//! The `Visitor` responsible for actually checking a `mir::Body` for invalid operations. use std::mem; use std::ops::Deref; use rustc_errors::{Diag, ErrorGuaranteed}; use rustc_hir::def_id::DefId; use rustc_hir::{self as hir, LangItem}; use rustc_index::bit_set::BitSet; use rustc_infer::infer::TyCtxtInferExt; use rustc_infer::traits::ObligationCause; use rustc_middle::mir::visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor}; use rustc_middle::mir::*; use rustc_middle::span_bug; use rustc_middle::ty::adjustment::PointerCoercion; use rustc_middle::ty::{self, Instance, InstanceKind, Ty, TyCtxt, TypeVisitableExt}; use rustc_mir_dataflow::Analysis; use rustc_span::{sym, Span, Symbol, DUMMY_SP}; use rustc_trait_selection::error_reporting::InferCtxtErrorExt; use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt}; use rustc_type_ir::visit::{TypeSuperVisitable, TypeVisitor}; use tracing::{debug, instrument, trace}; use super::ops::{self, NonConstOp, Status}; use super::qualifs::{self, HasMutInterior, NeedsDrop, NeedsNonConstDrop}; use super::resolver::FlowSensitiveAnalysis; use super::{ConstCx, Qualif}; use crate::const_eval::is_unstable_const_fn; use crate::errors::UnstableInStable; type QualifResults<'mir, 'tcx, Q> = rustc_mir_dataflow::ResultsCursor<'mir, 'tcx, FlowSensitiveAnalysis<'mir, 'mir, 'tcx, Q>>; #[derive(Default)] pub(crate) struct Qualifs<'mir, 'tcx> { has_mut_interior: Option>, needs_drop: Option>, needs_non_const_drop: Option>, } impl<'mir, 'tcx> Qualifs<'mir, 'tcx> { /// Returns `true` if `local` is `NeedsDrop` at the given `Location`. /// /// Only updates the cursor if absolutely necessary pub fn needs_drop( &mut self, ccx: &'mir ConstCx<'mir, 'tcx>, local: Local, location: Location, ) -> bool { let ty = ccx.body.local_decls[local].ty; // Peeking into opaque types causes cycles if the current function declares said opaque // type. Thus we avoid short circuiting on the type and instead run the more expensive // analysis that looks at the actual usage within this function if !ty.has_opaque_types() && !NeedsDrop::in_any_value_of_ty(ccx, ty) { return false; } let needs_drop = self.needs_drop.get_or_insert_with(|| { let ConstCx { tcx, body, .. } = *ccx; FlowSensitiveAnalysis::new(NeedsDrop, ccx) .into_engine(tcx, body) .iterate_to_fixpoint() .into_results_cursor(body) }); needs_drop.seek_before_primary_effect(location); needs_drop.get().contains(local) } /// Returns `true` if `local` is `NeedsNonConstDrop` at the given `Location`. /// /// Only updates the cursor if absolutely necessary pub fn needs_non_const_drop( &mut self, ccx: &'mir ConstCx<'mir, 'tcx>, local: Local, location: Location, ) -> bool { let ty = ccx.body.local_decls[local].ty; // Peeking into opaque types causes cycles if the current function declares said opaque // type. Thus we avoid short circuiting on the type and instead run the more expensive // analysis that looks at the actual usage within this function if !ty.has_opaque_types() && !NeedsNonConstDrop::in_any_value_of_ty(ccx, ty) { return false; } let needs_non_const_drop = self.needs_non_const_drop.get_or_insert_with(|| { let ConstCx { tcx, body, .. } = *ccx; FlowSensitiveAnalysis::new(NeedsNonConstDrop, ccx) .into_engine(tcx, body) .iterate_to_fixpoint() .into_results_cursor(body) }); needs_non_const_drop.seek_before_primary_effect(location); needs_non_const_drop.get().contains(local) } /// Returns `true` if `local` is `HasMutInterior` at the given `Location`. /// /// Only updates the cursor if absolutely necessary. pub fn has_mut_interior( &mut self, ccx: &'mir ConstCx<'mir, 'tcx>, local: Local, location: Location, ) -> bool { let ty = ccx.body.local_decls[local].ty; // Peeking into opaque types causes cycles if the current function declares said opaque // type. Thus we avoid short circuiting on the type and instead run the more expensive // analysis that looks at the actual usage within this function if !ty.has_opaque_types() && !HasMutInterior::in_any_value_of_ty(ccx, ty) { return false; } let has_mut_interior = self.has_mut_interior.get_or_insert_with(|| { let ConstCx { tcx, body, .. } = *ccx; FlowSensitiveAnalysis::new(HasMutInterior, ccx) .into_engine(tcx, body) .iterate_to_fixpoint() .into_results_cursor(body) }); has_mut_interior.seek_before_primary_effect(location); has_mut_interior.get().contains(local) } fn in_return_place( &mut self, ccx: &'mir ConstCx<'mir, 'tcx>, tainted_by_errors: Option, ) -> ConstQualifs { // FIXME(explicit_tail_calls): uhhhh I think we can return without return now, does it change anything // Find the `Return` terminator if one exists. // // If no `Return` terminator exists, this MIR is divergent. Just return the conservative // qualifs for the return type. let return_block = ccx .body .basic_blocks .iter_enumerated() .find(|(_, block)| matches!(block.terminator().kind, TerminatorKind::Return)) .map(|(bb, _)| bb); let Some(return_block) = return_block else { return qualifs::in_any_value_of_ty(ccx, ccx.body.return_ty(), tainted_by_errors); }; let return_loc = ccx.body.terminator_loc(return_block); ConstQualifs { needs_drop: self.needs_drop(ccx, RETURN_PLACE, return_loc), needs_non_const_drop: self.needs_non_const_drop(ccx, RETURN_PLACE, return_loc), has_mut_interior: self.has_mut_interior(ccx, RETURN_PLACE, return_loc), tainted_by_errors, } } } struct LocalReturnTyVisitor<'ck, 'mir, 'tcx> { kind: LocalKind, checker: &'ck mut Checker<'mir, 'tcx>, } impl<'ck, 'mir, 'tcx> TypeVisitor> for LocalReturnTyVisitor<'ck, 'mir, 'tcx> { fn visit_ty(&mut self, t: Ty<'tcx>) { match t.kind() { ty::FnPtr(_) => {} ty::Ref(_, _, hir::Mutability::Mut) => { self.checker.check_op(ops::mut_ref::MutRef(self.kind)); t.super_visit_with(self) } _ => t.super_visit_with(self), } } } pub struct Checker<'mir, 'tcx> { ccx: &'mir ConstCx<'mir, 'tcx>, qualifs: Qualifs<'mir, 'tcx>, /// The span of the current statement. span: Span, /// A set that stores for each local whether it has a `StorageDead` for it somewhere. local_has_storage_dead: Option>, error_emitted: Option, secondary_errors: Vec>, } impl<'mir, 'tcx> Deref for Checker<'mir, 'tcx> { type Target = ConstCx<'mir, 'tcx>; fn deref(&self) -> &Self::Target { self.ccx } } impl<'mir, 'tcx> Checker<'mir, 'tcx> { pub fn new(ccx: &'mir ConstCx<'mir, 'tcx>) -> Self { Checker { span: ccx.body.span, ccx, qualifs: Default::default(), local_has_storage_dead: None, error_emitted: None, secondary_errors: Vec::new(), } } pub fn check_body(&mut self) { let ConstCx { tcx, body, .. } = *self.ccx; let def_id = self.ccx.def_id(); // `async` functions cannot be `const fn`. This is checked during AST lowering, so there's // no need to emit duplicate errors here. if self.ccx.is_async() || body.coroutine.is_some() { tcx.dcx().span_delayed_bug(body.span, "`async` functions cannot be `const fn`"); return; } // The local type and predicate checks are not free and only relevant for `const fn`s. if self.const_kind() == hir::ConstContext::ConstFn { for (idx, local) in body.local_decls.iter_enumerated() { // Handle the return place below. if idx == RETURN_PLACE { continue; } self.span = local.source_info.span; self.check_local_or_return_ty(local.ty, idx); } // impl trait is gone in MIR, so check the return type of a const fn by its signature // instead of the type of the return place. self.span = body.local_decls[RETURN_PLACE].source_info.span; let return_ty = self.ccx.fn_sig().output(); self.check_local_or_return_ty(return_ty.skip_binder(), RETURN_PLACE); } if !tcx.has_attr(def_id, sym::rustc_do_not_const_check) { self.visit_body(body); } // If we got through const-checking without emitting any "primary" errors, emit any // "secondary" errors if they occurred. Otherwise, cancel the "secondary" errors. let secondary_errors = mem::take(&mut self.secondary_errors); if self.error_emitted.is_none() { for error in secondary_errors { self.error_emitted = Some(error.emit()); } } else { assert!