// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::{P, Block, Crate, DeclLocal, Expr_, ExprMac, SyntaxContext}; use ast::{Local, Ident, mac_invoc_tt}; use ast::{item_mac, Mrk, Stmt, StmtDecl, StmtMac, StmtExpr, StmtSemi}; use ast::{token_tree}; use ast; use ast_util::{mtwt_outer_mark, new_rename, new_mark}; use ext::build::AstBuilder; use attr; use attr::AttrMetaMethods; use codemap; use codemap::{Span, Spanned, ExpnInfo, NameAndSpan, MacroBang, MacroAttribute}; use ext::base::*; use fold::*; use opt_vec; use parse; use parse::{parse_item_from_source_str}; use parse::token; use parse::token::{fresh_mark, fresh_name, ident_to_str, intern}; use visit; use visit::Visitor; use util::small_vector::SmallVector; use std::vec; pub fn expand_expr(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, e: @ast::Expr, fld: &MacroExpander) -> @ast::Expr { match e.node { // expr_mac should really be expr_ext or something; it's the // entry-point for all syntax extensions. ExprMac(ref mac) => { match (*mac).node { // it would almost certainly be cleaner to pass the whole // macro invocation in, rather than pulling it apart and // marking the tts and the ctxt separately. This also goes // for the other three macro invocation chunks of code // in this file. // Token-tree macros: mac_invoc_tt(ref pth, ref tts, ctxt) => { if (pth.segments.len() > 1u) { cx.span_fatal( pth.span, format!("expected macro name without module \ separators")); } let extname = &pth.segments[0].identifier; let extnamestr = ident_to_str(extname); // leaving explicit deref here to highlight unbox op: match (*extsbox).find(&extname.name) { None => { cx.span_fatal( pth.span, format!("macro undefined: '{}'", extnamestr)) } Some(@SE(NormalTT(expandfun, exp_span))) => { cx.bt_push(ExpnInfo { call_site: e.span, callee: NameAndSpan { name: extnamestr, format: MacroBang, span: exp_span, }, }); let fm = fresh_mark(); // mark before: let marked_before = mark_tts(*tts,fm); let marked_ctxt = new_mark(fm, ctxt); // The span that we pass to the expanders we want to // be the root of the call stack. That's the most // relevant span and it's the actual invocation of // the macro. let mac_span = original_span(cx); let expanded = match expandfun.expand(cx, mac_span.call_site, marked_before, marked_ctxt) { MRExpr(e) => e, MRAny(any_macro) => any_macro.make_expr(), _ => { cx.span_fatal( pth.span, format!( "non-expr macro in expr pos: {}", extnamestr ) ) } }; // mark after: let marked_after = mark_expr(expanded,fm); // Keep going, outside-in. // // XXX(pcwalton): Is it necessary to clone the // node here? let fully_expanded = fld.fold_expr(marked_after).node.clone(); cx.bt_pop(); @ast::Expr { id: ast::DUMMY_NODE_ID, node: fully_expanded, span: e.span, } } _ => { cx.span_fatal( pth.span, format!("'{}' is not a tt-style macro", extnamestr) ) } } } } } // Desugar expr_for_loop // From: `[':] for in ` // FIXME #6993 : change type of opt_ident to Option ast::ExprForLoop(src_pat, src_expr, src_loop_block, opt_ident) => { // Expand any interior macros etc. // NB: we don't fold pats yet. Curious. let src_expr = fld.fold_expr(src_expr).clone(); let src_loop_block = fld.fold_block(src_loop_block); let span = e.span; fn mk_expr(_: @ExtCtxt, span: Span, node: Expr_) -> @ast::Expr { @ast::Expr { id: ast::DUMMY_NODE_ID, node: node, span: span, } } fn mk_simple_path(ident: ast::Ident, span: Span) -> ast::Path { ast::Path { span: span, global: false, segments: ~[ ast::PathSegment { identifier: ident, lifetimes: opt_vec::Empty, types: opt_vec::Empty, } ], } } // to: // // { // let _i = &mut ; // [':] loop { // match i.next() { // None => break, // Some() => // } // } // } let local_ident = token::gensym_ident("i"); let next_ident = cx.ident_of("next"); let none_ident = cx.ident_of("None"); let local_path = cx.path_ident(span, local_ident); let some_path = cx.path_ident(span, cx.ident_of("Some")); // `let i = &mut ` let iter_decl_stmt = cx.stmt_let(span, false, local_ident, cx.expr_mut_addr_of(span, src_expr)); // `None => break ['];` let none_arm = { // FIXME #6993: this map goes away: let break_expr = cx.expr(span, ast::ExprBreak(opt_ident.map(|x| x.name))); let none_pat = cx.pat_ident(span, none_ident); cx.arm(span, ~[none_pat], break_expr) }; // `Some() => ` let some_arm = cx.arm(span, ~[cx.pat_enum(span, some_path, ~[src_pat])], cx.expr_block(src_loop_block)); // `match i.next() { ... }` let match_expr = { let next_call_expr = cx.expr_method_call(span, cx.expr_path(local_path), next_ident, ~[]); cx.expr_match(span, next_call_expr, ~[none_arm, some_arm]) }; // ['ident:] loop { ... } let loop_expr = cx.expr(span, ast::ExprLoop(cx.block_expr(match_expr), opt_ident)); // `{ let ... ; loop { ... } }` let block = cx.block(span, ~[iter_decl_stmt], Some(loop_expr)); @ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprBlock(block), span: span, } } _ => noop_fold_expr(e, fld) } } // This is a secondary mechanism for invoking syntax extensions on items: // "decorator" attributes, such as #[auto_encode]. These are invoked by an // attribute prefixing an item, and are interpreted by feeding the item // through the named attribute _as a syntax extension_ and splicing in the // resulting item vec into place in favour of the decorator. Note that // these do _not_ work for macro extensions, just ItemDecorator ones. // // NB: there is some redundancy between this and expand_item, below, and // they might benefit from some amount of semantic and language-UI merger. pub fn expand_mod_items(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, module_: &ast::_mod, fld: &MacroExpander) -> ast::_mod { // Fold the contents first: let module_ = noop_fold_mod(module_, fld); // For each item, look through the attributes. If any of them are // decorated with "item decorators", then use that function to transform // the item into a new set of items. let new_items = vec::flat_map(module_.items, |item| { item.attrs.rev_iter().fold(~[*item], |items, attr| { let mname = attr.name(); match (*extsbox).find(&intern(mname)) { Some(@SE(ItemDecorator(dec_fn))) => { cx.bt_push(ExpnInfo { call_site: attr.span, callee: NameAndSpan { name: mname, format: MacroAttribute, span: None } }); let r = dec_fn(cx, attr.span, attr.node.value, items); cx.bt_pop(); r }, _ => items, } }) }); ast::_mod { items: new_items, ..module_ } } // eval $e with a new exts frame: macro_rules! with_exts_frame ( ($extsboxexpr:expr,$macros_escape:expr,$e:expr) => ({let extsbox = $extsboxexpr; let oldexts = *extsbox; *extsbox = oldexts.push_frame(); extsbox.insert(intern(special_block_name), @BlockInfo(BlockInfo{macros_escape:$macros_escape,pending_renames:@mut ~[]})); let result = $e; *extsbox = oldexts; result }) ) static special_block_name : &'static str = " block"; // When we enter a module, record it, for the sake of `module!` pub fn expand_item(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, it: @ast::item, fld: &MacroExpander) -> SmallVector<@ast::item> { match it.node { ast::item_mac(..) => expand_item_mac(extsbox, cx, it, fld), ast::item_mod(_) | ast::item_foreign_mod(_) => { cx.mod_push(it.ident); let macro_escape = contains_macro_escape(it.attrs); let result = with_exts_frame!