use std::cell::Cell; use std::cmp::Ordering::{self, Equal, Greater, Less}; use std::convert::identity; use std::mem; use std::panic; use std::rc::Rc; use std::sync::atomic::{AtomicUsize, Ordering::Relaxed}; use rand::distributions::Standard; use rand::seq::SliceRandom; use rand::{thread_rng, Rng, RngCore}; fn square(n: usize) -> usize { n * n } fn is_odd(n: &usize) -> bool { *n % 2 == 1 } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v: Vec<_> = (0..3).map(square).collect(); { let v = v; assert_eq!(v.len(), 3); assert_eq!(v[0], 0); assert_eq!(v[1], 1); assert_eq!(v[2], 4); } // Test on-heap from_fn. v = (0..5).map(square).collect(); { let v = v; assert_eq!(v.len(), 5); assert_eq!(v[0], 0); assert_eq!(v[1], 1); assert_eq!(v[2], 4); assert_eq!(v[3], 9); assert_eq!(v[4], 16); } } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = vec![10, 10]; { let v = v; assert_eq!(v.len(), 2); assert_eq!(v[0], 10); assert_eq!(v[1], 10); } // Test on-heap from_elem. v = vec![20; 6]; { let v = &v[..]; assert_eq!(v[0], 20); assert_eq!(v[1], 20); assert_eq!(v[2], 20); assert_eq!(v[3], 20); assert_eq!(v[4], 20); assert_eq!(v[5], 20); } } #[test] fn test_is_empty() { let xs: [i32; 0] = []; assert!(xs.is_empty()); assert!(![0].is_empty()); } #[test] fn test_len_divzero() { type Z = [i8; 0]; let v0: &[Z] = &[]; let v1: &[Z] = &[[]]; let v2: &[Z] = &[[], []]; assert_eq!(mem::size_of::(), 0); assert_eq!(v0.len(), 0); assert_eq!(v1.len(), 1); assert_eq!(v2.len(), 2); } #[test] fn test_get() { let mut a = vec![11]; assert_eq!(a.get(1), None); a = vec![11, 12]; assert_eq!(a.get(1).unwrap(), &12); a = vec![11, 12, 13]; assert_eq!(a.get(1).unwrap(), &12); } #[test] fn test_first() { let mut a = vec![]; assert_eq!(a.first(), None); a = vec![11]; assert_eq!(a.first().unwrap(), &11); a = vec![11, 12]; assert_eq!(a.first().unwrap(), &11); } #[test] fn test_first_mut() { let mut a = vec![]; assert_eq!(a.first_mut(), None); a = vec![11]; assert_eq!(*a.first_mut().unwrap(), 11); a = vec![11, 12]; assert_eq!(*a.first_mut().unwrap(), 11); } #[test] fn test_split_first() { let mut a = vec![11]; let b: &[i32] = &[]; assert!(b.split_first().is_none()); assert_eq!(a.split_first(), Some((&11, b))); a = vec![11, 12]; let b: &[i32] = &[12]; assert_eq!(a.split_first(), Some((&11, b))); } #[test] fn test_split_first_mut() { let mut a = vec![11]; let b: &mut [i32] = &mut []; assert!(b.split_first_mut().is_none()); assert!(a.split_first_mut() == Some((&mut 11, b))); a = vec![11, 12]; let b: &mut [_] = &mut [12]; assert!(a.split_first_mut() == Some((&mut 11, b))); } #[test] fn test_split_last() { let mut a = vec![11]; let b: &[i32] = &[]; assert!(b.split_last().is_none()); assert_eq!(a.split_last(), Some((&11, b))); a = vec![11, 12]; let b: &[_] = &[11]; assert_eq!(a.split_last(), Some((&12, b))); } #[test] fn test_split_last_mut() { let mut a = vec![11]; let b: &mut [i32] = &mut []; assert!(b.split_last_mut().is_none()); assert!(a.split_last_mut() == Some((&mut 11, b))); a = vec![11, 12]; let b: &mut [_] = &mut [11]; assert!(a.split_last_mut() == Some((&mut 12, b))); } #[test] fn test_last() { let mut a = vec![]; assert_eq!(a.last(), None); a = vec![11]; assert_eq!(a.last().unwrap(), &11); a = vec![11, 12]; assert_eq!(a.last().unwrap(), &12); } #[test] fn test_last_mut() { let mut a = vec![]; assert_eq!(a.last_mut(), None); a = vec![11]; assert_eq!(*a.last_mut().unwrap(), 11); a = vec![11, 12]; assert_eq!(*a.last_mut().unwrap(), 12); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1, 2, 3, 4]; let v_a = vec_fixed[1..vec_fixed.len()].to_vec(); assert_eq!(v_a.len(), 3); assert_eq!(v_a[0], 2); assert_eq!(v_a[1], 3); assert_eq!(v_a[2], 4); // Test on stack. let vec_stack: &[_] = &[1, 2, 3]; let v_b = vec_stack[1..3].to_vec(); assert_eq!(v_b.len(), 2); assert_eq!(v_b[0], 2); assert_eq!(v_b[1], 3); // Test `Box<[T]>` let vec_unique = vec![1, 2, 3, 4, 5, 6]; let v_d = vec_unique[1..6].to_vec(); assert_eq!(v_d.len(), 5); assert_eq!(v_d[0], 2); assert_eq!(v_d[1], 3); assert_eq!(v_d[2], 4); assert_eq!(v_d[3], 5); assert_eq!(v_d[4], 6); } #[test] fn test_slice_from() { let vec: &[_] = &[1, 2, 3, 4]; assert_eq!(&vec[..], vec); let b: &[_] = &[3, 4]; assert_eq!(&vec[2..], b); let b: &[_] = &[]; assert_eq!(&vec[4..], b); } #[test] fn test_slice_to() { let vec: &[_] = &[1, 2, 3, 4]; assert_eq!(&vec[..4], vec); let b: &[_] = &[1, 2]; assert_eq!(&vec[..2], b); let b: &[_] = &[]; assert_eq!(&vec[..0], b); } #[test] fn test_pop() { let mut v = vec![5]; let e = v.pop(); assert_eq!(v.len(), 0); assert_eq!(e, Some(5)); let f = v.pop(); assert_eq!(f, None); let g = v.pop(); assert_eq!(g, None); } #[test] fn test_swap_remove() { let mut v = vec![1, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert_eq!(e, 1); assert_eq!(v, [5, 2, 3, 4]); e = v.swap_remove(3); assert_eq!(e, 4); assert_eq!(v, [5, 2, 3]); } #[test] #[should_panic] fn test_swap_remove_fail() { let mut v = vec![1]; let _ = v.swap_remove(0); let _ = v.swap_remove(0); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v: Vec> = Vec::new(); v.push(box 0); v.push(box 0); v.push(box 0); let mut _e = v.swap_remove(0); assert_eq!(v.len(), 2); _e = v.swap_remove(1); assert_eq!(v.len(), 1); _e = v.swap_remove(0); assert_eq!(v.len(), 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = vec![]; v.push(1); assert_eq!