(self.tcx.dcx().has_errors().is_some()); for error in secondary_errors { error.cancel(); } } } fn local_has_storage_dead(&mut self, local: Local) -> bool { let ccx = self.ccx; self.local_has_storage_dead .get_or_insert_with(|| { struct StorageDeads { locals: BitSet, } impl<'tcx> Visitor<'tcx> for StorageDeads { fn visit_statement(&mut self, stmt: &Statement<'tcx>, _: Location) { if let StatementKind::StorageDead(l) = stmt.kind { self.locals.insert(l); } } } let mut v = StorageDeads { locals: BitSet::new_empty(ccx.body.local_decls.len()) }; v.visit_body(ccx.body); v.locals }) .contains(local) } pub fn qualifs_in_return_place(&mut self) -> ConstQualifs { self.qualifs.in_return_place(self.ccx, self.error_emitted) } /// Emits an error if an expression cannot be evaluated in the current context. pub fn check_op(&mut self, op: impl NonConstOp<'tcx>) { self.check_op_spanned(op, self.span); } /// Emits an error at the given `span` if an expression cannot be evaluated in the current /// context. pub fn check_op_spanned>(&mut self, op: O, span: Span) { let gate = match op.status_in_item(self.ccx) { Status::Allowed => return, Status::Unstable(gate) if self.tcx.features().active(gate) => { let unstable_in_stable = self.ccx.is_const_stable_const_fn() && !super::rustc_allow_const_fn_unstable(self.tcx, self.def_id(), gate); if unstable_in_stable { emit_unstable_in_stable_error(self.ccx, span, gate); } return; } Status::Unstable(gate) => Some(gate), Status::Forbidden => None, }; if self.tcx.sess.opts.unstable_opts.unleash_the_miri_inside_of_you { self.tcx.sess.miri_unleashed_feature(span, gate); return; } let err = op.build_error(self.ccx, span); assert!(err.is_error()); match op.importance() { ops::DiagImportance::Primary => { let reported = err.emit(); self.error_emitted = Some(reported); } ops::DiagImportance::Secondary => self.secondary_errors.push(err), } } fn check_static(&mut self, def_id: DefId, span: Span) { if self.tcx.is_thread_local_static(def_id) { self.tcx.dcx().span_bug(span, "tls access is checked in `Rvalue::ThreadLocalRef`"); } if let Some(def_id) = def_id.as_local() && let Err(guar) = self.tcx.at(span).check_well_formed(hir::OwnerId { def_id }) { self.error_emitted = Some(guar); } self.check_op_spanned(ops::StaticAccess, span) } fn check_local_or_return_ty(&mut self, ty: Ty<'tcx>, local: Local) { let kind = self.body.local_kind(local); let mut visitor = LocalReturnTyVisitor { kind, checker: self }; visitor.visit_ty(ty); } fn check_mut_borrow(&mut self, place: &Place<'_>, kind: hir::BorrowKind) { match self.const_kind() { // In a const fn all borrows are transient or point to the places given via // references in the arguments (so we already checked them with // TransientMutBorrow/MutBorrow as appropriate). // The borrow checker guarantees that no new non-transient borrows are created. // NOTE: Once we have heap allocations during CTFE we need to figure out // how to prevent `const fn` to create long-lived allocations that point // to mutable memory. hir::ConstContext::ConstFn => self.check_op(ops::TransientMutBorrow(kind)), _ => { // For indirect places, we are not creating a new permanent borrow, it's just as // transient as the already existing one. For reborrowing references this is handled // at the top of `visit_rvalue`, but for raw pointers we handle it here. // Pointers/references to `static mut` and cases where the `*` is not the first // projection also end up here. // Locals with StorageDead do not live beyond the evaluation and can // thus safely be borrowed without being able to be leaked to the final // value of the constant. // Note: This is only sound if every local that has a `StorageDead` has a // `StorageDead` in every control flow path leading to a `return` terminator. // The good news is that interning will detect if any unexpected mutable // pointer slips through. if place.is_indirect() || self.local_has_storage_dead(place.local) { self.check_op(ops::TransientMutBorrow(kind)); } else { self.check_op(ops::MutBorrow(kind)); } } } } } impl<'tcx> Visitor<'tcx> for Checker<'_, 'tcx> { fn visit_basic_block_data(&mut self, bb: BasicBlock, block: &BasicBlockData<'tcx>) { trace!