(extsbox, macro_escape, noop_fold_item(it, fld)); cx.mod_pop(); result }, _ => noop_fold_item(it, fld) } } // does this attribute list contain "macro_escape" ? pub fn contains_macro_escape(attrs: &[ast::Attribute]) -> bool { attr::contains_name(attrs, "macro_escape") } // Support for item-position macro invocations, exactly the same // logic as for expression-position macro invocations. pub fn expand_item_mac(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, it: @ast::item, fld: &MacroExpander) -> SmallVector<@ast::item> { let (pth, tts, ctxt) = match it.node { item_mac(codemap::Spanned { node: mac_invoc_tt(ref pth, ref tts, ctxt), .. }) => { (pth, (*tts).clone(), ctxt) } _ => cx.span_bug(it.span, "invalid item macro invocation") }; let extname = &pth.segments[0].identifier; let extnamestr = ident_to_str(extname); let fm = fresh_mark(); let expanded = match (*extsbox).find(&extname.name) { None => cx.span_fatal(pth.span, format!("macro undefined: '{}!'", extnamestr)), Some(@SE(NormalTT(expander, span))) => { if it.ident.name != parse::token::special_idents::invalid.name { cx.span_fatal(pth.span, format!("macro {}! expects no ident argument, \ given '{}'", extnamestr, ident_to_str(&it.ident))); } cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr, format: MacroBang, span: span } }); // mark before expansion: let marked_before = mark_tts(tts,fm); let marked_ctxt = new_mark(fm,ctxt); expander.expand(cx, it.span, marked_before, marked_ctxt) } Some(@SE(IdentTT(expander, span))) => { if it.ident.name == parse::token::special_idents::invalid.name { cx.span_fatal(pth.span, format!("macro {}! expects an ident argument", extnamestr)); } cx.bt_push(ExpnInfo { call_site: it.span, callee: NameAndSpan { name: extnamestr, format: MacroBang, span: span } }); // mark before expansion: let marked_tts = mark_tts(tts,fm); let marked_ctxt = new_mark(fm,ctxt); expander.expand(cx, it.span, it.ident, marked_tts, marked_ctxt) } _ => cx.span_fatal( it.span, format!("{}! is not legal in item position", extnamestr)) }; let items = match expanded { MRItem(it) => { mark_item(it,fm).move_iter() .flat_map(|i| fld.fold_item(i).move_iter()) .collect() } MRExpr(_) => { cx.span_fatal(pth.span, format!("expr macro in item position: {}", extnamestr)) } MRAny(any_macro) => { any_macro.make_items().move_iter() .flat_map(|i| mark_item(i, fm).move_iter()) .flat_map(|i| fld.fold_item(i).move_iter()) .collect() } MRDef(ref mdef) => { // yikes... no idea how to apply the mark to this. I'm afraid // we're going to have to wait-and-see on this one. insert_macro(*extsbox,intern(mdef.name), @SE((*mdef).ext)); SmallVector::zero() } }; cx.bt_pop(); return items; } // insert a macro into the innermost frame that doesn't have the // macro_escape tag. fn insert_macro(exts: SyntaxEnv, name: ast::Name, transformer: @Transformer) { let is_non_escaping_block = |t : &@Transformer| -> bool{ match t { &@BlockInfo(BlockInfo {macros_escape:false,..}) => true, &@BlockInfo(BlockInfo {..}) => false, _ => fail!("special identifier {:?} was bound to a non-BlockInfo", special_block_name) } }; exts.insert_into_frame(name,transformer,intern(special_block_name), is_non_escaping_block) } // expand a stmt pub fn expand_stmt(extsbox: @mut SyntaxEnv, cx: @ExtCtxt, s: &Stmt, fld: &MacroExpander) -> SmallVector<@Stmt> { // why the copying here and not in expand_expr? // looks like classic changed-in-only-one-place let (pth, tts, semi, ctxt) = match s.node { StmtMac(ref mac, semi) => { match mac.node { mac_invoc_tt(ref pth, ref tts, ctxt) => { (pth, (*tts).clone(), semi, ctxt) } } } _ => return expand_non_macro_stmt(*extsbox, s, fld) }; if (pth.segments.len() > 1u) { cx.span_fatal(pth.span, "expected macro name without module separators"); } let extname = &pth.segments[0].identifier; let extnamestr = ident_to_str(extname); let fully_expanded: SmallVector<@Stmt> = match (*extsbox).find(&extname.name) { None => { cx.span_fatal(pth.span, format!