(v.len(), 1); assert_eq!(v[0], 1); // Test on-heap push(). v.push(2); assert_eq!(v.len(), 2); assert_eq!(v[0], 1); assert_eq!(v[1], 2); } #[test] fn test_truncate() { let mut v: Vec> = vec![box 6, box 5, box 4]; v.truncate(1); let v = v; assert_eq!(v.len(), 1); assert_eq!(*(v[0]), 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v: Vec> = vec![box 6, box 5, box 4]; v.clear(); assert_eq!(v.len(), 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_retain() { let mut v = vec![1, 2, 3, 4, 5]; v.retain(is_odd); assert_eq!(v, [1, 3, 5]); } #[test] fn test_binary_search() { assert_eq!([1, 2, 3, 4, 5].binary_search(&5).ok(), Some(4)); assert_eq!([1, 2, 3, 4, 5].binary_search(&4).ok(), Some(3)); assert_eq!([1, 2, 3, 4, 5].binary_search(&3).ok(), Some(2)); assert_eq!([1, 2, 3, 4, 5].binary_search(&2).ok(), Some(1)); assert_eq!([1, 2, 3, 4, 5].binary_search(&1).ok(), Some(0)); assert_eq!([2, 4, 6, 8, 10].binary_search(&1).ok(), None); assert_eq!([2, 4, 6, 8, 10].binary_search(&5).ok(), None); assert_eq!([2, 4, 6, 8, 10].binary_search(&4).ok(), Some(1)); assert_eq!([2, 4, 6, 8, 10].binary_search(&10).ok(), Some(4)); assert_eq!([2, 4, 6, 8].binary_search(&1).ok(), None); assert_eq!([2, 4, 6, 8].binary_search(&5).ok(), None); assert_eq!([2, 4, 6, 8].binary_search(&4).ok(), Some(1)); assert_eq!([2, 4, 6, 8].binary_search(&8).ok(), Some(3)); assert_eq!([2, 4, 6].binary_search(&1).ok(), None); assert_eq!([2, 4, 6].binary_search(&5).ok(), None); assert_eq!([2, 4, 6].binary_search(&4).ok(), Some(1)); assert_eq!([2, 4, 6].binary_search(&6).ok(), Some(2)); assert_eq!([2, 4].binary_search(&1).ok(), None); assert_eq!([2, 4].binary_search(&5).ok(), None); assert_eq!([2, 4].binary_search(&2).ok(), Some(0)); assert_eq!([2, 4].binary_search(&4).ok(), Some(1)); assert_eq!([2].binary_search(&1).ok(), None); assert_eq!([2].binary_search(&5).ok(), None); assert_eq!([2].binary_search(&2).ok(), Some(0)); assert_eq!([].binary_search(&1).ok(), None); assert_eq!([].binary_search(&5).ok(), None); assert!([1, 1, 1, 1, 1].binary_search(&1).ok() != None); assert!([1, 1, 1, 1, 2].binary_search(&1).ok() != None); assert!([1, 1, 1, 2, 2].binary_search(&1).ok() != None); assert!([1, 1, 2, 2, 2].binary_search(&1).ok() != None); assert_eq!([1, 2, 2, 2, 2].binary_search(&1).ok(), Some(0)); assert_eq!([1, 2, 3, 4, 5].binary_search(&6).ok(), None); assert_eq!([1, 2, 3, 4, 5].binary_search(&0).ok(), None); } #[test] fn test_reverse() { let mut v = vec![10, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); v.reverse(); assert_eq!(v[0], 20); assert_eq!(v[1], 10); let mut v3 = Vec::::new(); v3.reverse(); assert!(v3.is_empty()); // check the 1-byte-types path let mut v = (-50..51i8).collect::>(); v.reverse(); assert_eq!(v, (-50..51i8).rev().collect::>()); // check the 2-byte-types path let mut v = (-50..51i16).collect::>(); v.reverse(); assert_eq!(v, (-50..51i16).rev().collect::>()); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_sort() { let mut rng = thread_rng(); for len in (2..25).chain(500..510) { for &modulus in &[5, 10, 100, 1000] { for _ in 0..10 { let orig: Vec<_> = rng.sample_iter::(&Standard).map(|x| x % modulus).take(len).collect(); // Sort in default order. let mut v = orig.clone(); v.sort(); assert!(v.windows(2).all(|w| w[0] <= w[1])); // Sort in ascending order. let mut v = orig.clone(); v.sort_by(|a, b| a.cmp(b)); assert!(v.windows(2).all(|w| w[0] <= w[1])); // Sort in descending order. let mut v = orig.clone(); v.sort_by(|a, b| b.cmp(a)); assert!(v.windows(2).all(|w| w[0] >= w[1])); // Sort in lexicographic order. let mut v1 = orig.clone(); let mut v2 = orig.clone(); v1.sort_by_key(|x| x.to_string()); v2.sort_by_cached_key(|x| x.to_string()); assert!(v1.windows(2).all(|w| w[0].to_string() <= w[1].to_string())); assert!(v1 == v2); // Sort with many pre-sorted runs. let mut v = orig.clone(); v.sort(); v.reverse(); for _ in 0..5 { let a = rng.gen::() % len; let b = rng.gen::() % len; if a < b { v[a..b].reverse(); } else { v.swap(a, b); } } v.sort(); assert!(v.windows(2).all(|w| w[0] <= w[1])); } } } // Sort using a completely random comparison function. // This will reorder the elements *somehow*, but won't panic. let mut v = [0; 500]; for i in 0..v.len() { v[i] = i as i32; } v.sort_by(|_, _| *[Less, Equal, Greater].choose(&mut rng).unwrap()); v.sort(); for i in 0..v.len() { assert_eq!(v[i], i as i32); } // Should not panic. [0i32; 0].sort(); [(); 10].sort(); [(); 100].sort(); let mut v = [0xDEADBEEFu64]; v.sort(); assert!(v == [0xDEADBEEF]); } #[test] fn test_sort_stability() { // Miri is too slow let large_range = if cfg!(miri) { 0..0 } else { 500..510 }; let rounds = if cfg!(miri) { 1 } else { 10 }; for len in (2..25).chain(large_range) { for _ in 0..rounds { let mut counts = [0; 10]; // create a vector like [(6, 1), (5, 1), (6, 2), ...], // where the first item of each tuple is random, but // the second item represents which occurrence of that // number this element is, i.e., the second elements // will occur in sorted order. let orig: Vec<_> = (0..len) .map(|_| { let n = thread_rng().gen::() % 10; counts[n] += 1; (n, counts[n]) }) .collect(); let mut v = orig.clone(); // Only sort on the first element, so an unstable sort // may mix up the counts. v.sort_by(|&(a, _), &(b, _)| a.cmp(&b)); // This comparison includes the count (the second item // of the tuple), so elements with equal first items // will need to be ordered with increasing // counts... i.e., exactly asserting that this sort is // stable. assert!