("visit_basic_block_data: bb={:?} is_cleanup={:?}", bb, block.is_cleanup); // We don't const-check basic blocks on the cleanup path since we never unwind during // const-eval: a panic causes an immediate compile error. In other words, cleanup blocks // are unreachable during const-eval. // // We can't be more conservative (e.g., by const-checking cleanup blocks anyways) because // locals that would never be dropped during normal execution are sometimes dropped during // unwinding, which means backwards-incompatible live-drop errors. if block.is_cleanup { return; } self.super_basic_block_data(bb, block); } fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) { trace!("visit_rvalue: rvalue={:?} location={:?}", rvalue, location); // Special-case reborrows to be more like a copy of a reference. // FIXME: this does not actually handle all reborrows. It only detects cases where `*` is the outermost // projection of the borrowed place, it skips deref'ing raw pointers and it skips `static`. // All those cases are handled below with shared/mutable borrows. // Once `const_mut_refs` is stable, we should be able to entirely remove this special case. // (`const_refs_to_cell` is not needed, we already allow all borrows of indirect places anyway.) match *rvalue { Rvalue::Ref(_, kind, place) => { if let Some(reborrowed_place_ref) = place_as_reborrow(self.tcx, self.body, place) { let ctx = match kind { BorrowKind::Shared => { PlaceContext::NonMutatingUse(NonMutatingUseContext::SharedBorrow) } BorrowKind::Fake(_) => { PlaceContext::NonMutatingUse(NonMutatingUseContext::FakeBorrow) } BorrowKind::Mut { .. } => { PlaceContext::MutatingUse(MutatingUseContext::Borrow) } }; self.visit_local(reborrowed_place_ref.local, ctx, location); self.visit_projection(reborrowed_place_ref, ctx, location); return; } } Rvalue::AddressOf(mutbl, place) => { if let Some(reborrowed_place_ref) = place_as_reborrow(self.tcx, self.body, place) { let ctx = match mutbl { Mutability::Not => { PlaceContext::NonMutatingUse(NonMutatingUseContext::AddressOf) } Mutability::Mut => PlaceContext::MutatingUse(MutatingUseContext::AddressOf), }; self.visit_local(reborrowed_place_ref.local, ctx, location); self.visit_projection(reborrowed_place_ref, ctx, location); return; } } _ => {} } self.super_rvalue(rvalue, location); match rvalue { Rvalue::ThreadLocalRef(_) => self.check_op(ops::ThreadLocalAccess), Rvalue::Use(_) | Rvalue::CopyForDeref(..) | Rvalue::Repeat(..) | Rvalue::Discriminant(..) | Rvalue::Len(_) => {} Rvalue::Aggregate(kind, ..) => { if let AggregateKind::Coroutine(def_id, ..) = kind.as_ref() && let Some( coroutine_kind @ hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Async, _, ), ) = self.tcx.coroutine_kind(def_id) { self.check_op(ops::Coroutine(coroutine_kind)); } } Rvalue::Ref(_, BorrowKind::Mut { .. }, place) | Rvalue::AddressOf(Mutability::Mut, place) => { // Inside mutable statics, we allow arbitrary mutable references. // We've allowed `static mut FOO = &mut [elements];` for a long time (the exact // reasons why are lost to history), and there is no reason to restrict that to // arrays and slices. let is_allowed = self.const_kind() == hir::ConstContext::Static(hir::Mutability::Mut); if !is_allowed { self.check_mut_borrow( place, if matches!