// This file contains various trait resolution methods used by codegen. // They all assume regions can be erased and monomorphic types. It // seems likely that they should eventually be merged into more // general routines. use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::bug; use rustc_middle::traits::CodegenObligationError; use rustc_middle::ty::{self, PseudoCanonicalInput, TyCtxt, TypeVisitableExt}; use rustc_trait_selection::error_reporting::InferCtxtErrorExt; use rustc_trait_selection::traits::{ ImplSource, Obligation, ObligationCause, ObligationCtxt, ScrubbedTraitError, SelectionContext, Unimplemented, }; use tracing::debug; /// Attempts to resolve an obligation to an `ImplSource`. The result is /// a shallow `ImplSource` resolution, meaning that we do not /// (necessarily) resolve all nested obligations on the impl. Note /// that type check should guarantee to us that all nested /// obligations *could be* resolved if we wanted to. /// /// This also expects that `trait_ref` is fully normalized. pub(crate) fn codegen_select_candidate<'tcx>( tcx: TyCtxt<'tcx>, key: PseudoCanonicalInput<'tcx, ty::TraitRef<'tcx>>, ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { let PseudoCanonicalInput { typing_env, value: trait_ref } = key; // We expect the input to be fully normalized. debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(typing_env, trait_ref)); // Do the initial selection for the obligation. This yields the // shallow result we are looking for -- that is, what specific impl. let (infcx, param_env) = tcx.infer_ctxt().ignoring_regions().build_with_typing_env(typing_env); let mut selcx = SelectionContext::new(&infcx); let obligation_cause = ObligationCause::dummy(); let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref); let selection = match selcx.select(&obligation) { Ok(Some(selection)) => selection, Ok(None) => return Err(CodegenObligationError::Ambiguity), Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented), Err(e) => { bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref) } }; debug!(?selection); // Currently, we use a fulfillment context to completely resolve // all nested obligations. This is because they can inform the // inference of the impl's type parameters. // FIXME(-Znext-solver): Doesn't need diagnostics if new solver. let ocx = ObligationCtxt::new(&infcx); let impl_source = selection.map(|obligation| { ocx.register_obligation(obligation); }); // In principle, we only need to do this so long as `impl_source` // contains unbound type parameters. It could be a slight // optimization to stop iterating early. let errors = ocx.select_all_or_error(); if !errors.is_empty() { // `rustc_monomorphize::collector` assumes there are no type errors. // Cycle errors are the only post-monomorphization errors possible; emit them now so // `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization. for err in errors { if let ScrubbedTraitError::Cycle(cycle) = err { infcx.err_ctxt().report_overflow_obligation_cycle(&cycle); } } return Err(CodegenObligationError::Unimplemented); } let impl_source = infcx.resolve_vars_if_possible(impl_source); let impl_source = tcx.erase_regions(impl_source); if impl_source.has_non_region_infer() { // Unused generic types or consts on an impl get replaced with inference vars, // but never resolved, causing the return value of a query to contain inference // vars. We do not have a concept for this and will in fact ICE in stable hashing // of the return value. So bail out instead. let guar = match impl_source { ImplSource::UserDefined(impl_) => tcx.dcx().span_delayed_bug( tcx.def_span(impl_.impl_def_id), "this impl has unconstrained generic parameters", ), _ => unreachable!(), }; return Err(CodegenObligationError::UnconstrainedParam(guar)); } Ok(&*tcx.arena.alloc(impl_source)) }