//! The memory subsystem. //! //! Generally, we use `Pointer` to denote memory addresses. However, some operations //! have a "size"-like parameter, and they take `Scalar` for the address because //! if the size is 0, then the pointer can also be a (properly aligned, non-null) //! integer. It is crucial that these operations call `check_align` *before* //! short-circuiting the empty case! use std::assert_matches::assert_matches; use std::borrow::Cow; use std::collections::VecDeque; use std::convert::TryFrom; use std::fmt; use std::ptr; use rustc_ast::Mutability; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_middle::mir::display_allocation; use rustc_middle::ty::{Instance, ParamEnv, TyCtxt}; use rustc_target::abi::{Align, HasDataLayout, Size, TargetDataLayout}; use super::{ alloc_range, AllocId, AllocMap, AllocRange, Allocation, CheckInAllocMsg, GlobalAlloc, InterpResult, Machine, MayLeak, Pointer, PointerArithmetic, Provenance, Scalar, ScalarMaybeUninit, }; #[derive(Debug, PartialEq, Copy, Clone)] pub enum MemoryKind { /// Stack memory. Error if deallocated except during a stack pop. Stack, /// Memory allocated by `caller_location` intrinsic. Error if ever deallocated. CallerLocation, /// Additional memory kinds a machine wishes to distinguish from the builtin ones. Machine(T), } impl MayLeak for MemoryKind { #[inline] fn may_leak(self) -> bool { match self { MemoryKind::Stack => false, MemoryKind::CallerLocation => true, MemoryKind::Machine(k) => k.may_leak(), } } } impl fmt::Display for MemoryKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { MemoryKind::Stack => write!(f, "stack variable"), MemoryKind::CallerLocation => write!(f, "caller location"), MemoryKind::Machine(m) => write!(f, "{}", m), } } } /// Used by `get_size_and_align` to indicate whether the allocation needs to be live. #[derive(Debug, Copy, Clone)] pub enum AllocCheck { /// Allocation must be live and not a function pointer. Dereferenceable, /// Allocations needs to be live, but may be a function pointer. Live, /// Allocation may be dead. MaybeDead, } /// The value of a function pointer. #[derive(Debug, Copy, Clone)] pub enum FnVal<'tcx, Other> { Instance(Instance<'tcx>), Other(Other), } impl<'tcx, Other> FnVal<'tcx, Other> { pub fn as_instance(self) -> InterpResult<'tcx, Instance<'tcx>> { match self { FnVal::Instance(instance) => Ok(instance), FnVal::Other(_) => { throw_unsup_format!("'foreign' function pointers are not supported in this context") } } } } // `Memory` has to depend on the `Machine` because some of its operations // (e.g., `get`) call a `Machine` hook. pub struct Memory<'mir, 'tcx, M: Machine<'mir, 'tcx>> { /// Allocations local to this instance of the miri engine. The kind /// helps ensure that the same mechanism is used for allocation and /// deallocation. When an allocation is not found here, it is a /// global and looked up in the `tcx` for read access. Some machines may /// have to mutate this map even on a read-only access to a global (because /// they do pointer provenance tracking and the allocations in `tcx` have /// the wrong type), so we let the machine override this type. /// Either way, if the machine allows writing to a global, doing so will /// create a copy of the global allocation here. // FIXME: this should not be public, but interning currently needs access to it pub(super) alloc_map: M::MemoryMap, /// Map for "extra" function pointers. extra_fn_ptr_map: FxHashMap, /// To be able to compare pointers with null, and to check alignment for accesses /// to ZSTs (where pointers may dangle), we keep track of the size even for allocations /// that do not exist any more. // FIXME: this should not be public, but interning currently needs access to it pub(super) dead_alloc_map: FxHashMap, /// Extra data added by the machine. pub extra: M::MemoryExtra, /// Lets us implement `HasDataLayout`, which is awfully convenient. pub tcx: TyCtxt<'tcx>, } impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for Memory<'mir, 'tcx, M> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } /// A reference to some allocation that was already bounds-checked for the given region /// and had the on-access machine hooks run. #[derive(Copy, Clone)] pub struct AllocRef<'a, 'tcx, Tag, Extra> { alloc: &'a Allocation, range: AllocRange, tcx: TyCtxt<'tcx>, alloc_id: AllocId, } /// A reference to some allocation that was already bounds-checked for the given region /// and had the on-access machine hooks run. pub struct AllocRefMut<'a, 'tcx, Tag, Extra> { alloc: &'a mut