(rvalue, Rvalue::Ref(..)) { hir::BorrowKind::Ref } else { hir::BorrowKind::Raw }, ); } } Rvalue::Ref(_, BorrowKind::Shared | BorrowKind::Fake(_), place) | Rvalue::AddressOf(Mutability::Not, place) => { let borrowed_place_has_mut_interior = qualifs::in_place::( self.ccx, &mut |local| self.qualifs.has_mut_interior(self.ccx, local, location), place.as_ref(), ); // If the place is indirect, this is basically a reborrow. We have a reborrow // special case above, but for raw pointers and pointers/references to `static` and // when the `*` is not the first projection, `place_as_reborrow` does not recognize // them as such, so we end up here. This should probably be considered a // `TransientCellBorrow` (we consider the equivalent mutable case a // `TransientMutBorrow`), but such reborrows got accidentally stabilized already and // it is too much of a breaking change to take back. if borrowed_place_has_mut_interior && !place.is_indirect() { match self.const_kind() { // In a const fn all borrows are transient or point to the places given via // references in the arguments (so we already checked them with // TransientCellBorrow/CellBorrow as appropriate). // The borrow checker guarantees that no new non-transient borrows are created. // NOTE: Once we have heap allocations during CTFE we need to figure out // how to prevent `const fn` to create long-lived allocations that point // to (interior) mutable memory. hir::ConstContext::ConstFn => self.check_op(ops::TransientCellBorrow), _ => { // Locals with StorageDead are definitely not part of the final constant value, and // it is thus inherently safe to permit such locals to have their // address taken as we can't end up with a reference to them in the // final value. // Note: This is only sound if every local that has a `StorageDead` has a // `StorageDead` in every control flow path leading to a `return` terminator. // The good news is that interning will detect if any unexpected mutable // pointer slips through. if self.local_has_storage_dead(place.local) { self.check_op(ops::TransientCellBorrow); } else { self.check_op(ops::CellBorrow); } } } } } Rvalue::Cast( CastKind::PointerCoercion( PointerCoercion::MutToConstPointer | PointerCoercion::ArrayToPointer | PointerCoercion::UnsafeFnPointer | PointerCoercion::ClosureFnPointer(_) | PointerCoercion::ReifyFnPointer, ), _, _, ) => { // These are all okay; they only change the type, not the data. } Rvalue::Cast(CastKind::PointerCoercion(PointerCoercion::Unsize), _, _) => { // Unsizing is implemented for CTFE. } Rvalue::Cast(CastKind::PointerExposeProvenance, _, _) => { self.check_op(ops::RawPtrToIntCast); } Rvalue::Cast(CastKind::PointerWithExposedProvenance, _, _) => { // Since no pointer can ever get exposed (rejected above), this is easy to support. } Rvalue::Cast(CastKind::DynStar, _, _) => { // `dyn*` coercion is implemented for CTFE. } Rvalue::Cast(_, _, _) => {} Rvalue::NullaryOp( NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(_) | NullOp::UbChecks, _, ) => {} Rvalue::ShallowInitBox(_, _) => {} Rvalue::UnaryOp(_, operand) => { let ty = operand.ty(self.body, self.tcx); if is_int_bool_or_char(ty) { // Int, bool, and char operations are fine. } else if ty.is_floating_point() { self.check_op(ops::FloatingPointOp); } else { span_bug!(self.span, "non-primitive type in `Rvalue::UnaryOp`: {:?}", ty); } } Rvalue::BinaryOp(op, box (lhs, rhs)) => { let lhs_ty = lhs.ty(self.body, self.tcx); let rhs_ty = rhs.ty(self.body, self.tcx); if is_int_bool_or_char(lhs_ty) && is_int_bool_or_char(rhs_ty) { // Int, bool, and char operations are fine. } else if lhs_ty.is_fn_ptr() || lhs_ty.is_unsafe_ptr() { assert!(matches!( op, BinOp::Eq | BinOp::Ne | BinOp::Le | BinOp::Lt | BinOp::Ge | BinOp::Gt | BinOp::Offset )); self.check_op(ops::RawPtrComparison); } else if lhs_ty.is_floating_point() || rhs_ty.is_floating_point() { self.check_op(ops::FloatingPointOp); } else { span_bug!( self.span, "non-primitive type in `Rvalue::BinaryOp`: {:?} ⚬ {:?}", lhs_ty, rhs_ty ); } } } } fn visit_operand(&mut self, op: &Operand<'tcx>, location: Location) { self.super_operand(op, location); if let Operand::Constant(c) = op { if let Some(def_id) = c.check_static_ptr(self.tcx) { self.check_static(def_id, self.span); } } } fn visit_projection_elem( &mut self, place_ref: PlaceRef<'tcx>, elem: PlaceElem<'tcx>, context: PlaceContext, location: Location, ) { trace!