// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef}; use base; use build::AllocaFcx; use common::{type_is_fat_ptr, BlockAndBuilder, C_uint}; use context::CrateContext; use cabi_x86; use cabi_x86_64; use cabi_x86_win64; use cabi_arm; use cabi_aarch64; use cabi_powerpc; use cabi_powerpc64; use cabi_mips; use cabi_asmjs; use machine::{llalign_of_min, llsize_of, llsize_of_real, llsize_of_store}; use type_::Type; use type_of; use rustc::hir; use rustc::ty::{self, Ty}; use libc::c_uint; use std::cmp; pub use syntax::abi::Abi; pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA}; #[derive(Clone, Copy, PartialEq, Debug)] enum ArgKind { /// Pass the argument directly using the normal converted /// LLVM type or by coercing to another specified type Direct, /// Pass the argument indirectly via a hidden pointer Indirect, /// Ignore the argument (useful for empty struct) Ignore, } /// Information about how a specific C type /// should be passed to or returned from a function /// /// This is borrowed from clang's ABIInfo.h #[derive(Clone, Copy, Debug)] pub struct ArgType { kind: ArgKind, /// Original LLVM type pub original_ty: Type, /// Sizing LLVM type (pointers are opaque). /// Unlike original_ty, this is guaranteed to be complete. /// /// For example, while we're computing the function pointer type in /// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`. /// The field type will likely end up being `void(%Foo)*`, but we cannot /// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`, /// until `%Foo` is completed by having all of its field types inserted, /// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers /// with opaque ones, resulting in `{i8*}` for `Foo`. /// ABI-specific logic can then look at the size, alignment and fields of /// `{i8*}` in order to determine how the argument will be passed. /// Only later will `original_ty` aka `%Foo` be used in the LLVM function /// pointer type, without ever having introspected it. pub ty: Type, /// Signedness for integer types, None for other types pub signedness: Option, /// Coerced LLVM Type pub cast: Option, /// Dummy argument, which is emitted before the real argument pub pad: Option, /// LLVM attributes of argument pub attrs: llvm::Attributes } impl ArgType { fn new(original_ty: Type, ty: Type) -> ArgType { ArgType { kind: ArgKind::Direct, original_ty: original_ty, ty: ty, signedness: None, cast: None, pad: None, attrs: llvm::Attributes::default() } } pub fn make_indirect(&mut self, ccx: &CrateContext) { assert_eq!(self.kind, ArgKind::Direct); // Wipe old attributes, likely not valid through indirection. self.attrs = llvm::Attributes::default(); let llarg_sz = llsize_of_real(ccx, self.ty); // For non-immediate arguments the callee gets its own copy of // the value on the stack, so there are no aliases. It's also // program-invisible so can't possibly capture self.attrs.set(llvm::Attribute::NoAlias) .set(llvm::Attribute::NoCapture) .set_dereferenceable(llarg_sz); self.kind = ArgKind::Indirect; } pub fn ignore(&mut self) { assert_eq!(self.kind, ArgKind::Direct); self.kind = ArgKind::Ignore; } pub fn extend_integer_width_to(&mut self, bits: u64) { // Only integers have signedness if let Some(signed) = self.signedness { if self.ty.int_width() < bits { self.attrs.set(if signed { llvm::Attribute::SExt } else { llvm::Attribute::ZExt }); } } } pub fn is_indirect(&self) -> bool { self.kind == ArgKind::Indirect } pub fn is_ignore(&self) -> bool { self.kind == ArgKind::Ignore } /// Get the LLVM type for an lvalue of the original Rust type of /// this argument/return, i.e. the result of `type_of::type_of`. pub fn memory_ty(&self, ccx: &CrateContext) -> Type { if self.original_ty == Type::i1(ccx) { Type::i8(ccx) } else { self.original_ty } } /// Store a direct/indirect value described by this ArgType into a /// lvalue for the original Rust type of this argument/return. /// Can be used for both storing formal arguments into Rust variables /// or results of call/invoke instructions into their destinations. pub fn store(&self, bcx: &BlockAndBuilder, mut val: ValueRef, dst: ValueRef) { if self.is_ignore() { return; } let ccx = bcx.ccx(); if self.is_indirect() { let llsz = llsize_of(ccx, self.ty); let llalign = llalign_of_min(ccx, self.ty); base::call_memcpy(bcx, dst, val, llsz, llalign as u32); } else if let Some(ty) = self.cast { // FIXME(eddyb): Figure out when the simpler Store is safe, clang // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}. let can_store_through_cast_ptr = false; if can_store_through_cast_ptr { let cast_dst = bcx.pointercast(dst, ty.ptr_to()); let store = bcx.store(val, cast_dst); let llalign = llalign_of_min(ccx, self.ty); unsafe { llvm::LLVMSetAlignment(store, llalign); } } else { // The actual return type is a struct, but the ABI // adaptation code has cast it into some scalar type. The // code that follows is the only reliable way I have // found to do a transform like i64 -> {i32,i32}. // Basically we dump the data onto the stack then memcpy it. // // Other approaches I tried: // - Casting rust ret pointer to the foreign type and using Store // is (a) unsafe if size of foreign type > size of rust type and // (b) runs afoul of strict aliasing rules, yielding invalid // assembly under -O (specifically, the store gets removed). // - Truncating foreign type to correct integral type and then // bitcasting to the struct type yields invalid cast errors. // We instead thus allocate some scratch space... let llscratch = AllocaFcx(bcx.fcx(), ty, "abi_cast"); base::Lifetime::Start.call(bcx, llscratch); // ...where we first store the value... bcx.store(val, llscratch); // ...and then memcpy it to the intended destination. base::call_memcpy(bcx, bcx.pointercast(dst, Type::i8p(ccx)), bcx.pointercast(llscratch, Type::i8p(ccx)), C_uint(ccx, llsize_of_store(ccx, self.ty)), cmp::min(llalign_of_min(ccx, self.ty), llalign_of_min(ccx, ty)) as u32); base::Lifetime::End.call(bcx, llscratch); } } else { if self.original_ty == Type::i1(ccx) { val = bcx.zext(val, Type::i8(ccx)); } bcx.store(val, dst); } } pub fn store_fn_arg(&self, bcx: &BlockAndBuilder, idx: &mut usize, dst: ValueRef) { if self.pad.is_some() { *idx += 1; } if self.is_ignore() { return; } let val = llvm::get_param(bcx.fcx().llfn, *idx as c_uint); *idx += 1; self.store(bcx, val, dst); } } /// Metadata describing how the arguments to a native function /// should be passed in order to respect the native ABI. /// /// I will do my best to describe this structure, but these /// comments are reverse-engineered and may be inaccurate. -NDM #[derive(Clone)] pub struct FnType { /// The LLVM types of each argument. pub args: Vec, /// LLVM return type. pub ret: ArgType, pub variadic: bool, pub cconv: llvm::CallConv } impl FnType { pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, abi: Abi, sig: &ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType { let mut fn_ty = FnType::unadjusted(ccx, abi, sig, extra_args); fn_ty.adjust_for_abi(ccx, abi, sig); fn_ty } pub fn unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, abi: Abi, sig: &ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType { use self::Abi::*; let cconv = match ccx.sess().target.target.adjust_abi(abi) { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => llvm::CCallConv, // It's the ABI's job to select this, not us. System => bug!