use crate::common::CodegenCx; use crate::coverageinfo; use crate::llvm; use llvm::coverageinfo::CounterMappingRegion; use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression}; use rustc_codegen_ssa::traits::{ConstMethods, CoverageInfoMethods}; use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; use rustc_hir::def_id::{DefId, DefIdSet}; use rustc_llvm::RustString; use rustc_middle::mir::coverage::CodeRegion; use rustc_span::Symbol; use std::ffi::CString; use tracing::debug; /// Generates and exports the Coverage Map. /// /// This Coverage Map complies with Coverage Mapping Format version 5 (zero-based encoded as 4), /// as defined at [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format). /// This version is supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`) /// bundled with Rust's fork of LLVM. /// /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with /// the same version. Clang's implementation of Coverage Map generation was referenced when /// implementing this Rust version, and though the format documentation is very explicit and /// detailed, some undocumented details in Clang's implementation (that may or may not be important) /// were also replicated for Rust's Coverage Map. pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) { let tcx = cx.tcx; // While our bundled LLVM might support Coverage Map Version 6 // (encoded as a zero-based value: 5), we clamp that to Version 5, // as Version 6 would require us to use the 0-th filename as a path prefix // for all other relative paths, which we don't take advantage of right now. let _version = coverageinfo::mapping_version(); let version = 4; debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name()); // In order to show that unused functions have coverage counts of zero (0), LLVM requires the // functions exist. Generate synthetic functions with a (required) single counter, and add the // MIR `Coverage` code regions to the `function_coverage_map`, before calling // `ctx.take_function_coverage_map()`. if !tcx.sess.instrument_coverage_except_unused_functions() { add_unused_functions(cx); } let function_coverage_map = match cx.coverage_context() { Some(ctx) => ctx.take_function_coverage_map(), None => return, }; if function_coverage_map.is_empty() { // This module has no functions with coverage instrumentation return; } let mut mapgen = CoverageMapGenerator::new(); // Encode coverage mappings and generate function records let mut function_data = Vec::new(); for (instance, function_coverage) in function_coverage_map { debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance); let mangled_function_name = tcx.symbol_name(instance).to_string(); let source_hash = function_coverage.source_hash(); let is_used = function_coverage.is_used(); let (expressions, counter_regions) = function_coverage.get_expressions_and_counter_regions(); let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| { mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer); }); debug_assert!( !coverage_mapping_buffer.is_empty(), "Every `FunctionCoverage` should have at least one counter" ); function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer)); } // Encode all filenames referenced by counters/expressions in this module let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| { coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer); }); let filenames_size = filenames_buffer.len(); let filenames_val = cx.const_bytes(&filenames_buffer[..]); let filenames_ref = coverageinfo::hash_bytes(filenames_buffer); // Generate the LLVM IR representation of the coverage map and store it in a well-known global let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val); for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data { save_function_record( cx, mangled_function_name, source_hash, filenames_ref, coverage_mapping_buffer, is_used, ); } // Save the coverage data value to LLVM IR coverageinfo::save_cov_data_to_mod(cx, cov_data_val); } struct CoverageMapGenerator { filenames: FxIndexSet, } impl CoverageMapGenerator { fn new() -> Self { Self { filenames: FxIndexSet::default() } } /// Using the `expressions` and `counter_regions` collected for the current function, generate /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format. fn write_coverage_mapping( &mut self, expressions: Vec, counter_regions: impl Iterator, coverage_mapping_buffer: &RustString, ) { let mut counter_regions = counter_regions.collect::>(); if counter_regions.is_empty() { return; } let mut virtual_file_mapping = Vec::new(); let mut mapping_regions = Vec::new(); let mut current_file_name = None; let mut current_file_id = 0; // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted // by filename and position. Capture any new files to compute the `CounterMappingRegion`s // `file_id` (indexing files referenced by the current function), and construct the // function-specific `virtual_file_mapping` from `file_id` to its index in the module's // `filenames` array. counter_regions.sort_unstable_by_key(|(_counter, region)| *region); for (counter, region) in counter_regions { let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region; let same_file = current_file_name.as_ref().map_or(false, |p| *p == file_name); if !same_file { if current_file_name.is_some() { current_file_id += 1; } current_file_name = Some(file_name); let c_filename = CString::new(file_name.to_string()) .expect("null error converting filename to C string"); debug!(" file_id: {} = '{:?}'", current_file_id, c_filename); let (filenames_index, _) = self.filenames.insert_full(c_filename); virtual_file_mapping.push(filenames_index as u32); } debug!("Adding counter {:?} to map for {:?