Allocation, range: AllocRange, tcx: TyCtxt<'tcx>, alloc_id: AllocId, } impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { pub fn new(tcx: TyCtxt<'tcx>, extra: M::MemoryExtra) -> Self { Memory { alloc_map: M::MemoryMap::default(), extra_fn_ptr_map: FxHashMap::default(), dead_alloc_map: FxHashMap::default(), extra, tcx, } } /// Call this to turn untagged "global" pointers (obtained via `tcx`) into /// the machine pointer to the allocation. Must never be used /// for any other pointers, nor for TLS statics. /// /// Using the resulting pointer represents a *direct* access to that memory /// (e.g. by directly using a `static`), /// as opposed to access through a pointer that was created by the program. /// /// This function can fail only if `ptr` points to an `extern static`. #[inline] pub fn global_base_pointer( &self, ptr: Pointer, ) -> InterpResult<'tcx, Pointer> { // We know `offset` is relative to the allocation, so we can use `into_parts`. let (alloc_id, offset) = ptr.into_parts(); // We need to handle `extern static`. match self.tcx.get_global_alloc(alloc_id) { Some(GlobalAlloc::Static(def_id)) if self.tcx.is_thread_local_static(def_id) => { bug!("global memory cannot point to thread-local static") } Some(GlobalAlloc::Static(def_id)) if self.tcx.is_foreign_item(def_id) => { return M::extern_static_base_pointer(self, def_id); } _ => {} } // And we need to get the tag. Ok(M::tag_alloc_base_pointer(self, Pointer::new(alloc_id, offset))) } pub fn create_fn_alloc( &mut self, fn_val: FnVal<'tcx, M::ExtraFnVal>, ) -> Pointer { let id = match fn_val { FnVal::Instance(instance) => self.tcx.create_fn_alloc(instance), FnVal::Other(extra) => { // FIXME(RalfJung): Should we have a cache here? let id = self.tcx.reserve_alloc_id(); let old = self.extra_fn_ptr_map.insert(id, extra); assert!(old.is_none()); id } }; // Functions are global allocations, so make sure we get the right base pointer. // We know this is not an `extern static` so this cannot fail. self.global_base_pointer(Pointer::from(id)).unwrap() } pub fn allocate( &mut self, size: Size, align: Align, kind: MemoryKind, ) -> InterpResult<'static, Pointer> { let alloc = Allocation::uninit(size, align, M::PANIC_ON_ALLOC_FAIL)?; Ok(self.allocate_with(alloc, kind)) } pub fn allocate_bytes( &mut self, bytes: &[u8], align: Align, kind: MemoryKind, mutability: Mutability, ) -> Pointer { let alloc = Allocation::from_bytes(bytes, align, mutability); self.allocate_with(alloc, kind) } pub fn allocate_with( &mut self, alloc: Allocation, kind: MemoryKind, ) -> Pointer { let id = self.tcx.reserve_alloc_id(); debug_assert_ne!( Some(kind), M::GLOBAL_KIND.map(MemoryKind::Machine), "dynamically allocating global memory" ); let alloc = M::init_allocation_extra(self, id, Cow::Owned(alloc), Some(kind)); self.alloc_map.insert(id, (kind, alloc.into_owned())); M::tag_alloc_base_pointer(self, Pointer::from(id)) } pub fn reallocate( &mut self, ptr: Pointer>, old_size_and_align: Option<(Size, Align)>, new_size: Size, new_align: Align, kind: MemoryKind, ) -> InterpResult<'tcx, Pointer> { let (alloc_id, offset, ptr) = self.ptr_get_alloc(ptr)?; if offset.bytes() != 0 { throw_ub_format!( "reallocating {:?} which does not point to the beginning of an object", ptr ); } // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc". // This happens so rarely, the perf advantage is outweighed by the maintenance cost. let new_ptr = self.allocate(new_size, new_align, kind)?; let old_size = match old_size_and_align { Some((size, _align)) => size, None => self.get_raw(alloc_id)?.size(), }; // This will also call the access hooks. self.copy( ptr.into(), Align::ONE, new_ptr.into(), Align::ONE, old_size.min(new_size), /*nonoverlapping*/ true, )?; self.deallocate(ptr.into(), old_size_and_align, kind)?; Ok(new_ptr) } pub fn deallocate( &mut self, ptr: Pointer>, old_size_and_align: Option<(Size, Align)>, kind: MemoryKind, ) -> InterpResult<'tcx> { let (alloc_id, offset, ptr) = self.ptr_get_alloc(ptr)?; trace!("deallocating: {}", alloc_id); if offset.bytes() != 0 { throw_ub_format!( "deallocating {:?} which does not point to the beginning of an object", ptr ); } let (alloc_kind, mut alloc) = match self.alloc_map.remove(&alloc_id) { Some(alloc) => alloc, None => { // Deallocating global memory -- always an error return Err(match self.tcx.get_global_alloc(alloc_id) { Some(GlobalAlloc::Function(..)) => { err_ub_format!("deallocating {}, which is a function", alloc_id) } Some(GlobalAlloc::Static(..) | GlobalAlloc::Memory(..)) => { err_ub_format!