("system abi should be selected elsewhere"), Stdcall => llvm::X86StdcallCallConv, Fastcall => llvm::X86FastcallCallConv, Vectorcall => llvm::X86_VectorCall, C => llvm::CCallConv, Win64 => llvm::X86_64_Win64, // These API constants ought to be more specific... Cdecl => llvm::CCallConv, Aapcs => llvm::CCallConv, }; let mut inputs = &sig.inputs[..]; let extra_args = if abi == RustCall { assert!(!sig.variadic && extra_args.is_empty()); match inputs[inputs.len() - 1].sty { ty::TyTuple(ref tupled_arguments) => { inputs = &inputs[..inputs.len() - 1]; &tupled_arguments[..] } _ => { bug!("argument to function with \"rust-call\" ABI \ is not a tuple"); } } } else { assert!(sig.variadic || extra_args.is_empty()); extra_args }; let target = &ccx.sess().target.target; let win_x64_gnu = target.target_os == "windows" && target.arch == "x86_64" && target.target_env == "gnu"; let rust_abi = match abi { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true, _ => false }; let arg_of = |ty: Ty<'tcx>, is_return: bool| { if ty.is_bool() { let llty = Type::i1(ccx); let mut arg = ArgType::new(llty, llty); arg.attrs.set(llvm::Attribute::ZExt); arg } else { let mut arg = ArgType::new(type_of::type_of(ccx, ty), type_of::sizing_type_of(ccx, ty)); if ty.is_integral() { arg.signedness = Some(ty.is_signed()); } if llsize_of_real(ccx, arg.ty) == 0 { // For some forsaken reason, x86_64-pc-windows-gnu // doesn't ignore zero-sized struct arguments. if is_return || rust_abi || !win_x64_gnu { arg.ignore(); } } arg } }; let ret_ty = sig.output; let mut ret = arg_of(ret_ty, true); if !type_is_fat_ptr(ccx.tcx(), ret_ty) { // The `noalias` attribute on the return value is useful to a // function ptr caller. if let ty::TyBox(_) = ret_ty.sty { // `Box` pointer return values never alias because ownership // is transferred ret.attrs.set(llvm::Attribute::NoAlias); } // We can also mark the return value as `dereferenceable` in certain cases match ret_ty.sty { // These are not really pointers but pairs, (pointer, len) ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { let llty = type_of::sizing_type_of(ccx, ty); let llsz = llsize_of_real(ccx, llty); ret.attrs.set_dereferenceable(llsz); } _ => {} } } let mut args = Vec::with_capacity(inputs.len() + extra_args.len()); // Handle safe Rust thin and fat pointers. let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty { // `Box` pointer parameters never alias because ownership is transferred ty::TyBox(inner) => { arg.attrs.set(llvm::Attribute::NoAlias); Some(inner) } ty::TyRef(b, mt) => { use rustc::ty::{BrAnon, ReLateBound}; // `&mut` pointer parameters never alias other parameters, or mutable global data // // `&T` where `T` contains no `UnsafeCell` is immutable, and can be marked as // both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely // on memory dependencies rather than pointer equality let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe(); if mt.mutbl != hir::MutMutable && !interior_unsafe { arg.attrs.set(llvm::Attribute::NoAlias); } if mt.mutbl == hir::MutImmutable && !interior_unsafe { arg.attrs.set(llvm::Attribute::ReadOnly); } // When a reference in an argument has no named lifetime, it's // impossible for that reference to escape this function // (returned or stored beyond the call by a closure). if let ReLateBound(_, BrAnon(_)) = *b { arg.attrs.set(llvm::Attribute::NoCapture); } Some(mt.ty) } _ => None }; for ty in inputs.iter().chain(extra_args.iter()) { let mut arg = arg_of(ty, false); if type_is_fat_ptr(ccx.tcx(), ty) { let original_tys = arg.original_ty.field_types(); let sizing_tys = arg.ty.field_types(); assert_eq!