(v.windows(2).all(|w| w[0] <= w[1])); let mut v = orig.clone(); v.sort_by_cached_key(|&(x, _)| x); assert!(v.windows(2).all(|w| w[0] <= w[1])); } } } #[test] fn test_rotate_left() { let expected: Vec<_> = (0..13).collect(); let mut v = Vec::new(); // no-ops v.clone_from(&expected); v.rotate_left(0); assert_eq!(v, expected); v.rotate_left(expected.len()); assert_eq!(v, expected); let mut zst_array = [(), (), ()]; zst_array.rotate_left(2); // happy path v = (5..13).chain(0..5).collect(); v.rotate_left(8); assert_eq!(v, expected); let expected: Vec<_> = (0..1000).collect(); // small rotations in large slice, uses ptr::copy v = (2..1000).chain(0..2).collect(); v.rotate_left(998); assert_eq!(v, expected); v = (998..1000).chain(0..998).collect(); v.rotate_left(2); assert_eq!(v, expected); // non-small prime rotation, has a few rounds of swapping v = (389..1000).chain(0..389).collect(); v.rotate_left(1000 - 389); assert_eq!(v, expected); } #[test] fn test_rotate_right() { let expected: Vec<_> = (0..13).collect(); let mut v = Vec::new(); // no-ops v.clone_from(&expected); v.rotate_right(0); assert_eq!(v, expected); v.rotate_right(expected.len()); assert_eq!(v, expected); let mut zst_array = [(), (), ()]; zst_array.rotate_right(2); // happy path v = (5..13).chain(0..5).collect(); v.rotate_right(5); assert_eq!(v, expected); let expected: Vec<_> = (0..1000).collect(); // small rotations in large slice, uses ptr::copy v = (2..1000).chain(0..2).collect(); v.rotate_right(2); assert_eq!(v, expected); v = (998..1000).chain(0..998).collect(); v.rotate_right(998); assert_eq!(v, expected); // non-small prime rotation, has a few rounds of swapping v = (389..1000).chain(0..389).collect(); v.rotate_right(389); assert_eq!(v, expected); } #[test] fn test_concat() { let v: [Vec; 0] = []; let c = v.concat(); assert_eq!(c, []); let d = [vec![1], vec![2, 3]].concat(); assert_eq!(d, [1, 2, 3]); let v: &[&[_]] = &[&[1], &[2, 3]]; assert_eq!(v.join(&0), [1, 0, 2, 3]); let v: &[&[_]] = &[&[1], &[2], &[3]]; assert_eq!(v.join(&0), [1, 0, 2, 0, 3]); } #[test] fn test_join() { let v: [Vec; 0] = []; assert_eq!(v.join(&0), []); assert_eq!([vec![1], vec![2, 3]].join(&0), [1, 0, 2, 3]); assert_eq!([vec![1], vec![2], vec![3]].join(&0), [1, 0, 2, 0, 3]); let v: [&[_]; 2] = [&[1], &[2, 3]]; assert_eq!(v.join(&0), [1, 0, 2, 3]); let v: [&[_]; 3] = [&[1], &[2], &[3]]; assert_eq!(v.join(&0), [1, 0, 2, 0, 3]); } #[test] fn test_join_nocopy() { let v: [String; 0] = []; assert_eq!(v.join(","), ""); assert_eq!(["a".to_string(), "ab".into()].join(","), "a,ab"); assert_eq!(["a".to_string(), "ab".into(), "abc".into()].join(","), "a,ab,abc"); assert_eq!(["a".to_string(), "ab".into(), "".into()].join(","), "a,ab,"); } #[test] fn test_insert() { let mut a = vec![1, 2, 4]; a.insert(2, 3); assert_eq!(a, [1, 2, 3, 4]); let mut a = vec![1, 2, 3]; a.insert(0, 0); assert_eq!(a, [0, 1, 2, 3]); let mut a = vec![1, 2, 3]; a.insert(3, 4); assert_eq!(a, [1, 2, 3, 4]); let mut a = vec![]; a.insert(0, 1); assert_eq!(a, [1]); } #[test] #[should_panic] fn test_insert_oob() { let mut a = vec![1, 2, 3]; a.insert(4, 5); } #[test] fn test_remove() { let mut a = vec![1, 2, 3, 4]; assert_eq!(a.remove(2), 3); assert_eq!(a, [1, 2, 4]); assert_eq!(a.remove(2), 4); assert_eq!(a, [1, 2]); assert_eq!(a.remove(0), 1); assert_eq!(a, [2]); assert_eq!(a.remove(0), 2); assert_eq!(a, []); } #[test] #[should_panic] fn test_remove_fail() { let mut a = vec![1]; let _ = a.remove(0); let _ = a.remove(0); } #[test] fn test_capacity() { let mut v = vec![0]; v.reserve_exact(10); assert!(v.capacity() >= 11); } #[test] fn test_slice_2() { let v = vec![1, 2, 3, 4, 5]; let v = &v[1..3]; assert_eq!(v.len(), 2); assert_eq!(v[0], 2); assert_eq!(v[1], 3); } macro_rules! assert_order { (Greater, $a:expr, $b:expr) => { assert_eq!($a.cmp($b), Greater); assert!($a > $b); }; (Less, $a:expr, $b:expr) => { assert_eq!($a.cmp($b), Less); assert!($a < $b); }; (Equal, $a:expr, $b:expr) => { assert_eq!($a.cmp($b), Equal); assert_eq!($a, $b); }; } #[test] fn test_total_ord_u8() { let c = &[1u8, 2, 3]; assert_order!(Greater, &[1u8, 2, 3, 4][..], &c[..]); let c = &[1u8, 2, 3, 4]; assert_order!(Less, &[1u8, 2, 3][..], &c[..]); let c = &[1u8, 2, 3, 6]; assert_order!(Equal, &[1u8, 2, 3, 6][..], &c[..]); let c = &[1u8, 2, 3, 4, 5, 6]; assert_order!(Less, &[1u8, 2, 3, 4, 5, 5, 5, 5][..], &c[..]); let c = &[1u8, 2, 3, 4]; assert_order!(Greater, &[2u8, 2][..], &c[..]); } #[test] fn test_total_ord_i32() { let c = &[1, 2, 3]; assert_order!(Greater, &[1, 2, 3, 4][..], &c[..]); let c = &[1, 2, 3, 4]; assert_order!(Less, &[1, 2, 3][..], &c[..]); let c = &[1, 2, 3, 6]; assert_order!(Equal, &[1, 2, 3, 6][..], &c[..]); let c = &[1, 2, 3, 4, 5, 6]; assert_order!(Less, &[1, 2, 3, 4, 5, 5, 5, 5][..], &c[..]); let c = &[1, 2, 3, 4]; assert_order!