( "visit_projection_elem: place_ref={:?} elem={:?} \ context={:?} location={:?}", place_ref, elem, context, location, ); self.super_projection_elem(place_ref, elem, context, location); match elem { ProjectionElem::Deref => { let base_ty = place_ref.ty(self.body, self.tcx).ty; if base_ty.is_unsafe_ptr() { if place_ref.projection.is_empty() { let decl = &self.body.local_decls[place_ref.local]; // If this is a static, then this is not really dereferencing a pointer, // just directly accessing a static. That is not subject to any feature // gates (except for the one about whether statics can even be used, but // that is checked already by `visit_operand`). if let LocalInfo::StaticRef { .. } = *decl.local_info() { return; } } // `*const T` is stable, `*mut T` is not if !base_ty.is_mutable_ptr() { return; } self.check_op(ops::RawMutPtrDeref); } if context.is_mutating_use() { self.check_op(ops::MutDeref); } } ProjectionElem::ConstantIndex { .. } | ProjectionElem::Downcast(..) | ProjectionElem::OpaqueCast(..) | ProjectionElem::Subslice { .. } | ProjectionElem::Subtype(..) | ProjectionElem::Field(..) | ProjectionElem::Index(_) => {} } } fn visit_source_info(&mut self, source_info: &SourceInfo) { trace!("visit_source_info: source_info={:?}", source_info); self.span = source_info.span; } fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) { trace!("visit_statement: statement={:?} location={:?}", statement, location); self.super_statement(statement, location); match statement.kind { StatementKind::Assign(..) | StatementKind::SetDiscriminant { .. } | StatementKind::Deinit(..) | StatementKind::FakeRead(..) | StatementKind::StorageLive(_) | StatementKind::StorageDead(_) | StatementKind::Retag { .. } | StatementKind::PlaceMention(..) | StatementKind::AscribeUserType(..) | StatementKind::Coverage(..) | StatementKind::Intrinsic(..) | StatementKind::ConstEvalCounter | StatementKind::Nop => {} } } #[instrument(level = "debug", skip(self))] fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) { self.super_terminator(terminator, location); match &terminator.kind { TerminatorKind::Call { func, args, fn_span, .. } | TerminatorKind::TailCall { func, args, fn_span, .. } => { let call_source = match terminator.kind { TerminatorKind::Call { call_source, .. } => call_source, TerminatorKind::TailCall { .. } => CallSource::Normal, _ => unreachable!(), }; let ConstCx { tcx, body, param_env, .. } = *self.ccx; let caller = self.def_id(); let fn_ty = func.ty(body, tcx); let (mut callee, mut fn_args) = match *fn_ty.kind() { ty::FnDef(def_id, fn_args) => (def_id, fn_args), ty::FnPtr(_) => { self.check_op(ops::FnCallIndirect); return; } _ => { span_bug!(terminator.source_info.span, "invalid callee of type {:?}", fn_ty) } }; // Check that all trait bounds that are marked as `~const` can be satisfied. // // Typeck only does a "non-const" check since it operates on HIR and cannot distinguish // which path expressions are getting called on and which path expressions are only used // as function pointers. This is required for correctness. let infcx = tcx.infer_ctxt().build(); let ocx = ObligationCtxt::new_with_diagnostics(&infcx); let predicates = tcx.predicates_of(callee).instantiate(tcx, fn_args); let cause = ObligationCause::new( terminator.source_info.span, self.body.source.def_id().expect_local(), ObligationCauseCode::WhereClause(callee, DUMMY_SP), ); let normalized_predicates = ocx.normalize(&cause, param_env, predicates); ocx.register_obligations(traits::predicates_for_generics( |_, _| cause.clone(), self.param_env, normalized_predicates, )); let errors = ocx.select_all_or_error(); if !errors.is_empty() { infcx.err_ctxt().report_fulfillment_errors(errors); } let mut is_trait = false; // Attempting to call a trait method? if tcx.trait_of_item(callee).is_some() { trace!