm(..) => "global asm item", ItemKind::TyAlias(..) => "type alias", ItemKind::OpaqueTy(..) => "opaque type", ItemKind::Enum(..) => "enum", ItemKind::Struct(..) => "struct", ItemKind::Union(..) => "union", ItemKind::Trait(..) => "trait", ItemKind::TraitAlias(..) => "trait alias", ItemKind::Impl(..) => "implementation", } } } /// A reference from an trait to one of its associated items. This /// contains the item's id, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct TraitItemRef { pub id: TraitItemId, pub ident: Ident, pub kind: AssocItemKind, pub span: Span, } /// A reference from an impl to one of its associated items. This /// contains the item's ID, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct ImplItemRef { pub id: ImplItemId, pub ident: Ident, pub kind: AssocItemKind, pub span: Span, /// When we are in a trait impl, link to the trait-item's id. pub trait_item_def_id: Option, } #[derive(Copy, Clone, PartialEq, Debug, HashStable_Generic)] pub enum AssocItemKind { Const, Fn { has_self: bool }, Type, } // The bodies for items are stored "out of line", in a separate // hashmap in the `Crate`. Here we just record the hir-id of the item // so it can fetched later. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)] pub struct ForeignItemId { pub owner_id: OwnerId, } impl ForeignItemId { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } } /// A reference from a foreign block to one of its items. This /// contains the item's ID, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct ForeignItemRef { pub id: ForeignItemId, pub ident: Ident, pub span: Span, } #[derive(Debug, Clone, Copy, HashStable_Generic)] pub struct ForeignItem<'hir> { pub ident: Ident, pub kind: ForeignItemKind<'hir>, pub owner_id: OwnerId, pub span: Span, pub vis_span: Span, } impl ForeignItem<'_> { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } pub fn foreign_item_id(&self) -> ForeignItemId { ForeignItemId { owner_id: self.owner_id } } } /// An item within an `extern` block. #[derive(Debug, Clone, Copy, HashStable_Generic)] pub enum ForeignItemKind<'hir> { /// A foreign function. Fn(&'hir FnDecl<'hir>, &'hir [Ident], &'hir Generics<'hir>, Safety), /// A foreign static item (`static ext: u8`). Static(&'hir Ty<'hir>, Mutability, Safety), /// A foreign type. Type, } /// A variable captured by a closure. #[derive(Debug, Copy, Clone, HashStable_Generic)] pub struct Upvar { /// First span where it is accessed (there can be multiple). pub span: Span, } // The TraitCandidate's import_ids is empty if the trait is defined in the same module, and // has length > 0 if the trait is found through an chain of imports, starting with the // import/use statement in the scope where the trait is used. #[derive(Debug, Clone, HashStable_Generic)] pub struct TraitCandidate { pub def_id: DefId, pub import_ids: SmallVec<[LocalDefId; 1]>, } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum OwnerNode<'hir> { Item(&'hir Item<'hir>), ForeignItem(&'hir ForeignItem<'hir>), TraitItem(&'hir TraitItem<'hir>), ImplItem(&'hir ImplItem<'hir>), Crate(&'hir Mod<'hir>), Synthetic, } impl<'hir> OwnerNode<'hir> { pub fn ident(&self) -> Option { match self { OwnerNode::Item(Item { ident, .. }) | OwnerNode::ForeignItem(ForeignItem { ident, .. }) | OwnerNode::ImplItem(ImplItem { ident, .. }) | OwnerNode::TraitItem(TraitItem { ident, .. }) => Some(*ident), OwnerNode::Crate(..) | OwnerNode::Synthetic => None, } } pub fn span(&self) -> Span { match self { OwnerNode::Item(Item { span, .. }) | OwnerNode::ForeignItem(ForeignItem { span, .. }) | OwnerNode::ImplItem(ImplItem { span, .. }) | OwnerNode::TraitItem(TraitItem { span, .. }) => *span, OwnerNode::Crate(Mod { spans: ModSpans { inner_span, .. }, .. }) => *inner_span, OwnerNode::Synthetic => unreachable!(), } } pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> { match self { OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | OwnerNode::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig), _ => None, } } pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> { match self { OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | OwnerNode::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl), OwnerNode::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _, _), .. }) => Some(fn_decl), _ => None, } } pub fn body_id(&self) -> Option { match self { OwnerNode::Item(Item { kind: ItemKind::Static(_, _, body) | ItemKind::Const(_, _, body) | ItemKind::Fn(_, _, body), .. }) | OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(_, TraitFn::Provided(body)) | TraitItemKind::Const(_, Some(body)), .. }) | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(_, body) | ImplItemKind::Const(_, body), .. }) => Some(*body), _ => None, } } pub fn generics(self) -> Option<&'hir Generics<'hir>> { Node::generics(self.into()) } pub fn def_id(self) -> OwnerId { match self { OwnerNode::Item(Item { owner_id, .. }) | OwnerNode::TraitItem(TraitItem { owner_id, .. }) | OwnerNode::ImplItem(ImplItem { owner_id, .. }) | OwnerNode::ForeignItem(ForeignItem { owner_id, .. }) => *owner_id, OwnerNode::Crate(..) => crate::CRATE_HIR_ID.owner, OwnerNode::Synthetic => unreachable!(), } } expect_methods_self! { expect_item, &'hir Item<'hir>, OwnerNode::Item(n), n; expect_foreign_item, &'hir ForeignItem<'hir>, OwnerNode::ForeignItem(n), n; expect_impl_item, &'hir ImplItem<'hir>, OwnerNode::ImplItem(n), n; expect_trait_item, &'hir TraitItem<'hir>, OwnerNode::TraitItem(n), n; } } impl<'hir> Into> for &'hir Item<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::Item(self) } } impl<'hir> Into> for &'hir ForeignItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::ForeignItem(self) } } impl<'hir> Into> for &'hir ImplItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::ImplItem(self) } } impl<'hir> Into> for &'hir TraitItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::TraitItem(self) } } impl<'hir> Into> for OwnerNode<'hir> { fn into(self) -> Node<'hir> { match self { OwnerNode::Item(n) => Node::Item(n), OwnerNode::ForeignItem(n) => Node::ForeignItem(n), OwnerNode::ImplItem(n) => Node::ImplItem(n), OwnerNode::TraitItem(n) => Node::TraitItem(n), OwnerNode::Crate(n) => Node::Crate(n), OwnerNode::Synthetic => Node::Synthetic, } } } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum Node<'hir> { Param(&'hir Param<'hir>), Item(&'hir Item<'hir>), ForeignItem(&'hir ForeignItem<'hir>), TraitItem(&'hir TraitItem<'hir>), ImplItem(&'hir ImplItem<'hir>), Variant(&'hir Variant<'hir>), Field(&'hir FieldDef<'hir>), AnonConst(&'hir AnonConst), ConstBlock(&'hir ConstBlock), Expr(&'hir Expr<'hir>), ExprField(&'hir ExprField<'hir>), Stmt(&'hir Stmt<'hir>), PathSegment(&'hir PathSegment<'hir>), Ty(&'hir Ty<'hir>), AssocItemConstraint(&'hir AssocItemConstraint<'hir>), TraitRef(&'hir TraitRef<'hir>), Pat(&'hir Pat<'hir>), PatField(&'hir PatField<'hir>), Arm(&'hir Arm<'hir>), Block(&'hir Block<'hir>), LetStmt(&'hir LetStmt<'hir>), /// `Ctor` refers to the constructor of an enum variant or struct. Only tuple or unit variants /// with synthesized constructors. Ctor(&'hir VariantData<'hir>), Lifetime(&'hir Lifetime), GenericParam(&'hir GenericParam<'hir>), Crate(&'hir Mod<'hir>), Infer(&'hir InferArg), WhereBoundPredicate(&'hir WhereBoundPredicate<'hir>), // FIXME: Merge into `Node::Infer`. ArrayLenInfer(&'hir InferArg), PreciseCapturingNonLifetimeArg(&'hir PreciseCapturingNonLifetimeArg), // Created by query feeding Synthetic, Err(Span), } impl<'hir> Node<'hir> { /// Get the identifier of this `Node`, if applicable. /// /// # Edge cases /// /// Calling `.ident()` on a [`Node::Ctor`] will return `None` /// because `Ctor`s do not have identifiers themselves. /// Instead, call `.ident()` on the parent struct/variant, like so: /// /// ```ignore (illustrative) /// ctor /// .ctor_hir_id() /// .map(|ctor_id| tcx.parent_hir_node(ctor_id)) /// .and_then(|parent| parent.ident()) /// ``` pub