(Greater, &[2, 2][..], &c[..]); } #[test] fn test_iterator() { let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.size_hint(), (5, Some(5))); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.size_hint(), (4, Some(4))); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.size_hint(), (3, Some(3))); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.size_hint(), (2, Some(2))); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.size_hint(), (1, Some(1))); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.size_hint(), (0, Some(0))); assert!(it.next().is_none()); } #[test] fn test_iter_size_hints() { let mut xs = [1, 2, 5, 10, 11]; assert_eq!(xs.iter().size_hint(), (5, Some(5))); assert_eq!(xs.iter_mut().size_hint(), (5, Some(5))); } #[test] fn test_iter_as_slice() { let xs = [1, 2, 5, 10, 11]; let mut iter = xs.iter(); assert_eq!(iter.as_slice(), &[1, 2, 5, 10, 11]); iter.next(); assert_eq!(iter.as_slice(), &[2, 5, 10, 11]); } #[test] fn test_iter_as_ref() { let xs = [1, 2, 5, 10, 11]; let mut iter = xs.iter(); assert_eq!(iter.as_ref(), &[1, 2, 5, 10, 11]); iter.next(); assert_eq!(iter.as_ref(), &[2, 5, 10, 11]); } #[test] fn test_iter_clone() { let xs = [1, 2, 5]; let mut it = xs.iter(); it.next(); let mut jt = it.clone(); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); } #[test] fn test_iter_is_empty() { let xs = [1, 2, 5, 10, 11]; for i in 0..xs.len() { for j in i..xs.len() { assert_eq!(xs[i..j].iter().is_empty(), xs[i..j].is_empty()); } } } #[test] fn test_mut_iterator() { let mut xs = [1, 2, 3, 4, 5]; for x in &mut xs { *x += 1; } assert!(xs == [2, 3, 4, 5, 6]) } #[test] fn test_rev_iterator() { let xs = [1, 2, 5, 10, 11]; let ys = [11, 10, 5, 2, 1]; let mut i = 0; for &x in xs.iter().rev() { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, 5); } #[test] fn test_mut_rev_iterator() { let mut xs = [1, 2, 3, 4, 5]; for (i, x) in xs.iter_mut().rev().enumerate() { *x += i; } assert!(xs == [5, 5, 5, 5, 5]) } #[test] fn test_move_iterator() { let xs = vec![1, 2, 3, 4, 5]; assert_eq!(xs.into_iter().fold(0, |a: usize, b: usize| 10 * a + b), 12345); } #[test] fn test_move_rev_iterator() { let xs = vec![1, 2, 3, 4, 5]; assert_eq!(xs.into_iter().rev().fold(0, |a: usize, b: usize| 10 * a + b), 54321); } #[test] fn test_splitator() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[1], &[3], &[5]]; assert_eq!(xs.split(|x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[2, 3, 4, 5]]; assert_eq!(xs.split(|x| *x == 1).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4], &[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split(|x| *x == 10).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[], &[], &[]]; assert_eq!(xs.split(|_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); } #[test] fn test_splitator_inclusive() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]]; assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]]; assert_eq!(xs.split_inclusive(|x| *x == 1).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive(|x| *x == 5).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive(|x| *x == 10).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]]; assert_eq!(xs.split_inclusive(|_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split_inclusive(|x| *x == 5).collect::>(), splits); } #[test] fn test_splitator_inclusive_reverse() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]]; assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).rev().collect::>(), splits); let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]]; assert_eq!(xs.split_inclusive(|x| *x == 1).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive(|x| *x == 10).rev().collect::>(), splits); let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]]; assert_eq!(xs.split_inclusive(|_| true).rev().collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::>(), splits); } #[test] fn test_splitator_mut_inclusive() { let xs = &mut [1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]]; assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 1).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 10).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]]; assert_eq!(xs.split_inclusive_mut(|_| true).collect::>(), splits); let xs: &mut [i32] = &mut []; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::>(), splits); } #[test] fn test_splitator_mut_inclusive_reverse() { let xs = &mut [1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]]; assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).rev().collect::>(), splits); let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 1).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 10).rev().collect::>(), splits); let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]]; assert_eq!(xs.split_inclusive_mut(|_| true).rev().collect::>(), splits); let xs: &mut [i32] = &mut []; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::>(), splits); } #[test] fn test_splitnator() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[3, 4, 5]]; assert_eq!(xs.splitn(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[4, 5]]; assert_eq!(xs.splitn(4, |_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.splitn(2, |x| *x == 5).collect::>(), splits); } #[test] fn test_splitnator_mut() { let xs = &mut [1, 2, 3, 4, 5]; let splits: &[&mut [_]] = &[&mut [1, 2, 3, 4, 5]]; assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut [_]] = &[&mut [1], &mut [3, 4, 5]]; assert_eq!(xs.splitn_mut(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut [_]] = &[&mut [], &mut [], &mut [], &mut [4, 5]]; assert_eq!