}", counter, region); mapping_regions.push(CounterMappingRegion::code_region( counter, current_file_id, start_line, start_col, end_line, end_col, )); } // Encode and append the current function's coverage mapping data coverageinfo::write_mapping_to_buffer( virtual_file_mapping, expressions, mapping_regions, coverage_mapping_buffer, ); } /// Construct coverage map header and the array of function records, and combine them into the /// coverage map. Save the coverage map data into the LLVM IR as a static global using a /// specific, well-known section and name. fn generate_coverage_map( self, cx: &CodegenCx<'ll, 'tcx>, version: u32, filenames_size: usize, filenames_val: &'ll llvm::Value, ) -> &'ll llvm::Value { debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version); // Create the coverage data header (Note, fields 0 and 2 are now always zero, // as of `llvm::coverage::CovMapVersion::Version4`.) let zero_was_n_records_val = cx.const_u32(0); let filenames_size_val = cx.const_u32(filenames_size as u32); let zero_was_coverage_size_val = cx.const_u32(0); let version_val = cx.const_u32(version); let cov_data_header_val = cx.const_struct( &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val], /*packed=*/ false, ); // Create the complete LLVM coverage data value to add to the LLVM IR cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false) } } /// Construct a function record and combine it with the function's coverage mapping data. /// Save the function record into the LLVM IR as a static global using a /// specific, well-known section and name. fn save_function_record( cx: &CodegenCx<'ll, 'tcx>, mangled_function_name: String, source_hash: u64, filenames_ref: u64, coverage_mapping_buffer: Vec, is_used: bool, ) { // Concatenate the encoded coverage mappings let coverage_mapping_size = coverage_mapping_buffer.len(); let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer[..]); let func_name_hash = coverageinfo::hash_str(&mangled_function_name); let func_name_hash_val = cx.const_u64(func_name_hash); let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32); let source_hash_val = cx.const_u64(source_hash); let filenames_ref_val = cx.const_u64(filenames_ref); let func_record_val = cx.const_struct( &[ func_name_hash_val, coverage_mapping_size_val, source_hash_val, filenames_ref_val, coverage_mapping_val, ], /*packed=*/ true, ); coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used); } /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for /// the functions that went through codegen; such as public functions and "used" functions /// (functions referenced by other "used" or public items). Any other functions considered unused, /// or "Unreachable", were still parsed and processed through the MIR stage, but were not /// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but /// that flag is known to cause other errors, when combined with `-Z instrument-coverage`; and /// `-Clink-dead-code` will not generate code for unused generic functions.) /// /// We can find the unused functions (including generic functions) by the set difference of all MIR /// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query /// `codegened_and_inlined_items`). /// /// *HOWEVER* the codegenned `DefId`s are partitioned across multiple `CodegenUnit`s (CGUs), and /// this function is processing a `function_coverage_map` for the functions (`Instance`/`DefId`) /// allocated to only one of those CGUs. We must NOT inject any unused functions's `CodeRegion`s /// more than once, so we have to pick a CGUs `function_coverage_map` into which the unused /// function will be inserted. fn add_unused_functions<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) { let tcx = cx.tcx; // FIXME(#79622): Can this solution be simplified and/or improved? Are there other sources // of compiler state data that might help (or better sources that could be exposed, but // aren't yet)? let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics(); let all_def_ids: DefIdSet = tcx .mir_keys(()) .iter() .filter_map(|local_def_id| { let def_id = local_def_id.to_def_id(); if ignore_unused_generics && tcx.generics_of(def_id).requires_monomorphization(tcx) { return None; } Some(local_def_id.to_def_id()) }) .collect(); let codegenned_def_ids = tcx.codegened_and_inlined_items(()); let mut unused_def_ids_by_file: FxHashMap> = FxHashMap::default(); for &non_codegenned_def_id in all_def_ids.difference(codegenned_def_ids) { // Make sure the non-codegenned (unused) function has at least one MIR // `Coverage` statement with a code region, and return its file name. if let Some(non_codegenned_file_name) = tcx.covered_file_name(non_codegenned_def_id) { let def_ids = unused_def_ids_by_file.entry(*non_codegenned_file_name).or_insert_with(Vec::new); def_ids.push(non_codegenned_def_id); } } if unused_def_ids_by_file.is_empty() { // There are no unused functions with file names to add (in any CGU) return; } // Each `CodegenUnit` (CGU) has its own function_coverage_map, and generates a specific binary // with its own coverage map. // // Each covered function `Instance` can be included in only one coverage map, produced from a // specific function_coverage_map, from a specific CGU. // // Since unused functions did not generate code, they are not associated with any CGU yet. // // To avoid injecting the unused functions in multiple coverage maps (for multiple CGUs) // determine which function_coverage_map has the responsibility for publishing unreachable // coverage, based on file name: For each unused function, find the CGU that generates the // first function (based on sorted `DefId`) from the same file. // // Add a new `FunctionCoverage` to the `function_coverage_map`, with unreachable code regions // for each region in it's MIR. // Convert the `HashSet` of `codegenned_def_ids` to a sortable vector, and sort them. let mut sorted_codegenned_def_ids: Vec = codegenned_def_ids.iter().copied().collect(); sorted_codegenned_def_ids.sort_unstable(); let mut first_covered_def_id_by_file: FxHashMap = FxHashMap::default(); for &def_id in sorted_codegenned_def_ids.iter() { if let Some(covered_file_name) = tcx.covered_file_name(def_id) { // Only add files known to have unused functions if unused_def_ids_by_file.contains_key(covered_file_name) { first_covered_def_id_by_file.entry(*covered_file_name).or_insert(def_id); } } } // Get the set of def_ids with coverage regions, known by *this* CoverageContext. let cgu_covered_def_ids: DefIdSet = match cx.coverage_context() { Some(ctx) => ctx .function_coverage_map .borrow() .keys() .map(|&instance| instance.def.def_id()) .collect(), None => return, }; let cgu_covered_files: FxHashSet = first_covered_def_id_by_file .iter() .filter_map( |(&file_name, def_id)| { if cgu_covered_def_ids.contains(def_id) { Some(file_name) } else { None } }, ) .collect(); // For each file for which this CGU is responsible for adding unused function coverage, // get the `def_id`s for each unused function (if any), define a synthetic function with a // single LLVM coverage counter, and add the function's coverage `CodeRegion`s. to the // function_coverage_map. for covered_file_name in cgu_covered_files { for def_id in unused_def_ids_by_file.remove(&covered_file_name).into_iter().flatten() { cx.define_unused_fn(def_id); } } }