fn ident(&self) -> Option { match self { Node::TraitItem(TraitItem { ident, .. }) | Node::ImplItem(ImplItem { ident, .. }) | Node::ForeignItem(ForeignItem { ident, .. }) | Node::Field(FieldDef { ident, .. }) | Node::Variant(Variant { ident, .. }) | Node::Item(Item { ident, .. }) | Node::PathSegment(PathSegment { ident, .. }) => Some(*ident), Node::Lifetime(lt) => Some(lt.ident), Node::GenericParam(p) => Some(p.name.ident()), Node::AssocItemConstraint(c) => Some(c.ident), Node::PatField(f) => Some(f.ident), Node::ExprField(f) => Some(f.ident), Node::PreciseCapturingNonLifetimeArg(a) => Some(a.ident), Node::Param(..) | Node::AnonConst(..) | Node::ConstBlock(..) | Node::Expr(..) | Node::Stmt(..) | Node::Block(..) | Node::Ctor(..) | Node::Pat(..) | Node::Arm(..) | Node::LetStmt(..) | Node::Crate(..) | Node::Ty(..) | Node::TraitRef(..) | Node::Infer(..) | Node::WhereBoundPredicate(..) | Node::ArrayLenInfer(..) | Node::Synthetic | Node::Err(..) => None, } } pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> { match self { Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl), Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl, .. }), .. }) | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _, _), .. }) => Some(fn_decl), _ => None, } } /// Get a `hir::Impl` if the node is an impl block for the given `trait_def_id`. pub fn impl_block_of_trait(self, trait_def_id: DefId) -> Option<&'hir Impl<'hir>> { match self { Node::Item(Item { kind: ItemKind::Impl(impl_block), .. }) if impl_block .of_trait .and_then(|trait_ref| trait_ref.trait_def_id()) .is_some_and(|trait_id| trait_id == trait_def_id) => { Some(impl_block) } _ => None, } } pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> { match self { Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig), _ => None, } } /// Get the type for constants, assoc types, type aliases and statics. pub fn ty(self) -> Option<&'hir Ty<'hir>> { match self { Node::Item(it) => match it.kind { ItemKind::TyAlias(ty, _) | ItemKind::Static(ty, _, _) | ItemKind::Const(ty, _, _) => Some(ty), ItemKind::Impl(impl_item) => Some(&impl_item.self_ty), _ => None, }, Node::TraitItem(it) => match it.kind { TraitItemKind::Const(ty, _) => Some(ty), TraitItemKind::Type(_, ty) => ty, _ => None, }, Node::ImplItem(it) => match it.kind { ImplItemKind::Const(ty, _) => Some(ty), ImplItemKind::Type(ty) => Some(ty), _ => None, }, _ => None, } } pub fn alias_ty(self) -> Option<&'hir Ty<'hir>> { match self { Node::Item(Item { kind: ItemKind::TyAlias(ty, ..), .. }) => Some(ty), _ => None, } } #[inline] pub fn associated_body(&self) -> Option<(LocalDefId, BodyId)> { match self { Node::Item(Item { owner_id, kind: ItemKind::Const(_, _, body) | ItemKind::Static(.., body) | ItemKind::Fn(.., body), .. }) | Node::TraitItem(TraitItem { owner_id, kind: TraitItemKind::Const(_, Some(body)) | TraitItemKind::Fn(_, TraitFn::Provided(body)), .. }) | Node::ImplItem(ImplItem { owner_id, kind: ImplItemKind::Const(_, body) | ImplItemKind::Fn(_, body), .. }) => Some((owner_id.def_id, *body)), Node::Expr(Expr { kind: ExprKind::Closure(Closure { def_id, body, .. }), .. }) => { Some((*def_id, *body)) } Node::AnonConst(constant) => Some((constant.def_id, constant.body)), Node::ConstBlock(constant) => Some((constant.def_id, constant.body)), _ => None, } } pub fn body_id(&self) -> Option { Some(self.associated_body()?.1) } pub fn generics(self) -> Option<&'hir Generics<'hir>> { match self { Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(_, _, generics, _), .. }) | Node::TraitItem(TraitItem { generics, .. }) | Node::ImplItem(ImplItem { generics, .. }) => Some(generics), Node::Item(item) => item.kind.generics(), _ => None, } } pub fn as_owner(self) -> Option> { match self { Node::Item(i) => Some(OwnerNode::Item(i)), Node::ForeignItem(i) => Some(OwnerNode::ForeignItem(i)), Node::TraitItem(i) => Some(OwnerNode::TraitItem(i)), Node::ImplItem(i) => Some(OwnerNode::ImplItem(i)), Node::Crate(i) => Some(OwnerNode::Crate(i)), Node::Synthetic => Some(OwnerNode::Synthetic), _ => None, } } pub fn fn_kind(self) -> Option> { match self { Node::Item(i) => match i.kind { ItemKind::Fn(ref sig, ref generics, _) => { Some(FnKind::ItemFn(i.ident, generics, sig.header)) } _ => None, }, Node::TraitItem(ti) => match ti.kind { TraitItemKind::Fn(ref sig, TraitFn::Provided(_)) => { Some(FnKind::Method(ti.ident, sig)) } _ => None, }, Node::ImplItem(ii) => match ii.kind { ImplItemKind::Fn(ref sig, _) => Some(FnKind::Method(ii.ident, sig)), _ => None, }, Node::Expr(e) => match e.kind { ExprKind::Closure { .. } => Some(FnKind::Closure), _ => None, }, _ => None, } } expect_methods_self! { expect_param, &'hir Param<'hir>, Node::Param(n), n; expect_item, &'hir Item<'hir>, Node::Item(n), n; expect_foreign_item, &'hir ForeignItem<'hir>, Node::ForeignItem(n), n; expect_trait_item, &'hir TraitItem<'hir>, Node::TraitItem(n), n; expect_impl_item, &'hir ImplItem<'hir>, Node::ImplItem(n), n; expect_variant, &'hir Variant<'hir>, Node::Variant(n), n; expect_field, &'hir FieldDef<'hir>, Node::Field(n), n; expect_anon_const, &'hir AnonConst, Node::AnonConst(n), n; expect_inline_const, &'hir ConstBlock, Node::ConstBlock(n), n; expect_expr, &'hir Expr<'hir>, Node::Expr(n), n; expect_expr_field, &'hir ExprField<'hir>, Node::ExprField(n), n; expect_stmt, &'hir Stmt<'hir>, Node::Stmt(n), n; expect_path_segment, &'hir PathSegment<'hir>, Node::PathSegment(n), n; expect_ty, &'hir Ty<'hir>, Node::Ty(n), n; expect_assoc_item_constraint, &'hir AssocItemConstraint<'hir>, Node::AssocItemConstraint(n), n; expect_trait_ref, &'hir TraitRef<'hir>, Node::TraitRef(n), n; expect_pat, &'hir Pat<'hir>, Node::Pat(n), n; expect_pat_field, &'hir PatField<'hir>, Node::PatField(n), n; expect_arm, &'hir Arm<'hir>, Node::Arm(n), n; expect_block, &'hir Block<'hir>, Node::Block(n), n; expect_let_stmt, &'hir LetStmt<'hir>, Node::LetStmt(n), n; expect_ctor, &'hir VariantData<'hir>, Node::Ctor(n), n; expect_lifetime, &'hir Lifetime, Node::Lifetime(n), n; expect_generic_param, &'hir GenericParam<'hir>, Node::GenericParam(n), n; expect_crate, &'hir Mod<'hir>, Node::Crate(n), n; expect_infer, &'hir InferArg, Node::Infer(n), n; expect_closure, &'hir Closure<'hir>, Node::Expr(Expr { kind: ExprKind::Closure(n), .. }), n; } } // Some nodes are used a lot. Make sure they don't unintentionally get bigger. #[cfg(target_pointer_width = "64")] mod size_asserts { use super::*; use rustc_data_structures::static_assert_size; // tidy-alphabetical-start static_assert_size!(Block<'_>, 48); static_assert_size!(Body<'_>, 24); static_assert_size!(Expr<'_>, 64); static_assert_size!(ExprKind<'_>, 48); static_assert_size!(FnDecl<'_>, 40); static_assert_size!(ForeignItem<'_>, 72); static_assert_size!(ForeignItemKind<'_>, 40); static_assert_size!(GenericArg<'_>, 24); static_assert_size!(GenericBound<'_>, 48); static_assert_size!(Generics<'_>, 56); static_assert_size!(Impl<'_>, 80); static_assert_size!(ImplItem<'_>, 88); static_assert_size!(ImplItemKind<'_>, 40); static_assert_size!(Item<'_>, 88); static_assert_size!(ItemKind<'_>, 56); static_assert_size!(LetStmt<'_>, 64); static_assert_size!(Param<'_>, 32); static_assert_size!(Pat<'_>, 72); static_assert_size!(Path<'_>, 40); static_assert_size!(PathSegment<'_>, 48); static_assert_size!(PatKind<'_>, 48); static_assert_size!(QPath<'_>, 24); static_assert_size!(Res, 12); static_assert_size!(Stmt<'_>, 32); static_assert_size!(StmtKind<'_>, 16); static_assert_size!(TraitItem<'_>, 88); static_assert_size!(TraitItemKind<'_>, 48); static_assert_size!(Ty<'_>, 48); static_assert_size!(TyKind<'_>, 32); // tidy-alphabetical-end } fn debug_fn(f: impl Fn(&mut fmt::Formatter<'_>) -> fmt::Result) -> impl fmt::Debug { struct DebugFn(F); impl) -> fmt::Result> fmt::Debug for DebugFn { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { (self.0)(fmt) } } DebugFn(f) }