((original_tys.len(), sizing_tys.len()), (2, 2)); let mut data = ArgType::new(original_tys[0], sizing_tys[0]); let mut info = ArgType::new(original_tys[1], sizing_tys[1]); if let Some(inner) = rust_ptr_attrs(ty, &mut data) { data.attrs.set(llvm::Attribute::NonNull); if ccx.tcx().struct_tail(inner).is_trait() { info.attrs.set(llvm::Attribute::NonNull); } } args.push(data); args.push(info); } else { if let Some(inner) = rust_ptr_attrs(ty, &mut arg) { let llty = type_of::sizing_type_of(ccx, inner); let llsz = llsize_of_real(ccx, llty); arg.attrs.set_dereferenceable(llsz); } args.push(arg); } } FnType { args: args, ret: ret, variadic: sig.variadic, cconv: cconv } } pub fn adjust_for_abi<'a, 'tcx>(&mut self, ccx: &CrateContext<'a, 'tcx>, abi: Abi, sig: &ty::FnSig<'tcx>) { if abi == Abi::Rust || abi == Abi::RustCall || abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic { let fixup = |arg: &mut ArgType| { let mut llty = arg.ty; // Replace newtypes with their inner-most type. while llty.kind() == llvm::TypeKind::Struct { let inner = llty.field_types(); if inner.len() != 1 { break; } llty = inner[0]; } if !llty.is_aggregate() { // Scalars and vectors, always immediate. if llty != arg.ty { // Needs a cast as we've unpacked a newtype. arg.cast = Some(llty); } return; } let size = llsize_of_real(ccx, llty); if size > llsize_of_real(ccx, ccx.int_type()) { arg.make_indirect(ccx); } else if size > 0 { // We want to pass small aggregates as immediates, but using // a LLVM aggregate type for this leads to bad optimizations, // so we pick an appropriately sized integer type instead. arg.cast = Some(Type::ix(ccx, size * 8)); } }; // Fat pointers are returned by-value. if !self.ret.is_ignore() { if !type_is_fat_ptr(ccx.tcx(), sig.output) { fixup(&mut self.ret); } } for arg in &mut self.args { if arg.is_ignore() { continue; } fixup(arg); } if self.ret.is_indirect() { self.ret.attrs.set(llvm::Attribute::StructRet); } return; } match &ccx.sess().target.target.arch[..] { "x86" => cabi_x86::compute_abi_info(ccx, self), "x86_64" => if ccx.sess().target.target.options.is_like_windows { cabi_x86_win64::compute_abi_info(ccx, self); } else { cabi_x86_64::compute_abi_info(ccx, self); }, "aarch64" => cabi_aarch64::compute_abi_info(ccx, self), "arm" => { let flavor = if ccx.sess().target.target.target_os == "ios" { cabi_arm::Flavor::Ios } else { cabi_arm::Flavor::General }; cabi_arm::compute_abi_info(ccx, self, flavor); }, "mips" => cabi_mips::compute_abi_info(ccx, self), "powerpc" => cabi_powerpc::compute_abi_info(ccx, self), "powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self), "asmjs" => cabi_asmjs::compute_abi_info(ccx, self), a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a)) } if self.ret.is_indirect() { self.ret.attrs.set(llvm::Attribute::StructRet); } } pub fn llvm_type(&self, ccx: &CrateContext) -> Type { let mut llargument_tys = Vec::new(); let llreturn_ty = if self.ret.is_ignore() { Type::void(ccx) } else if self.ret.is_indirect() { llargument_tys.push(self.ret.original_ty.ptr_to()); Type::void(ccx) } else { self.ret.cast.unwrap_or(self.ret.original_ty) }; for arg in &self.args { if arg.is_ignore() { continue; } // add padding if let Some(ty) = arg.pad { llargument_tys.push(ty); } let llarg_ty = if arg.is_indirect() { arg.original_ty.ptr_to() } else { arg.cast.unwrap_or(arg.original_ty) }; llargument_tys.push(llarg_ty); } if self.variadic { Type::variadic_func(&llargument_tys, &llreturn_ty) } else { Type::func(&llargument_tys, &llreturn_ty) } } pub fn apply_attrs_llfn(&self, llfn: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); } i += 1; for arg in &self.args { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); i += 1; } } } pub fn apply_attrs_callsite(&self, callsite: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); } i += 1; for arg in &self.args { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); i += 1; } } if self.cconv != llvm::CCallConv { llvm::SetInstructionCallConv(callsite, self.cconv); } } }