("deallocating {}, which is static memory", alloc_id) } None => err_ub!(PointerUseAfterFree(alloc_id)), } .into()); } }; if alloc.mutability == Mutability::Not { throw_ub_format!("deallocating immutable allocation {}", alloc_id); } if alloc_kind != kind { throw_ub_format!( "deallocating {}, which is {} memory, using {} deallocation operation", alloc_id, alloc_kind, kind ); } if let Some((size, align)) = old_size_and_align { if size != alloc.size() || align != alloc.align { throw_ub_format!( "incorrect layout on deallocation: {} has size {} and alignment {}, but gave size {} and alignment {}", alloc_id, alloc.size().bytes(), alloc.align.bytes(), size.bytes(), align.bytes(), ) } } // Let the machine take some extra action let size = alloc.size(); M::memory_deallocated( &mut self.extra, &mut alloc.extra, ptr.provenance, alloc_range(Size::ZERO, size), )?; // Don't forget to remember size and align of this now-dead allocation let old = self.dead_alloc_map.insert(alloc_id, (size, alloc.align)); if old.is_some() { bug!("Nothing can be deallocated twice"); } Ok(()) } /// Internal helper function to determine the allocation and offset of a pointer (if any). #[inline(always)] fn get_ptr_access( &self, ptr: Pointer>, size: Size, align: Align, ) -> InterpResult<'tcx, Option<(AllocId, Size, Pointer)>> { let align = M::enforce_alignment(&self.extra).then_some(align); self.check_and_deref_ptr( ptr, size, align, CheckInAllocMsg::MemoryAccessTest, |alloc_id, offset, ptr| { let (size, align) = self.get_size_and_align(alloc_id, AllocCheck::Dereferenceable)?; Ok((size, align, (alloc_id, offset, ptr))) }, ) } /// Check if the given pointer points to live memory of given `size` and `align` /// (ignoring `M::enforce_alignment`). The caller can control the error message for the /// out-of-bounds case. #[inline(always)] pub fn check_ptr_access_align( &self, ptr: Pointer>, size: Size, align: Align, msg: CheckInAllocMsg, ) -> InterpResult<'tcx> { self.check_and_deref_ptr(ptr, size, Some(align), msg, |alloc_id, _, _| { let check = match msg { CheckInAllocMsg::DerefTest | CheckInAllocMsg::MemoryAccessTest => { AllocCheck::Dereferenceable } CheckInAllocMsg::PointerArithmeticTest | CheckInAllocMsg::InboundsTest => { AllocCheck::Live } }; let (size, align) = self.get_size_and_align(alloc_id, check)?; Ok((size, align, ())) })?; Ok(()) } /// Low-level helper function to check if a ptr is in-bounds and potentially return a reference /// to the allocation it points to. Supports both shared and mutable references, as the actual /// checking is offloaded to a helper closure. `align` defines whether and which alignment check /// is done. Returns `None` for size 0, and otherwise `Some` of what `alloc_size` returned. fn check_and_deref_ptr( &self, ptr: Pointer>, size: Size, align: Option, msg: CheckInAllocMsg, alloc_size: impl FnOnce( AllocId, Size, Pointer, ) -> InterpResult<'tcx, (Size, Align, T)>, ) -> InterpResult<'tcx, Option> { fn check_offset_align(offset: u64, align: Align) -> InterpResult<'static> { if offset % align.bytes() == 0 { Ok(()) } else { // The biggest power of two through which `offset` is divisible. let offset_pow2 = 1 << offset.trailing_zeros(); throw_ub!(AlignmentCheckFailed { has: Align::from_bytes(offset_pow2).unwrap(), required: align, }) } } // Extract from the pointer an `Option` and an offset, which is relative to the // allocation or (if that is `None`) an absolute address. let ptr_or_addr = if size.bytes() == 0 { // Let's see what we can do, but don't throw errors if there's nothing there. self.ptr_try_get_alloc(ptr) } else { // A "real" access, we insist on getting an `AllocId`. Ok(self.ptr_get_alloc(ptr)?) }; Ok(match ptr_or_addr { Err(addr) => { // No memory is actually being accessed. debug_assert!(size.bytes() == 0); // Must be non-null. if addr == 0 { throw_ub!(DanglingIntPointer(0, msg)) } // Must be aligned. if let Some(align) = align { check_offset_align(addr, align)?; } None } Ok((alloc_id, offset, ptr)) => { let (alloc_size, alloc_align, ret_val) = alloc_size(alloc_id, offset, ptr)?; // Test bounds. This also ensures non-null. // It is sufficient to check this for the end pointer. Also check for overflow! if offset.checked_add(size, &self.tcx).map_or(true, |end| end > alloc_size) { throw_ub!