(xs.splitn_mut(4, |_| true).collect::>(), splits); let xs: &mut [i32] = &mut []; let splits: &[&mut [i32]] = &[&mut []]; assert_eq!(xs.splitn_mut(2, |x| *x == 5).collect::>(), splits); } #[test] fn test_rsplitator() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[5], &[3], &[1]]; assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::>(), splits); let splits: &[&[_]] = &[&[2, 3, 4, 5], &[]]; assert_eq!(xs.split(|x| *x == 1).rev().collect::>(), splits); let splits: &[&[_]] = &[&[], &[1, 2, 3, 4]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.split(|x| *x == 10).rev().collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); } #[test] fn test_rsplitnator() { let xs = &[1, 2, 3, 4, 5]; let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[5], &[1, 2, 3]]; assert_eq!(xs.rsplitn(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[1, 2]]; assert_eq!(xs.rsplitn(4, |_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.rsplitn(2, |x| *x == 5).collect::>(), splits); assert!(xs.rsplitn(0, |x| *x % 2 == 0).next().is_none()); } #[test] fn test_windowsator() { let v = &[1, 2, 3, 4]; let wins: &[&[_]] = &[&[1, 2], &[2, 3], &[3, 4]]; assert_eq!(v.windows(2).collect::>(), wins); let wins: &[&[_]] = &[&[1, 2, 3], &[2, 3, 4]]; assert_eq!(v.windows(3).collect::>(), wins); assert!(v.windows(6).next().is_none()); let wins: &[&[_]] = &[&[3, 4], &[2, 3], &[1, 2]]; assert_eq!(v.windows(2).rev().collect::>(), wins); } #[test] #[should_panic] fn test_windowsator_0() { let v = &[1, 2, 3, 4]; let _it = v.windows(0); } #[test] fn test_chunksator() { let v = &[1, 2, 3, 4, 5]; assert_eq!(v.chunks(2).len(), 3); let chunks: &[&[_]] = &[&[1, 2], &[3, 4], &[5]]; assert_eq!(v.chunks(2).collect::>(), chunks); let chunks: &[&[_]] = &[&[1, 2, 3], &[4, 5]]; assert_eq!(v.chunks(3).collect::>(), chunks); let chunks: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(v.chunks(6).collect::>(), chunks); let chunks: &[&[_]] = &[&[5], &[3, 4], &[1, 2]]; assert_eq!(v.chunks(2).rev().collect::>(), chunks); } #[test] #[should_panic] fn test_chunksator_0() { let v = &[1, 2, 3, 4]; let _it = v.chunks(0); } #[test] fn test_chunks_exactator() { let v = &[1, 2, 3, 4, 5]; assert_eq!(v.chunks_exact(2).len(), 2); let chunks: &[&[_]] = &[&[1, 2], &[3, 4]]; assert_eq!(v.chunks_exact(2).collect::>(), chunks); let chunks: &[&[_]] = &[&[1, 2, 3]]; assert_eq!(v.chunks_exact(3).collect::>(), chunks); let chunks: &[&[_]] = &[]; assert_eq!(v.chunks_exact(6).collect::>(), chunks); let chunks: &[&[_]] = &[&[3, 4], &[1, 2]]; assert_eq!(v.chunks_exact(2).rev().collect::>(), chunks); } #[test] #[should_panic] fn test_chunks_exactator_0() { let v = &[1, 2, 3, 4]; let _it = v.chunks_exact(0); } #[test] fn test_rchunksator() { let v = &[1, 2, 3, 4, 5]; assert_eq!(v.rchunks(2).len(), 3); let chunks: &[&[_]] = &[&[4, 5], &[2, 3], &[1]]; assert_eq!(v.rchunks(2).collect::>(), chunks); let chunks: &[&[_]] = &[&[3, 4, 5], &[1, 2]]; assert_eq!(v.rchunks(3).collect::>(), chunks); let chunks: &[&[_]] = &[&[1, 2, 3, 4, 5]]; assert_eq!(v.rchunks(6).collect::>(), chunks); let chunks: &[&[_]] = &[&[1], &[2, 3], &[4, 5]]; assert_eq!(v.rchunks(2).rev().collect::>(), chunks); } #[test] #[should_panic] fn test_rchunksator_0() { let v = &[1, 2, 3, 4]; let _it = v.rchunks(0); } #[test] fn test_rchunks_exactator() { let v = &[1, 2, 3, 4, 5]; assert_eq!(v.rchunks_exact(2).len(), 2); let chunks: &[&[_]] = &[&[4, 5], &[2, 3]]; assert_eq!(v.rchunks_exact(2).collect::>(), chunks); let chunks: &[&[_]] = &[&[3, 4, 5]]; assert_eq!(v.rchunks_exact(3).collect::>(), chunks); let chunks: &[&[_]] = &[]; assert_eq!(v.rchunks_exact(6).collect::>(), chunks); let chunks: &[&[_]] = &[&[2, 3], &[4, 5]]; assert_eq!(v.rchunks_exact(2).rev().collect::>(), chunks); } #[test] #[should_panic] fn test_rchunks_exactator_0() { let v = &[1, 2, 3, 4]; let _it = v.rchunks_exact(0); } #[test] fn test_reverse_part() { let mut values = [1, 2, 3, 4, 5]; values[1..4].reverse(); assert!(values == [1, 4, 3, 2, 5]); } #[test] fn test_show() { macro_rules! test_show_vec { ($x:expr, $x_str:expr) => {{ let (x, x_str) = ($x, $x_str); assert_eq!(format!("{:?}", x), x_str); assert_eq!(format!("{:?}", x), x_str); }}; } let empty = Vec::::new(); test_show_vec!(empty, "[]"); test_show_vec!(vec![1], "[1]"); test_show_vec!(vec![1, 2, 3], "[1, 2, 3]"); test_show_vec!(vec![vec![], vec![1], vec![1, 1]], "[[], [1], [1, 1]]"); let empty_mut: &mut [i32] = &mut []; test_show_vec!(empty_mut, "[]"); let v = &mut [1]; test_show_vec!(v, "[1]"); let v = &mut [1, 2, 3]; test_show_vec!(v, "[1, 2, 3]"); let v: &mut [&mut [_]] = &mut [&mut [], &mut [1], &mut [1, 1]]; test_show_vec!(v, "[[], [1], [1, 1]]"); } #[test] fn test_vec_default() { macro_rules! t { ($ty:ty) => {{ let v: $ty = Default::default(); assert!(v.is_empty()); }}; } t!(&[i32]); t!(Vec); } #[test] #[should_panic] fn test_overflow_does_not_cause_segfault() { let mut v = vec![]; v.reserve_exact(!0); v.push(1); v.push(2); } #[test] #[should_panic] fn test_overflow_does_not_cause_segfault_managed() { let mut v = vec![Rc::new(1)]; v.reserve_exact(!0); v.push(Rc::new(2)); } #[test] fn test_mut_split_at() { let mut values = [1, 2, 3, 4, 5]; { let (left, right) = values.split_at_mut(2); { let left: &[_] = left; assert!