("attempting to call a trait method"); // trait method calls are only permitted when `effects` is enabled. // we don't error, since that is handled by typeck. We try to resolve // the trait into the concrete method, and uses that for const stability // checks. // FIXME(effects) we might consider moving const stability checks to typeck as well. if tcx.features().effects { is_trait = true; if let Ok(Some(instance)) = Instance::try_resolve(tcx, param_env, callee, fn_args) && let InstanceKind::Item(def) = instance.def { // Resolve a trait method call to its concrete implementation, which may be in a // `const` trait impl. This is only used for the const stability check below, since // we want to look at the concrete impl's stability. fn_args = instance.args; callee = def; } } else { self.check_op(ops::FnCallNonConst { caller, callee, args: fn_args, span: *fn_span, call_source, feature: Some(if tcx.features().const_trait_impl { sym::effects } else { sym::const_trait_impl }), }); return; } } // At this point, we are calling a function, `callee`, whose `DefId` is known... // `begin_panic` and `#[rustc_const_panic_str]` functions accept generic // types other than str. Check to enforce that only str can be used in // const-eval. // const-eval of the `begin_panic` fn assumes the argument is `&str` if tcx.is_lang_item(callee, LangItem::BeginPanic) { match args[0].node.ty(&self.ccx.body.local_decls, tcx).kind() { ty::Ref(_, ty, _) if ty.is_str() => return, _ => self.check_op(ops::PanicNonStr), } } // const-eval of `#[rustc_const_panic_str]` functions assumes the argument is `&&str` if tcx.has_attr(callee, sym::rustc_const_panic_str) { match args[0].node.ty(&self.ccx.body.local_decls, tcx).kind() { ty::Ref(_, ty, _) if matches!(ty.kind(), ty::Ref(_, ty, _) if ty.is_str()) => { return; } _ => self.check_op(ops::PanicNonStr), } } if tcx.is_lang_item(callee, LangItem::ExchangeMalloc) { self.check_op(ops::HeapAllocation); return; } if !tcx.is_const_fn_raw(callee) && !is_trait { self.check_op(ops::FnCallNonConst { caller, callee, args: fn_args, span: *fn_span, call_source, feature: None, }); return; } // If the `const fn` we are trying to call is not const-stable, ensure that we have // the proper feature gate enabled. if let Some((gate, implied_by)) = is_unstable_const_fn(tcx, callee) { trace!(?gate, "calling unstable const fn"); if self.span.allows_unstable(gate) { return; } if let Some(implied_by_gate) = implied_by && self.span.allows_unstable(implied_by_gate) { return; } // Calling an unstable function *always* requires that the corresponding gate // (or implied gate) be enabled, even if the function has // `#[rustc_allow_const_fn_unstable(the_gate)]`. let gate_declared = |gate| { tcx.features().declared_lib_features.iter().any(|&(sym, _)| sym == gate) }; let feature_gate_declared = gate_declared(gate); let implied_gate_declared = implied_by.is_some_and(gate_declared); if !feature_gate_declared && !implied_gate_declared { self.check_op(ops::FnCallUnstable(callee, Some(gate))); return; } // If this crate is not using stability attributes, or the caller is not claiming to be a // stable `const fn`, that is all that is required. if !self.ccx.is_const_stable_const_fn() { trace!("crate not using stability attributes or caller not stably const"); return; } // Otherwise, we are something const-stable calling a const-unstable fn. if super::rustc_allow_const_fn_unstable(tcx, caller, gate) { trace!("rustc_allow_const_fn_unstable gate active"); return; } self.check_op(ops::FnCallUnstable(callee, Some(gate))); return; } // FIXME(ecstaticmorse); For compatibility, we consider `unstable` callees that // have no `rustc_const_stable` attributes to be const-unstable as well. This // should be fixed later. let callee_is_unstable_unmarked = tcx.lookup_const_stability(callee).is_none() && tcx.lookup_stability(callee).is_some_and(|s| s.is_unstable()); if callee_is_unstable_unmarked { trace!