(PointerOutOfBounds { alloc_id, alloc_size, ptr_offset: self.machine_usize_to_isize(offset.bytes()), ptr_size: size, msg, }) } // Test align. Check this last; if both bounds and alignment are violated // we want the error to be about the bounds. if let Some(align) = align { if M::force_int_for_alignment_check(&self.extra) { let addr = Scalar::from_pointer(ptr, &self.tcx) .to_machine_usize(&self.tcx) .expect("ptr-to-int cast for align check should never fail"); check_offset_align(addr, align)?; } else { // Check allocation alignment and offset alignment. if alloc_align.bytes() < align.bytes() { throw_ub!(AlignmentCheckFailed { has: alloc_align, required: align }); } check_offset_align(offset.bytes(), align)?; } } // We can still be zero-sized in this branch, in which case we have to // return `None`. if size.bytes() == 0 { None } else { Some(ret_val) } } }) } /// Test if the pointer might be null. pub fn ptr_may_be_null(&self, ptr: Pointer>) -> bool { match self.ptr_try_get_alloc(ptr) { Ok((alloc_id, offset, _)) => { let (size, _align) = self .get_size_and_align(alloc_id, AllocCheck::MaybeDead) .expect("alloc info with MaybeDead cannot fail"); // If the pointer is out-of-bounds, it may be null. // Note that one-past-the-end (offset == size) is still inbounds, and never null. offset > size } Err(offset) => offset == 0, } } } /// Allocation accessors impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { /// Helper function to obtain a global (tcx) allocation. /// This attempts to return a reference to an existing allocation if /// one can be found in `tcx`. That, however, is only possible if `tcx` and /// this machine use the same pointer tag, so it is indirected through /// `M::tag_allocation`. fn get_global_alloc( &self, id: AllocId, is_write: bool, ) -> InterpResult<'tcx, Cow<'tcx, Allocation>> { let (alloc, def_id) = match self.tcx.get_global_alloc(id) { Some(GlobalAlloc::Memory(mem)) => { // Memory of a constant or promoted or anonymous memory referenced by a static. (mem, None) } Some(GlobalAlloc::Function(..)) => throw_ub!(DerefFunctionPointer(id)), None => throw_ub!(PointerUseAfterFree(id)), Some(GlobalAlloc::Static(def_id)) => { assert!(self.tcx.is_static(def_id)); assert!(!self.tcx.is_thread_local_static(def_id)); // Notice that every static has two `AllocId` that will resolve to the same // thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID, // and the other one is maps to `GlobalAlloc::Memory`, this is returned by // `eval_static_initializer` and it is the "resolved" ID. // The resolved ID is never used by the interpreted program, it is hidden. // This is relied upon for soundness of const-patterns; a pointer to the resolved // ID would "sidestep" the checks that make sure consts do not point to statics! // The `GlobalAlloc::Memory` branch here is still reachable though; when a static // contains a reference to memory that was created during its evaluation (i.e., not // to another static), those inner references only exist in "resolved" form. if self.tcx.is_foreign_item(def_id) { throw_unsup!(ReadExternStatic(def_id)); } (self.tcx.eval_static_initializer(def_id)?, Some(def_id)) } }; M::before_access_global(&self.extra, id, alloc, def_id, is_write)?; let alloc = Cow::Borrowed(alloc); // We got tcx memory. Let the machine initialize its "extra" stuff. let alloc = M::init_allocation_extra( self, id, // always use the ID we got as input, not the "hidden" one. alloc, M::GLOBAL_KIND.map(MemoryKind::Machine), ); Ok(alloc) } /// Gives raw access to the `Allocation`, without bounds or alignment checks. /// The caller is responsible for calling the access hooks! fn get_raw( &self, id: AllocId, ) -> InterpResult<'tcx, &Allocation> { // The error type of the inner closure here is somewhat funny. We have two // ways of "erroring": An actual error, or because we got a reference from // `get_global_alloc` that we can actually use directly without inserting anything anywhere. // So the error type is `InterpResult<'tcx, &Allocation>`. let a = self.alloc_map.get_or(id, || { let alloc = self.get_global_alloc(id, /*is_write*/ false).map_err(Err)?; match alloc { Cow::Borrowed(alloc) => { // We got a ref, cheaply return that as an "error" so that the // map does not get mutated. Err(Ok(alloc)) } Cow::Owned(alloc) => { // Need to put it into the map and return a ref to that let kind = M::GLOBAL_KIND.expect( "I got a global allocation that I have to copy but the machine does \ not expect that to happen", ); Ok((MemoryKind::Machine(kind), alloc)) } } }); // Now unpack that funny error type match a { Ok(a) => Ok(&a.1), Err(a) => a, } } /// "Safe" (bounds and align-checked) allocation access. pub fn get<'a>( &'a self, ptr: Pointer>, size: Size, align: Align, ) -> InterpResult<'tcx, Option>> { let align = M::enforce_alignment(&self.extra).then_some(align); let ptr_and_alloc = self.check_and_deref_ptr( ptr, size, align, CheckInAllocMsg::MemoryAccessTest, |alloc_id, offset, ptr| { let alloc = self.get_raw(alloc_id)?; Ok((alloc.size(), alloc.align, (alloc_id, offset, ptr, alloc))) }, )?; if let Some((alloc_id, offset, ptr, alloc)) = ptr_and_alloc { let range = alloc_range(offset, size); M::memory_read(&self.extra, &alloc.extra, ptr.provenance, range)?; Ok(Some(AllocRef { alloc, range, tcx: self.tcx, alloc_id })) } else { // Even in this branch we have to be sure that we actually access the allocation, in // order to ensure that `static FOO: Type = FOO;` causes a cycle error instead of // magically pulling *any* ZST value from the ether. However, the `get_raw` above is // always called when `ptr` has an `AllocId`. Ok(None) } } /// Return the `extra` field of the given allocation. pub fn get_alloc_extra<'a>(&'a self, id: AllocId) -> InterpResult<'tcx, &'a M::AllocExtra> { Ok(&self.get_raw(id)?.extra) } /// Gives raw mutable access to the `Allocation`, without bounds or alignment checks. /// The caller is responsible for calling the access hooks! /// /// Also returns a ptr to `self.extra` so that the caller can use it in parallel with the /// allocation. fn get_raw_mut( &mut self, id: AllocId, ) -> InterpResult<'tcx, (&mut Allocation, &mut M::MemoryExtra)> { // We have "NLL problem case #3" here, which cannot be worked around without loss of // efficiency even for the common case where the key is in the map. // // (Cannot use `get_mut_or` since `get_global_alloc` needs `&self`.) if self.alloc_map.get_mut(id).is_none() { // Slow path. // Allocation not found locally, go look global. let alloc = self.get_global_alloc(id, /*is_write*/ true)?; let kind = M::GLOBAL_KIND.expect( "I got a global allocation that I have to copy but the machine does \ not expect that to happen", ); self.alloc_map.insert(id, (MemoryKind::Machine(kind), alloc.into_owned())); } let (_kind, alloc) = self.alloc_map.get_mut(id).unwrap(); if alloc.mutability == Mutability::Not { throw_ub!(WriteToReadOnly(id)) } Ok((alloc, &mut self.extra)) } /// "Safe" (bounds and align-checked) allocation access. pub fn get_mut<'a>( &'a mut self, ptr: Pointer>, size: Size, align: Align, ) -> InterpResult<'tcx, Option>> { let parts = self.get_ptr_access(ptr, size, align)?; if let Some((alloc_id, offset, ptr)) = parts { let tcx = self.tcx; // FIXME: can we somehow avoid looking up the allocation twice here? // We cannot call `get_raw_mut` inside `check_and_deref_ptr` as that would duplicate `&mut self`. let (alloc, extra) = self.get_raw_mut(alloc_id)?; let range = alloc_range(offset, size); M::memory_written(extra, &mut alloc.extra, ptr.provenance, range)?; Ok(Some(AllocRefMut { alloc, range, tcx, alloc_id })) } else { Ok(None) } } /// Return the `extra` field of the given allocation. pub fn get_alloc_extra_mut<'a>( &'a mut self, id: AllocId, ) -> InterpResult<'tcx, (&'a mut M::AllocExtra, &'a mut M::MemoryExtra)> { let (alloc, memory_extra) = self.get_raw_mut(id)?; Ok((&mut alloc.extra, memory_extra)) } /// Obtain the size and alignment of an allocation, even if that allocation has /// been deallocated. /// /// If `liveness` is `AllocCheck::MaybeDead`, this function always returns `Ok`. pub fn get_size_and_align( &self, id: AllocId, liveness: AllocCheck, ) -> InterpResult<'static, (Size, Align)> { // # Regular allocations // Don't use `self.get_raw` here as that will // a) cause cycles in case `id` refers to a static // b) duplicate a global's allocation in miri if let Some((_, alloc)) = self.alloc_map.get(id) { return Ok((alloc.size(), alloc.align)); } // # Function pointers // (both global from `alloc_map` and local from `extra_fn_ptr_map`) if self.get_fn_alloc(id).is_some() { return if let AllocCheck::Dereferenceable = liveness { // The caller requested no function pointers. throw_ub!(DerefFunctionPointer(id)) } else { Ok((Size::ZERO, Align::ONE)) }; } // # Statics // Can't do this in the match argument, we may get cycle errors since the lock would // be held throughout the match. match self.tcx.get_global_alloc(id) { Some(GlobalAlloc::Static(did)) => { assert!(!self.tcx.is_thread_local_static(did)); // Use size and align of the type. let ty = self.tcx.type_of(did); let layout = self.tcx.layout_of(ParamEnv::empty().and(ty)).unwrap(); Ok((layout.size, layout.align.abi)) } Some(GlobalAlloc::Memory(alloc)) => { // Need to duplicate the logic here, because the global allocations have // different associated types than the interpreter-local ones. Ok((alloc.size(), alloc.align)) } Some(GlobalAlloc::Function(_)) => bug!