(left[..left.len()] == [1, 2]); } for p in left { *p += 1; } { let right: &[_] = right; assert!(right[..right.len()] == [3, 4, 5]); } for p in right { *p += 2; } } assert!(values == [2, 3, 5, 6, 7]); } #[derive(Clone, PartialEq)] struct Foo; #[test] fn test_iter_zero_sized() { let mut v = vec![Foo, Foo, Foo]; assert_eq!(v.len(), 3); let mut cnt = 0; for f in &v { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 3); for f in &v[1..3] { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 5); for f in &mut v { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 8); for f in v { assert!(f == Foo); cnt += 1; } assert_eq!(cnt, 11); let xs: [Foo; 3] = [Foo, Foo, Foo]; cnt = 0; for f in &xs { assert!(*f == Foo); cnt += 1; } assert!(cnt == 3); } #[test] fn test_shrink_to_fit() { let mut xs = vec![0, 1, 2, 3]; for i in 4..100 { xs.push(i) } assert_eq!(xs.capacity(), 128); xs.shrink_to_fit(); assert_eq!(xs.capacity(), 100); assert_eq!(xs, (0..100).collect::>()); } #[test] fn test_starts_with() { assert!(b"foobar".starts_with(b"foo")); assert!(!b"foobar".starts_with(b"oob")); assert!(!b"foobar".starts_with(b"bar")); assert!(!b"foo".starts_with(b"foobar")); assert!(!b"bar".starts_with(b"foobar")); assert!(b"foobar".starts_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.starts_with(empty)); assert!(!empty.starts_with(b"foo")); assert!(b"foobar".starts_with(empty)); } #[test] fn test_ends_with() { assert!(b"foobar".ends_with(b"bar")); assert!(!b"foobar".ends_with(b"oba")); assert!(!b"foobar".ends_with(b"foo")); assert!(!b"foo".ends_with(b"foobar")); assert!(!b"bar".ends_with(b"foobar")); assert!(b"foobar".ends_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.ends_with(empty)); assert!(!empty.ends_with(b"foo")); assert!(b"foobar".ends_with(empty)); } #[test] fn test_mut_splitator() { let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0]; assert_eq!(xs.split_mut(|x| *x == 0).count(), 6); for slice in xs.split_mut(|x| *x == 0) { slice.reverse(); } assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0]); let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0, 6, 7]; for slice in xs.split_mut(|x| *x == 0).take(5) { slice.reverse(); } assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0, 6, 7]); } #[test] fn test_mut_splitator_rev() { let mut xs = [1, 2, 0, 3, 4, 0, 0, 5, 6, 0]; for slice in xs.split_mut(|x| *x == 0).rev().take(4) { slice.reverse(); } assert!(xs == [1, 2, 0, 4, 3, 0, 0, 6, 5, 0]); } #[test] fn test_get_mut() { let mut v = [0, 1, 2]; assert_eq!(v.get_mut(3), None); v.get_mut(1).map(|e| *e = 7); assert_eq!(v[1], 7); let mut x = 2; assert_eq!(v.get_mut(2), Some(&mut x)); } #[test] fn test_mut_chunks() { let mut v = [0, 1, 2, 3, 4, 5, 6]; assert_eq!(v.chunks_mut(3).len(), 3); for (i, chunk) in v.chunks_mut(3).enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 0, 0, 1, 1, 1, 2]; assert_eq!(v, result); } #[test] fn test_mut_chunks_rev() { let mut v = [0, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.chunks_mut(3).rev().enumerate() { for x in chunk { *x = i as u8; } } let result = [2, 2, 2, 1, 1, 1, 0]; assert_eq!(v, result); } #[test] #[should_panic] fn test_mut_chunks_0() { let mut v = [1, 2, 3, 4]; let _it = v.chunks_mut(0); } #[test] fn test_mut_chunks_exact() { let mut v = [0, 1, 2, 3, 4, 5, 6]; assert_eq!(v.chunks_exact_mut(3).len(), 2); for (i, chunk) in v.chunks_exact_mut(3).enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 0, 0, 1, 1, 1, 6]; assert_eq!(v, result); } #[test] fn test_mut_chunks_exact_rev() { let mut v = [0, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.chunks_exact_mut(3).rev().enumerate() { for x in chunk { *x = i as u8; } } let result = [1, 1, 1, 0, 0, 0, 6]; assert_eq!(v, result); } #[test] #[should_panic] fn test_mut_chunks_exact_0() { let mut v = [1, 2, 3, 4]; let _it = v.chunks_exact_mut(0); } #[test] fn test_mut_rchunks() { let mut v = [0, 1, 2, 3, 4, 5, 6]; assert_eq!(v.rchunks_mut(3).len(), 3); for (i, chunk) in v.rchunks_mut(3).enumerate() { for x in chunk { *x = i as u8; } } let result = [2, 1, 1, 1, 0, 0, 0]; assert_eq!(v, result); } #[test] fn test_mut_rchunks_rev() { let mut v = [0, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.rchunks_mut(3).rev().enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 1, 1, 1, 2, 2, 2]; assert_eq!(v, result); } #[test] #[should_panic] fn test_mut_rchunks_0() { let mut v = [1, 2, 3, 4]; let _it = v.rchunks_mut(0); } #[test] fn test_mut_rchunks_exact() { let mut v = [0, 1, 2, 3, 4, 5, 6]; assert_eq!(v.rchunks_exact_mut(3).len(), 2); for (i, chunk) in v.rchunks_exact_mut(3).enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 1, 1, 1, 0, 0, 0]; assert_eq!(v, result); } #[test] fn test_mut_rchunks_exact_rev() { let mut v = [0, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.rchunks_exact_mut(3).rev().enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 0, 0, 0, 1, 1, 1]; assert_eq!(v, result); } #[test] #[should_panic] fn test_mut_rchunks_exact_0() { let mut v = [1, 2, 3, 4]; let _it = v.rchunks_exact_mut(0); } #[test] fn test_mut_last() { let mut x = [1, 2, 3, 4, 5]; let h = x.last_mut(); assert_eq!(*h.unwrap(), 5); let y: &mut [i32] = &mut []; assert!(y.last_mut().is_none()); } #[test] fn test_to_vec() { let xs: Box<_> = box [1, 2, 3]; let ys = xs.to_vec(); assert_eq!