("callee_is_unstable_unmarked"); // We do not use `const` modifiers for intrinsic "functions", as intrinsics are // `extern` functions, and these have no way to get marked `const`. So instead we // use `rustc_const_(un)stable` attributes to mean that the intrinsic is `const` if self.ccx.is_const_stable_const_fn() || tcx.intrinsic(callee).is_some() { self.check_op(ops::FnCallUnstable(callee, None)); return; } } trace!("permitting call"); } // Forbid all `Drop` terminators unless the place being dropped is a local with no // projections that cannot be `NeedsNonConstDrop`. TerminatorKind::Drop { place: dropped_place, .. } => { // If we are checking live drops after drop-elaboration, don't emit duplicate // errors here. if super::post_drop_elaboration::checking_enabled(self.ccx) { return; } let mut err_span = self.span; let ty_of_dropped_place = dropped_place.ty(self.body, self.tcx).ty; let ty_needs_non_const_drop = qualifs::NeedsNonConstDrop::in_any_value_of_ty(self.ccx, ty_of_dropped_place); debug!(?ty_of_dropped_place, ?ty_needs_non_const_drop); if !ty_needs_non_const_drop { return; } let needs_non_const_drop = if let Some(local) = dropped_place.as_local() { // Use the span where the local was declared as the span of the drop error. err_span = self.body.local_decls[local].source_info.span; self.qualifs.needs_non_const_drop(self.ccx, local, location) } else { true }; if needs_non_const_drop { self.check_op_spanned( ops::LiveDrop { dropped_at: Some(terminator.source_info.span), dropped_ty: ty_of_dropped_place, }, err_span, ); } } TerminatorKind::InlineAsm { .. } => self.check_op(ops::InlineAsm), TerminatorKind::Yield { .. } => self.check_op(ops::Coroutine( self.tcx .coroutine_kind(self.body.source.def_id()) .expect("Only expected to have a yield in a coroutine"), )), TerminatorKind::CoroutineDrop => { span_bug!( self.body.source_info(location).span, "We should not encounter TerminatorKind::CoroutineDrop after coroutine transform" ); } TerminatorKind::UnwindTerminate(_) => { // Cleanup blocks are skipped for const checking (see `visit_basic_block_data`). span_bug!(self.span, "`Terminate` terminator outside of cleanup block") } TerminatorKind::Assert { .. } | TerminatorKind::FalseEdge { .. } | TerminatorKind::FalseUnwind { .. } | TerminatorKind::Goto { .. } | TerminatorKind::UnwindResume | TerminatorKind::Return | TerminatorKind::SwitchInt { .. } | TerminatorKind::Unreachable => {} } } } fn place_as_reborrow<'tcx>( tcx: TyCtxt<'tcx>, body: &Body<'tcx>, place: Place<'tcx>, ) -> Option> { match place.as_ref().last_projection() { Some((place_base, ProjectionElem::Deref)) => { // FIXME: why do statics and raw pointers get excluded here? This makes // some code involving mutable pointers unstable, but it is unclear // why that code is treated differently from mutable references. // Once TransientMutBorrow and TransientCellBorrow are stable, // this can probably be cleaned up without any behavioral changes. // A borrow of a `static` also looks like `&(*_1)` in the MIR, but `_1` is a `const` // that points to the allocation for the static. Don't treat these as reborrows. if body.local_decls[place_base.local].is_ref_to_static() { None } else { // Ensure the type being derefed is a reference and not a raw pointer. // This is sufficient to prevent an access to a `static mut` from being marked as a // reborrow, even if the check above were to disappear. let inner_ty = place_base.ty(body, tcx).ty; if let ty::Ref(..) = inner_ty.kind() { return Some(place_base); } else { return None; } } } _ => None, } } fn is_int_bool_or_char(ty: Ty<'_>) -> bool { ty.is_bool() || ty.is_integral() || ty.is_char() } fn emit_unstable_in_stable_error(ccx: &ConstCx<'_, '_>, span: Span, gate: Symbol) { let attr_span = ccx.tcx.def_span(ccx.def_id()).shrink_to_lo(); ccx.dcx().emit_err(UnstableInStable { gate: gate.to_string(), span, attr_span }); }