("We already checked function pointers above"), // The rest must be dead. None => { if let AllocCheck::MaybeDead = liveness { // Deallocated pointers are allowed, we should be able to find // them in the map. Ok(*self .dead_alloc_map .get(&id) .expect("deallocated pointers should all be recorded in `dead_alloc_map`")) } else { throw_ub!(PointerUseAfterFree(id)) } } } } fn get_fn_alloc(&self, id: AllocId) -> Option> { if let Some(extra) = self.extra_fn_ptr_map.get(&id) { Some(FnVal::Other(*extra)) } else { match self.tcx.get_global_alloc(id) { Some(GlobalAlloc::Function(instance)) => Some(FnVal::Instance(instance)), _ => None, } } } pub fn get_fn( &self, ptr: Pointer>, ) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>> { trace!("get_fn({:?})", ptr); let (alloc_id, offset, _ptr) = self.ptr_get_alloc(ptr)?; if offset.bytes() != 0 { throw_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset))) } self.get_fn_alloc(alloc_id) .ok_or_else(|| err_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset))).into()) } pub fn mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> { self.get_raw_mut(id)?.0.mutability = Mutability::Not; Ok(()) } /// Create a lazy debug printer that prints the given allocation and all allocations it points /// to, recursively. #[must_use] pub fn dump_alloc<'a>(&'a self, id: AllocId) -> DumpAllocs<'a, 'mir, 'tcx, M> { self.dump_allocs(vec![id]) } /// Create a lazy debug printer for a list of allocations and all allocations they point to, /// recursively. #[must_use] pub fn dump_allocs<'a>(&'a self, mut allocs: Vec) -> DumpAllocs<'a, 'mir, 'tcx, M> { allocs.sort(); allocs.dedup(); DumpAllocs { mem: self, allocs } } /// Print leaked memory. Allocations reachable from `static_roots` or a `Global` allocation /// are not considered leaked. Leaks whose kind `may_leak()` returns true are not reported. pub fn leak_report(&self, static_roots: &[AllocId]) -> usize { // Collect the set of allocations that are *reachable* from `Global` allocations. let reachable = { let mut reachable = FxHashSet::default(); let global_kind = M::GLOBAL_KIND.map(MemoryKind::Machine); let mut todo: Vec<_> = self.alloc_map.filter_map_collect(move |&id, &(kind, _)| { if Some(kind) == global_kind { Some(id) } else { None } }); todo.extend(static_roots); while let Some(id) = todo.pop() { if reachable.insert(id) { // This is a new allocation, add its relocations to `todo`. if let Some((_, alloc)) = self.alloc_map.get(id) { todo.extend(alloc.relocations().values().map(|tag| tag.get_alloc_id())); } } } reachable }; // All allocations that are *not* `reachable` and *not* `may_leak` are considered leaking. let leaks: Vec<_> = self.alloc_map.filter_map_collect(|&id, &(kind, _)| { if kind.may_leak() || reachable.contains(&id) { None } else { Some(id) } }); let n = leaks.len(); if n > 0 { eprintln!("The following memory was leaked: {:?}", self.dump_allocs(leaks)); } n } /// This is used by [priroda](https://github.com/oli-obk/priroda) pub fn alloc_map(&self) -> &M::MemoryMap { &self.alloc_map } } #[doc(hidden)] /// There's no way to use this directly, it's just a helper struct for the `dump_alloc(s)` methods. pub struct DumpAllocs<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> { mem: &'a Memory<'mir, 'tcx, M>, allocs: Vec, } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> std::fmt::Debug for DumpAllocs<'a, 'mir, 'tcx, M> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // Cannot be a closure because it is generic in `Tag`, `Extra`. fn write_allocation_track_relocs<'tcx, Tag: Provenance, Extra>( fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'tcx>, allocs_to_print: &mut VecDeque, alloc: &Allocation, ) -> std::fmt::Result { for alloc_id in alloc.relocations().values().map(|tag| tag.get_alloc_id()) { allocs_to_print.push_back(alloc_id); } write!(fmt, "{}", display_allocation(tcx, alloc)) } let mut allocs_to_print: VecDeque<_> = self.allocs.iter().copied().collect(); // `allocs_printed` contains all allocations that we have already printed. let mut allocs_printed = FxHashSet::default(); while let Some(id) = allocs_to_print.pop_front() { if !allocs_printed.insert(id) { // Already printed, so skip this. continue; } write!(fmt, "{}", id)?; match self.mem.alloc_map.get(id) { Some(&(kind, ref alloc)) => { // normal alloc write!(fmt, " ({}, ", kind)?; write_allocation_track_relocs( &mut *fmt, self.mem.tcx, &mut allocs_to_print, alloc, )?; } None => { // global alloc match self.mem.tcx.get_global_alloc(id) { Some(GlobalAlloc::Memory(alloc)) => { write!