(ys, [1, 2, 3]); } #[test] fn test_in_place_iterator_specialization() { let src: Box<[usize]> = box [1, 2, 3]; let src_ptr = src.as_ptr(); let sink: Box<_> = src.into_vec().into_iter().map(std::convert::identity).collect(); let sink_ptr = sink.as_ptr(); assert_eq!(src_ptr, sink_ptr); } #[test] fn test_box_slice_clone() { let data = vec![vec![0, 1], vec![0], vec![1]]; let data2 = data.clone().into_boxed_slice().clone().to_vec(); assert_eq!(data, data2); } #[test] #[allow(unused_must_use)] // here, we care about the side effects of `.clone()` #[cfg_attr(target_os = "emscripten", ignore)] fn test_box_slice_clone_panics() { use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; struct Canary { count: Arc, panics: bool, } impl Drop for Canary { fn drop(&mut self) { self.count.fetch_add(1, Ordering::SeqCst); } } impl Clone for Canary { fn clone(&self) -> Self { if self.panics { panic!() } Canary { count: self.count.clone(), panics: self.panics } } } let drop_count = Arc::new(AtomicUsize::new(0)); let canary = Canary { count: drop_count.clone(), panics: false }; let panic = Canary { count: drop_count.clone(), panics: true }; std::panic::catch_unwind(move || { // When xs is dropped, +5. let xs = vec![canary.clone(), canary.clone(), canary.clone(), panic, canary].into_boxed_slice(); // When panic is cloned, +3. xs.clone(); }) .unwrap_err(); // Total = 8 assert_eq!(drop_count.load(Ordering::SeqCst), 8); } #[test] fn test_copy_from_slice() { let src = [0, 1, 2, 3, 4, 5]; let mut dst = [0; 6]; dst.copy_from_slice(&src); assert_eq!(src, dst) } #[test] #[should_panic(expected = "source slice length (4) does not match destination slice length (5)")] fn test_copy_from_slice_dst_longer() { let src = [0, 1, 2, 3]; let mut dst = [0; 5]; dst.copy_from_slice(&src); } #[test] #[should_panic(expected = "source slice length (4) does not match destination slice length (3)")] fn test_copy_from_slice_dst_shorter() { let src = [0, 1, 2, 3]; let mut dst = [0; 3]; dst.copy_from_slice(&src); } const MAX_LEN: usize = 80; static DROP_COUNTS: [AtomicUsize; MAX_LEN] = [ // FIXME(RFC 1109): AtomicUsize is not Copy. AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), AtomicUsize::new(0), ]; static VERSIONS: AtomicUsize = AtomicUsize::new(0); #[derive(Clone, Eq)] struct DropCounter { x: u32, id: usize, version: Cell, } impl PartialEq for DropCounter { fn eq(&self, other: &Self) -> bool { self.partial_cmp(other) == Some(Ordering::Equal) } } impl PartialOrd for DropCounter { fn partial_cmp(&self, other: &Self) -> Option { self.version.set(self.version.get() + 1); other.version.set(other.version.get() + 1); VERSIONS.fetch_add(2, Relaxed); self.x.partial_cmp(&other.x) } } impl Ord for DropCounter { fn cmp(&self, other: &Self) -> Ordering { self.partial_cmp(other).unwrap() } } impl Drop for DropCounter { fn drop(&mut self) { DROP_COUNTS[self.id].fetch_add(1, Relaxed); VERSIONS.fetch_sub(self.version.get(), Relaxed); } } macro_rules! test { ($input:ident, $func:ident) => { let len = $input.len(); // Work out the total number of comparisons required to sort // this array... let mut count = 0usize; $input.to_owned().$func(|a, b| { count += 1; a.cmp(b) }); // ... and then panic on each and every single one. for panic_countdown in 0..count { // Refresh the counters. VERSIONS.store(0, Relaxed); for i in 0..len { DROP_COUNTS[i].store(0, Relaxed); } let v = $input.to_owned(); let _ = std::panic::catch_unwind(move || { let mut v = v; let mut panic_countdown = panic_countdown; v.$func(|a, b| { if panic_countdown == 0 { SILENCE_PANIC.with(|s| s.set(true)); panic!(); } panic_countdown -= 1; a.cmp(b) }) }); // Check that the number of things dropped is exactly // what we expect (i.e., the contents of `v`). for (i, c) in DROP_COUNTS.iter().enumerate().take(len) { let count = c.load(Relaxed); assert!(count == 1, "found drop count == {} for i == {}, len == {}", count, i, len); } // Check that the most recent versions of values were dropped. assert_eq!(VERSIONS.load(Relaxed), 0); } }; } thread_local!(static SILENCE_PANIC: Cell = Cell::new(false)); #[test] #[cfg_attr(target_os = "emscripten", ignore)] // no threads fn panic_safe() { let prev = panic::take_hook(); panic::set_hook(Box::new(move |info| { if !SILENCE_PANIC.with(|s| s.get()) { prev(info); } })); let mut rng = thread_rng(); // Miri is too slow (but still need to `chain` to make the types match) let lens = if cfg!(miri) { (1..10).chain(0..0) } else { (1..20).chain(70..MAX_LEN) }; let moduli: &[u32] = if cfg!(miri) { &[5] } else { &[5, 20, 50] }; for len in lens { for &modulus in moduli { for &has_runs in &[false, true] { let mut input = (0..len) .map(|id| DropCounter { x: rng.next_u32() % modulus, id: id, version: Cell::new(0), }) .collect::>(); if has_runs { for c in &mut input { c.x = c.id as u32; } for _ in 0..5 { let a = rng.gen::() % len; let b = rng.gen::() % len; if a < b { input[a..b].reverse(); } else { input.swap(a, b); } } } test!(input, sort_by); test!(input, sort_unstable_by); } } } // Set default panic hook again. drop(panic::take_hook()); } #[test] fn repeat_generic_slice() { assert_eq!([1, 2].repeat(2), vec![1, 2, 1, 2]); assert_eq!([1, 2, 3, 4].repeat(0), vec![]); assert_eq!([1, 2, 3, 4].repeat(1), vec![1, 2, 3, 4]); assert_eq!