("macro undefined: '{}'", extnamestr)) } Some(@SE(NormalTT(expandfun, exp_span))) => { cx.bt_push(ExpnInfo { call_site: s.span, callee: NameAndSpan { name: extnamestr, format: MacroBang, span: exp_span, } }); let fm = fresh_mark(); // mark before expansion: let marked_tts = mark_tts(tts,fm); let marked_ctxt = new_mark(fm,ctxt); // See the comment in expand_expr for why we want the original span, // not the current mac.span. let mac_span = original_span(cx); let expanded = match expandfun.expand(cx, mac_span.call_site, marked_tts, marked_ctxt) { MRExpr(e) => { @codemap::Spanned { node: StmtExpr(e, ast::DUMMY_NODE_ID), span: e.span, } } MRAny(any_macro) => any_macro.make_stmt(), _ => cx.span_fatal( pth.span, format!("non-stmt macro in stmt pos: {}", extnamestr)) }; let marked_after = mark_stmt(expanded,fm); // Keep going, outside-in. let fully_expanded = fld.fold_stmt(marked_after); if fully_expanded.is_empty() { cx.span_fatal(pth.span, "macro didn't expand to a statement"); } cx.bt_pop(); fully_expanded.move_iter() .map(|s| @Spanned { span: s.span, node: s.node.clone() }) .collect() } _ => { cx.span_fatal(pth.span, format!("'{}' is not a tt-style macro", extnamestr)) } }; fully_expanded.move_iter().map(|s| { match s.node { StmtExpr(e, stmt_id) if semi => { @Spanned { span: s.span, node: StmtSemi(e, stmt_id) } } _ => s /* might already have a semi */ } }).collect() } // expand a non-macro stmt. this is essentially the fallthrough for // expand_stmt, above. fn expand_non_macro_stmt(exts: SyntaxEnv, s: &Stmt, fld: &MacroExpander) -> SmallVector<@Stmt> { // is it a let? match s.node { StmtDecl(@Spanned { node: DeclLocal(ref local), span: stmt_span }, node_id) => { let block_info = get_block_info(exts); let pending_renames = block_info.pending_renames; // take it apart: let @Local { ty: _, pat: pat, init: init, id: id, span: span } = *local; // expand the pat (it might contain exprs... #:(o)> let expanded_pat = fld.fold_pat(pat); // find the pat_idents in the pattern: // oh dear heaven... this is going to include the enum names, as well.... // ... but that should be okay, as long as the new names are gensyms // for the old ones. let mut name_finder = new_name_finder(~[]); name_finder.visit_pat(expanded_pat,()); // generate fresh names, push them to a new pending list let new_pending_renames = @mut ~[]; for ident in name_finder.ident_accumulator.iter() { let new_name = fresh_name(ident); new_pending_renames.push((*ident,new_name)); } let rename_fld = renames_to_fold(new_pending_renames); // rewrite the pattern using the new names (the old ones // have already been applied): let rewritten_pat = rename_fld.fold_pat(expanded_pat); // add them to the existing pending renames: for pr in new_pending_renames.iter() {pending_renames.push(*pr)} // also, don't forget to expand the init: let new_init_opt = init.map(|e| fld.fold_expr(e)); let rewritten_local = @Local { ty: local.ty, pat: rewritten_pat, init: new_init_opt, id: id, span: span, }; SmallVector::one(@Spanned { node: StmtDecl(@Spanned { node: DeclLocal(rewritten_local), span: stmt_span }, node_id), span: span }) }, _ => noop_fold_stmt(s, fld), } } // a