(fmt, " (unchanged global, ")?; write_allocation_track_relocs( &mut *fmt, self.mem.tcx, &mut allocs_to_print, alloc, )?; } Some(GlobalAlloc::Function(func)) => { write!(fmt, " (fn: {})", func)?; } Some(GlobalAlloc::Static(did)) => { write!(fmt, " (static: {})", self.mem.tcx.def_path_str(did))?; } None => { write!(fmt, " (deallocated)")?; } } } } writeln!(fmt)?; } Ok(()) } } /// Reading and writing. impl<'tcx, 'a, Tag: Provenance, Extra> AllocRefMut<'a, 'tcx, Tag, Extra> { pub fn write_scalar( &mut self, range: AllocRange, val: ScalarMaybeUninit, ) -> InterpResult<'tcx> { Ok(self .alloc .write_scalar(&self.tcx, self.range.subrange(range), val) .map_err(|e| e.to_interp_error(self.alloc_id))?) } pub fn write_ptr_sized( &mut self, offset: Size, val: ScalarMaybeUninit, ) -> InterpResult<'tcx> { self.write_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size), val) } } impl<'tcx, 'a, Tag: Provenance, Extra> AllocRef<'a, 'tcx, Tag, Extra> { pub fn read_scalar(&self, range: AllocRange) -> InterpResult<'tcx, ScalarMaybeUninit> { Ok(self .alloc .read_scalar(&self.tcx, self.range.subrange(range)) .map_err(|e| e.to_interp_error(self.alloc_id))?) } pub fn read_ptr_sized(&self, offset: Size) -> InterpResult<'tcx, ScalarMaybeUninit> { self.read_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size)) } pub fn check_bytes(&self, range: AllocRange, allow_uninit_and_ptr: bool) -> InterpResult<'tcx> { Ok(self .alloc .check_bytes(&self.tcx, self.range.subrange(range), allow_uninit_and_ptr) .map_err(|e| e.to_interp_error(self.alloc_id))?) } } impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { /// Reads the given number of bytes from memory. Returns them as a slice. /// /// Performs appropriate bounds checks. pub fn read_bytes( &self, ptr: Pointer>, size: Size, ) -> InterpResult<'tcx, &[u8]> { let alloc_ref = match self.get(ptr, size, Align::ONE)? { Some(a) => a, None => return Ok(&[]), // zero-sized access }; // Side-step AllocRef and directly access the underlying bytes more efficiently. // (We are staying inside the bounds here so all is good.) Ok(alloc_ref .alloc .get_bytes(&alloc_ref.tcx, alloc_ref.range) .map_err(|e| e.to_interp_error(alloc_ref.alloc_id))?) } /// Writes the given stream of bytes into memory. /// /// Performs appropriate bounds checks. pub fn write_bytes( &mut self, ptr: Pointer>, src: impl IntoIterator, ) -> InterpResult<'tcx> { let mut src = src.into_iter(); let (lower, upper) = src.size_hint(); let len = upper.expect("can only write bounded iterators"); assert_eq!(lower, len, "can only write iterators with a precise length"); let size = Size::from_bytes(len); let alloc_ref = match self.get_mut(ptr, size, Align::ONE)? { Some(alloc_ref) => alloc_ref, None => { // zero-sized access assert_matches!( src.next(), None, "iterator said it was empty but returned an element" ); return Ok(()); } }; // Side-step AllocRef and directly access the underlying bytes more efficiently. // (We are staying inside the bounds here so all is good.) let alloc_id = alloc_ref.alloc_id; let bytes = alloc_ref .alloc .get_bytes_mut(&alloc_ref.tcx, alloc_ref.range) .map_err(move |e| e.to_interp_error(alloc_id))?; // `zip` would stop when the first iterator ends; we want to definitely // cover all of `bytes`. for dest in bytes { *dest = src.next().expect("iterator was shorter than it said it would be"); } assert_matches!(src.next(), None, "iterator was longer than it said it would be"); Ok(()) } pub fn copy( &mut self, src: Pointer>, src_align: Align, dest: Pointer>, dest_align: Align, size: Size, nonoverlapping: bool, ) -> InterpResult<'tcx> { self.copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping) } pub fn copy_repeatedly( &mut self, src: Pointer>, src_align: Align, dest: Pointer>, dest_align: Align, size: Size, num_copies: u64, nonoverlapping: bool, ) -> InterpResult<'tcx> { let tcx = self.tcx; // We need to do our own bounds-checks. let src_parts = self.get_ptr_access(src, size, src_align)?; let dest_parts = self.get_ptr_access(dest, size * num_copies, dest_align)?; // `Size` multiplication // FIXME: we look up both allocations twice here, once ebfore for the `check_ptr_access` // and once below to get the underlying `&[mut] Allocation`. // Source alloc preparations and access hooks. let (src_alloc_id, src_offset, src) = match src_parts { None => return Ok(()), // Zero-sized *source*, that means dst is also zero-sized and we have nothing to