([1, 2, 3, 4].repeat(3), vec![1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]); } #[test] #[allow(unreachable_patterns)] fn subslice_patterns() { // This test comprehensively checks the passing static and dynamic semantics // of subslice patterns `..`, `x @ ..`, `ref x @ ..`, and `ref mut @ ..` // in slice patterns `[$($pat), $(,)?]` . #[derive(PartialEq, Debug, Clone)] struct N(u8); macro_rules! n { ($($e:expr),* $(,)?) => { [$(N($e)),*] } } macro_rules! c { ($inp:expr, $typ:ty, $out:expr $(,)?) => { assert_eq!($out, identity::<$typ>($inp)); }; } macro_rules! m { ($e:expr, $p:pat => $b:expr) => { match $e { $p => $b, _ => panic!(), } }; } // == Slices == // Matching slices using `ref` patterns: let mut v = vec![N(0), N(1), N(2), N(3), N(4)]; let mut vc = (0..=4).collect::>(); let [..] = v[..]; // Always matches. m!(v[..], [N(0), ref sub @ .., N(4)] => c!(sub, &[N], n![1, 2, 3])); m!(v[..], [N(0), ref sub @ ..] => c!(sub, &[N], n![1, 2, 3, 4])); m!(v[..], [ref sub @ .., N(4)] => c!(sub, &[N], n![0, 1, 2, 3])); m!(v[..], [ref sub @ .., _, _, _, _, _] => c!(sub, &[N], &n![] as &[N])); m!(v[..], [_, _, _, _, _, ref sub @ ..] => c!(sub, &[N], &n![] as &[N])); m!(vc[..], [x, .., y] => c!((x, y), (u8, u8), (0, 4))); // Matching slices using `ref mut` patterns: let [..] = v[..]; // Always matches. m!(v[..], [N(0), ref mut sub @ .., N(4)] => c!(sub, &mut [N], n![1, 2, 3])); m!(v[..], [N(0), ref mut sub @ ..] => c!(sub, &mut [N], n![1, 2, 3, 4])); m!(v[..], [ref mut sub @ .., N(4)] => c!(sub, &mut [N], n![0, 1, 2, 3])); m!(v[..], [ref mut sub @ .., _, _, _, _, _] => c!(sub, &mut [N], &mut n![] as &mut [N])); m!(v[..], [_, _, _, _, _, ref mut sub @ ..] => c!(sub, &mut [N], &mut n![] as &mut [N])); m!(vc[..], [x, .., y] => c!((x, y), (u8, u8), (0, 4))); // Matching slices using default binding modes (&): let [..] = &v[..]; // Always matches. m!(&v[..], [N(0), sub @ .., N(4)] => c!(sub, &[N], n![1, 2, 3])); m!(&v[..], [N(0), sub @ ..] => c!(sub, &[N], n![1, 2, 3, 4])); m!(&v[..], [sub @ .., N(4)] => c!(sub, &[N], n![0, 1, 2, 3])); m!(&v[..], [sub @ .., _, _, _, _, _] => c!(sub, &[N], &n![] as &[N])); m!(&v[..], [_, _, _, _, _, sub @ ..] => c!(sub, &[N], &n![] as &[N])); m!(&vc[..], [x, .., y] => c!((x, y), (&u8, &u8), (&0, &4))); // Matching slices using default binding modes (&mut): let [..] = &mut v[..]; // Always matches. m!(&mut v[..], [N(0), sub @ .., N(4)] => c!(sub, &mut [N], n![1, 2, 3])); m!(&mut v[..], [N(0), sub @ ..] => c!(sub, &mut [N], n![1, 2, 3, 4])); m!(&mut v[..], [sub @ .., N(4)] => c!(sub, &mut [N], n![0, 1, 2, 3])); m!(&mut v[..], [sub @ .., _, _, _, _, _] => c!(sub, &mut [N], &mut n![] as &mut [N])); m!(&mut v[..], [_, _, _, _, _, sub @ ..] => c!(sub, &mut [N], &mut n![] as &mut [N])); m!(&mut vc[..], [x, .., y] => c!((x, y), (&mut u8, &mut u8), (&mut 0, &mut 4))); // == Arrays == let mut v = n![0, 1, 2, 3, 4]; let vc = [0, 1, 2, 3, 4]; // Matching arrays by value: m!(v.clone(), [N(0), sub @ .., N(4)] => c!(sub, [N; 3], n![1, 2, 3])); m!(v.clone(), [N(0), sub @ ..] => c!(sub, [N; 4], n![1, 2, 3, 4])); m!(v.clone(), [sub @ .., N(4)] => c!(sub, [N; 4], n![0, 1, 2, 3])); m!(v.clone(), [sub @ .., _, _, _, _, _] => c!(sub, [N; 0], n![] as [N; 0])); m!(v.clone(), [_, _, _, _, _, sub @ ..] => c!(sub, [N; 0], n![] as [N; 0])); m!(v.clone(), [x, .., y] => c!((x, y), (N, N), (N(0), N(4)))); m!(v.clone(), [..] => ()); // Matching arrays by ref patterns: m!(v, [N(0), ref sub @ .., N(4)] => c!(sub, &[N; 3], &n![1, 2, 3])); m!(v, [N(0), ref sub @ ..] => c!(sub, &[N; 4], &n![1, 2, 3, 4])); m!(v, [ref sub @ .., N(4)] => c!(sub, &[N; 4], &n![0, 1, 2, 3])); m!(v, [ref sub @ .., _, _, _, _, _] => c!(sub, &[N; 0], &n![] as &[N; 0])); m!(v, [_, _, _, _, _, ref sub @ ..] => c!(sub, &[N; 0], &n![] as &[N; 0])); m!(vc, [x, .., y] => c!((x, y), (u8, u8), (0, 4))); // Matching arrays by ref mut patterns: m!(v, [N(0), ref mut sub @ .., N(4)] => c!(sub, &mut [N; 3], &mut n![1, 2, 3])); m!(v, [N(0), ref mut sub @ ..] => c!(sub, &mut [N; 4], &mut n![1, 2, 3, 4])); m!(v, [ref mut sub @ .., N(4)] => c!(sub, &mut [N; 4], &mut n![0, 1, 2, 3])); m!(v, [ref mut sub @ .., _, _, _, _, _] => c!(sub, &mut [N; 0], &mut n![] as &mut [N; 0])); m!(v, [_, _, _, _, _, ref mut sub @ ..] => c!(sub, &mut [N; 0], &mut n![] as &mut [N; 0])); // Matching arrays by default binding modes (&): m!(&v, [N(0), sub @ .., N(4)] => c!(sub, &[N; 3], &n![1, 2, 3])); m!(&v, [N(0), sub @ ..] => c!(sub, &[N; 4], &n![1, 2, 3, 4])); m!(&v, [sub @ .., N(4)] => c!(sub, &[N; 4], &n![0, 1, 2, 3])); m!(&v, [sub @ .., _, _, _, _, _] => c!(sub, &[N; 0], &n![] as &[N; 0])); m!(&v, [_, _, _, _, _, sub @ ..] => c!(sub, &[N; 0], &n![] as &[N; 0])); m!(&v, [..] => ()); m!(&v, [x, .., y] => c!((x, y), (&N, &N), (&N(0), &N(4)))); // Matching arrays by default binding modes (&mut): m!(&mut v, [N(0), sub @ .., N(4)] => c!(sub, &mut [N; 3], &mut n![1, 2, 3])); m!(&mut v, [N(0), sub @ ..] => c!(sub, &mut [N; 4], &mut n![1, 2, 3, 4])); m!(&mut v, [sub @ .., N(4)] => c!(sub, &mut [N; 4], &mut n![0, 1, 2, 3])); m!(&mut v, [sub @ .., _, _, _, _, _] => c!(sub, &mut [N; 0], &mut n![] as &[N; 0])); m!(&mut v, [_, _, _, _, _, sub @ ..] => c!(sub, &mut [N; 0], &mut n![] as &[N; 0])); m!(&mut v, [..] => ()); m!(&mut v, [x, .., y] => c!((x, y), (&mut N, &mut N), (&mut N(0), &mut N(4)))); }