visitor that extracts the pat_ident paths // from a given thingy and puts them in a mutable // array (passed in to the traversal) #[deriving(Clone)] struct NewNameFinderContext { ident_accumulator: ~[ast::Ident], } impl Visitor<()> for NewNameFinderContext { fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) { match *pattern { // we found a pat_ident! ast::Pat { id: _, node: ast::PatIdent(_, ref path, ref inner), span: _ } => { match path { // a path of length one: &ast::Path { global: false, span: _, segments: [ ast::PathSegment { identifier: id, lifetimes: _, types: _ } ] } => self.ident_accumulator.push(id), // I believe these must be enums... _ => () } // visit optional subpattern of pat_ident: for subpat in inner.iter() { self.visit_pat(*subpat, ()) } } // use the default traversal for non-pat_idents _ => visit::walk_pat(self, pattern, ()) } } fn visit_ty(&mut self, typ: &ast::Ty, _: ()) { visit::walk_ty(self, typ, ()) } } // return a visitor that extracts the pat_ident paths // from a given thingy and puts them in a mutable // array (passed in to the traversal) pub fn new_name_finder(idents: ~[ast::Ident]) -> NewNameFinderContext { NewNameFinderContext { ident_accumulator: idents, } } // expand a block. pushes a new exts_frame, then calls expand_block_elts pub fn expand_block(extsbox: @mut SyntaxEnv, _: @ExtCtxt, blk: &Block, fld: &MacroExpander) -> P { // see note below about treatment of exts table with_exts_frame!(extsbox,false, expand_block_elts(*extsbox, blk, fld)) } // expand the elements of a block. pub fn expand_block_elts(exts: SyntaxEnv, b: &Block, fld: &MacroExpander) -> P { let block_info = get_block_info(exts); let pending_renames = block_info.pending_renames; let rename_fld = renames_to_fold(pending_renames); let new_view_items = b.view_items.map(|x| fld.fold_view_item(x)); let new_stmts = b.stmts.iter() .map(|x| rename_fld.fold_stmt(*x) .expect_one("rename_fold didn't return one value")) .flat_map(|x| fld.fold_stmt(x).move_iter()) .collect(); let new_expr = b.expr.map(|x| fld.fold_expr(rename_fld.fold_expr(x))); P(Block { view_items: new_view_items, stmts: new_stmts, expr: new_expr, id: fld.new_id(b.id), rules: b.rules, span: b.span, }) } // get the (innermost) BlockInfo from an exts stack fn get_block_info(exts : SyntaxEnv) -> BlockInfo { match exts.find_in_topmost_frame(&intern(special_block_name)) { Some(@BlockInfo(bi)) => bi, _ => fail!("special identifier {:?} was bound to a non-BlockInfo", @" block") } } struct IdentRenamer { renames: @mut ~[(ast::Ident,ast::Name)], } impl ast_fold for IdentRenamer { fn fold_ident(&self, id: ast::Ident) -> ast::Ident { let new_ctxt = self.renames.iter().fold(id.ctxt, |ctxt, &(from, to)| { new_rename(from, to, ctxt) }); ast::Ident { name: id.name, ctxt: new_ctxt, } } } // given a mutable list of renames, return a tree-folder that applies those // renames. pub fn renames_to_fold(renames: @mut ~[(ast::Ident,ast::Name)]) -> @ast_fold { @IdentRenamer { renames: renames, } as @ast_fold } // perform a bunch of renames fn apply_pending_renames(folder : @ast_fold, stmt : ast::Stmt) -> @ast::Stmt { folder.fold_stmt(&stmt) .expect_one("renaming of stmt did not produce one stmt") } pub fn new_span(cx: @ExtCtxt, sp: Span) -> Span { /* this discards information in the case of macro-defining macros */ Span { lo: sp.lo, hi: sp.hi, expn_info: cx.backtrace(), } } // FIXME (#2247): this is a moderately bad kludge to inject some macros into // the default compilation environment in that it injects strings, rather than // syntax elements. pub fn std_macros() -> @str { @r#"mod __std_macros { #[macro_escape]; #[doc(hidden)]; macro_rules! ignore (($($x:tt)*) => (())) macro_rules! log( ($lvl:expr, $($arg:tt)+) => ({ let lvl = $lvl; if lvl <= __log_level() { format_args!