do. Some(src_ptr) => src_ptr, }; let src_alloc = self.get_raw(src_alloc_id)?; let src_range = alloc_range(src_offset, size); M::memory_read(&self.extra, &src_alloc.extra, src.provenance, src_range)?; // We need the `dest` ptr for the next operation, so we get it now. // We already did the source checks and called the hooks so we are good to return early. let (dest_alloc_id, dest_offset, dest) = match dest_parts { None => return Ok(()), // Zero-sized *destiantion*. Some(dest_ptr) => dest_ptr, }; // This checks relocation edges on the src, which needs to happen before // `prepare_relocation_copy`. let src_bytes = src_alloc .get_bytes_with_uninit_and_ptr(&tcx, src_range) .map_err(|e| e.to_interp_error(src_alloc_id))? .as_ptr(); // raw ptr, so we can also get a ptr to the destination allocation // first copy the relocations to a temporary buffer, because // `get_bytes_mut` will clear the relocations, which is correct, // since we don't want to keep any relocations at the target. let relocations = src_alloc.prepare_relocation_copy(self, src_range, dest_offset, num_copies); // Prepare a copy of the initialization mask. let compressed = src_alloc.compress_uninit_range(src_range); // Destination alloc preparations and access hooks. let (dest_alloc, extra) = self.get_raw_mut(dest_alloc_id)?; let dest_range = alloc_range(dest_offset, size * num_copies); M::memory_written(extra, &mut dest_alloc.extra, dest.provenance, dest_range)?; let dest_bytes = dest_alloc .get_bytes_mut_ptr(&tcx, dest_range) .map_err(|e| e.to_interp_error(dest_alloc_id))? .as_mut_ptr(); if compressed.no_bytes_init() { // Fast path: If all bytes are `uninit` then there is nothing to copy. The target range // is marked as uninitialized but we otherwise omit changing the byte representation which may // be arbitrary for uninitialized bytes. // This also avoids writing to the target bytes so that the backing allocation is never // touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary // operating system this can avoid physically allocating the page. dest_alloc.mark_init(dest_range, false); // `Size` multiplication dest_alloc.mark_relocation_range(relocations); return Ok(()); } // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. // The pointers above remain valid even if the `HashMap` table is moved around because they // point into the `Vec` storing the bytes. unsafe { if src_alloc_id == dest_alloc_id { if nonoverlapping { // `Size` additions if (src_offset <= dest_offset && src_offset + size > dest_offset) || (dest_offset <= src_offset && dest_offset + size > src_offset) { throw_ub_format!("copy_nonoverlapping called on overlapping ranges") } } for i in 0..num_copies { ptr::copy( src_bytes, dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication size.bytes_usize(), ); } } else { for i in 0..num_copies { ptr::copy_nonoverlapping( src_bytes, dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication size.bytes_usize(), ); } } } // now fill in all the "init" data dest_alloc.mark_compressed_init_range( &compressed, alloc_range(dest_offset, size), // just a single copy (i.e., not full `dest_range`) num_copies, ); // copy the relocations to the destination dest_alloc.mark_relocation_range(relocations); Ok(()) } } /// Machine pointer introspection. impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { pub fn scalar_to_ptr(&self, scalar: Scalar) -> Pointer> { // We use `to_bits_or_ptr_internal` since we are just implementing the method people need to // call to force getting out a pointer. match scalar.to_bits_or_ptr_internal(self.pointer_size()) { Err(ptr) => ptr.into(), Ok(bits) => { let addr = u64::try_from(bits).unwrap(); let ptr = M::ptr_from_addr(&self, addr); if addr == 0 { assert!(ptr.provenance.is_none(), "null pointer can never have an AllocId"); } ptr } } } /// Turning a "maybe pointer" into a proper pointer (and some information /// about where it points), or an absolute address. pub fn ptr_try_get_alloc( &self, ptr: Pointer>, ) -> Result<(AllocId, Size, Pointer), u64> { match ptr.into_pointer_or_addr() { Ok(ptr) => { let (alloc_id, offset) = M::ptr_get_alloc(self, ptr); Ok((alloc_id, offset, ptr)) } Err(addr) => Err(addr.bytes()), } } /// Turning a "maybe pointer" into a proper pointer (and some information about where it points). #[inline(always)] pub fn ptr_get_alloc( &self, ptr: Pointer>, ) -> InterpResult<'tcx, (AllocId, Size, Pointer)> { self.ptr_try_get_alloc(ptr).map_err(|offset| { err_ub!(DanglingIntPointer(offset, CheckInAllocMsg::InboundsTest)).into() }) } }