(|args| { ::std::logging::log(lvl, args) }, $($arg)+) } }) ) macro_rules! error( ($($arg:tt)*) => (log!(1u32, $($arg)*)) ) macro_rules! warn ( ($($arg:tt)*) => (log!(2u32, $($arg)*)) ) macro_rules! info ( ($($arg:tt)*) => (log!(3u32, $($arg)*)) ) macro_rules! debug( ($($arg:tt)*) => ( if cfg!(not(ndebug)) { log!(4u32, $($arg)*) } )) macro_rules! log_enabled( ($lvl:expr) => ( { let lvl = $lvl; lvl <= __log_level() && (lvl != 4 || cfg!(not(ndebug))) } ) ) macro_rules! fail( () => ( fail!("explicit failure") ); ($msg:expr) => ( ::std::rt::task::begin_unwind($msg, file!(), line!()) ); ($fmt:expr, $($arg:tt)*) => ( ::std::rt::task::begin_unwind(format!($fmt, $($arg)*), file!(), line!()) ) ) macro_rules! assert( ($cond:expr) => { if !$cond { fail!("assertion failed: {:s}", stringify!($cond)) } }; ($cond:expr, $msg:expr) => { if !$cond { fail!($msg) } }; ($cond:expr, $( $arg:expr ),+) => { if !$cond { fail!( $($arg),+ ) } } ) macro_rules! assert_eq ( ($given:expr , $expected:expr) => ( { let given_val = &($given); let expected_val = &($expected); // check both directions of equality.... if !((*given_val == *expected_val) && (*expected_val == *given_val)) { fail!("assertion failed: `(left == right) && (right == left)` \ (left: `{:?}`, right: `{:?}`)", *given_val, *expected_val) } } ) ) macro_rules! assert_approx_eq ( ($given:expr , $expected:expr) => ( { use std::cmp::ApproxEq; let given_val = $given; let expected_val = $expected; // check both directions of equality.... if !( given_val.approx_eq(&expected_val) && expected_val.approx_eq(&given_val) ) { fail!("left: {:?} does not approximately equal right: {:?}", given_val, expected_val); } } ); ($given:expr , $expected:expr , $epsilon:expr) => ( { use std::cmp::ApproxEq; let given_val = $given; let expected_val = $expected; let epsilon_val = $epsilon; // check both directions of equality.... if !( given_val.approx_eq_eps(&expected_val, &epsilon_val) && expected_val.approx_eq_eps(&given_val, &epsilon_val) ) { fail!("left: {:?} does not approximately equal right: \ {:?} with epsilon: {:?}", given_val, expected_val, epsilon_val); } } ) ) /// A utility macro for indicating unreachable code. It will fail if /// executed. This is occasionally useful to put after loops that never /// terminate normally, but instead directly return from a function. /// /// # Example /// /// ```rust /// fn choose_weighted_item(v: &[Item]) -> Item { /// assert!(!v.is_empty()); /// let mut so_far = 0u; /// for item in v.iter() { /// so_far += item.weight; /// if so_far > 100 { /// return item; /// } /// } /// // The above loop always returns, so we must hint to the /// // type checker that it isn't possible to get down here /// unreachable!(); /// } /// ``` macro_rules! unreachable (() => ( fail!("internal error: entered unreachable code"); )) macro_rules! condition ( { pub $c:ident: $input:ty -> $out:ty; } => { pub mod $c { #[allow(unused_imports)]; #[allow(non_uppercase_statics)]; #[allow(missing_doc)]; use super::*; local_data_key!(key: @::std::condition::Handler<$input, $out>) pub static cond : ::std::condition::Condition<$input,$out> = ::std::condition::Condition { name: stringify!($c), key: key }; } }; { $c:ident: $input:ty -> $out:ty; } => { mod $c { #[allow(unused_imports)]; #[allow(non_uppercase_statics)]; use super::*; local_data_key!(key: @::std::condition::Handler<$input, $out>) pub static cond : ::std::condition::Condition<$input,$out> = ::std::condition::Condition { name: stringify!($c), key: key }; } } ) macro_rules! format(($($arg:tt)*) => ( format_args!(::std::fmt::format, $($arg)*) )) macro_rules! write(($dst:expr, $($arg:tt)*) => ( format_args!(|args| { ::std::fmt::write($dst, args) }, $($arg)*) )) macro_rules! writeln(($dst:expr, $($arg:tt)*) => ( format_args!(|args| { ::std::fmt::writeln($dst, args) }, $($arg)*) )) macro_rules! print ( ($($arg:tt)*) => (format_args!(::std::io::stdio::print_args, $($arg)*)) ) macro_rules! println ( ($($arg:tt)*) => (format_args!(::std::io::stdio::println_args, $($arg)*)) ) macro_rules! local_data_key ( ($name:ident: $ty:ty) => ( static $name: ::std::local_data::Key<$ty> = &::std::local_data::Key; ); (pub $name:ident: $ty:ty) => ( pub static $name: ::std::local_data::Key<$ty> = &::std::local_data::Key; ) ) }"# } struct Injector { sm: @ast::item, } impl ast_fold for Injector { fn fold_mod(&self, module: &ast::_mod) -> ast::_mod { // Just inject the standard macros at the start of the first module // in the crate: that is, at the start of the crate file itself. let items = vec::append(~[ self.sm ], module.items); ast::_mod { items: items, ..(*module).clone() // FIXME #2543: Bad copy. } } } // add a bunch of macros as though they were placed at the head of the // program (ick). This should run before cfg stripping. pub fn inject_std_macros(parse_sess: @mut parse::ParseSess, cfg: ast::CrateConfig, c: Crate) -> Crate { let sm = match parse_item_from_source_str(@"", std_macros(), cfg.clone(), ~[], parse_sess) { Some(item) => item, None => fail!("expected core macros to parse correctly") }; let injector = @Injector { sm: sm, } as @ast_fold; injector.fold_crate(c) } struct NoOpFolder { contents: (), } impl ast_fold for NoOpFolder {} pub struct MacroExpander { extsbox: @mut SyntaxEnv, cx: @ExtCtxt, } impl ast_fold for MacroExpander { fn fold_expr(&self, expr: @ast::Expr) -> @ast::Expr { expand_expr(self.extsbox, self.cx, expr, self) } fn fold_mod(&self, module: &ast::_mod) -> ast::_mod { expand_mod_items(self.extsbox, self.cx, module, self) } fn fold_item(&self, item: @ast::item) -> SmallVector<@ast::item> { expand_item(self.extsbox, self.cx, item, self) } fn fold_stmt(&self, stmt: &ast::Stmt) -> SmallVector<@ast::Stmt> { expand_stmt(self.extsbox, self.cx, stmt, self) } fn fold_block(&self, block: P) -> P { expand_block(self.extsbox, self.cx, block, self) } fn new_span(&self, span: Span) -> Span { new_span(self.cx, span) } } pub fn expand_crate(parse_sess: @mut parse::ParseSess, cfg: ast::CrateConfig, c: Crate) -> Crate { // adding *another* layer of indirection here so that the block // visitor can swap out one exts table for another for the duration // of the block. The cleaner alternative would be to thread the // exts table through the fold, but that would require updating // every method/element of AstFoldFns in fold.rs. let extsbox = syntax_expander_table(); let cx = ExtCtxt::new(parse_sess, cfg.clone()); let expander = @MacroExpander { extsbox: @mut extsbox, cx: cx, } as @ast_fold; let ret = expander.fold_crate(c); parse_sess.span_diagnostic.handler().abort_if_errors(); return ret; } // HYGIENIC CONTEXT EXTENSION: // all of these functions are for walking over // ASTs and making some change to the context of every // element that has one. a CtxtFn is a trait-ified // version of a closure in (SyntaxContext -> SyntaxContext). // the ones defined here include: // Renamer - add a rename to a context // MultiRenamer - add a set of renames to a context // Marker - add a mark to a context // Repainter - replace a context (maybe Replacer would be a better name?) // a function in SyntaxContext -> SyntaxContext pub trait CtxtFn{ fn f(&self, ast::SyntaxContext) -> ast::SyntaxContext; } // a renamer adds a rename to the syntax context pub struct Renamer { from : ast::Ident, to : ast::Name } impl CtxtFn for Renamer { fn f(&self, ctxt : ast::SyntaxContext) -> ast::SyntaxContext { new_rename(self.from,self.to,ctxt) } } // a renamer that performs a whole bunch of renames pub struct MultiRenamer { renames : @mut ~[(ast::Ident,ast::Name)] } impl CtxtFn for MultiRenamer { fn f(&self, starting_ctxt : ast::SyntaxContext) -> ast::SyntaxContext { // the individual elements are memoized... it would // also be possible to memoize on the whole list at once. self.renames.iter().fold(starting_ctxt,|ctxt,&(from,to)| { new_rename(from,to,ctxt) }) } } // a marker adds the given mark to the syntax context pub struct Marker { mark : Mrk } impl CtxtFn for Marker { fn f(&self, ctxt : ast::SyntaxContext) -> ast::SyntaxContext { new_mark(self.mark,ctxt) } } // a repainter just replaces the given context with the one it's closed over pub struct Repainter { ctxt : SyntaxContext } impl CtxtFn for Repainter { fn f(&self, _ctxt : ast::SyntaxContext) -> ast::SyntaxContext { self.ctxt } } pub struct ContextWrapper { context_function: @CtxtFn, } impl ast_fold for ContextWrapper { fn fold_ident(&self, id: ast::Ident) -> ast::Ident { let ast::Ident { name, ctxt } = id; ast::Ident { name: name, ctxt: self.context_function.f(ctxt), } } fn fold_mac(&self, m: &ast::mac) -> ast::mac { let macro = match m.node { mac_invoc_tt(ref path, ref tts, ctxt) => { mac_invoc_tt(self.fold_path(path), fold_tts(*tts, self), self.context_function.f(ctxt)) } }; Spanned { node: macro, span: m.span, } } } // given a function from ctxts to ctxts, produce // an ast_fold that applies that function to all ctxts: pub fn fun_to_ctxt_folder(cf: @T) -> @ContextWrapper { @ContextWrapper { context_function: cf as @CtxtFn, } } // just a convenience: pub fn new_mark_folder(m: Mrk) -> @ContextWrapper { fun_to_ctxt_folder(@Marker{mark:m}) } pub fn new_rename_folder(from: ast::Ident, to: ast::Name) -> @ContextWrapper { fun_to_ctxt_folder(@Renamer{from:from,to:to}) } // apply a given mark to the given token trees. Used prior to expansion of a macro. fn mark_tts(tts : &[token_tree], m : Mrk) -> ~[token_tree] { fold_tts(tts,new_mark_folder(m)) } // apply a given mark to the given expr. Used following the expansion of a macro. fn mark_expr(expr : @ast::Expr, m : Mrk) -> @ast::Expr { new_mark_folder(m).fold_expr(expr) } // apply a given mark to the given stmt. Used following the expansion of a macro. fn mark_stmt(expr : &ast::Stmt, m : Mrk) -> @ast::Stmt { new_mark_folder(m).fold_stmt(expr) .expect_one("marking a stmt didn't return a stmt") } // apply a given mark to the given item. Used following the expansion of a macro. fn mark_item(expr : @ast::item, m : Mrk) -> SmallVector<@ast::item> { new_mark_folder(m).fold_item(expr) } // replace all contexts in a given expr with the given mark. Used // for capturing macros pub fn replace_ctxts(expr : @ast::Expr, ctxt : SyntaxContext) -> @ast::Expr { fun_to_ctxt_folder(@Repainter{ctxt:ctxt}).fold_expr(expr) } // take the mark from the given ctxt (that has a mark at the outside), // and apply it to everything in the token trees, thereby cancelling // that mark. pub fn mtwt_cancel_outer_mark(tts: &[ast::token_tree], ctxt: ast::SyntaxContext) -> ~[ast::token_tree] { let outer_mark = mtwt_outer_mark(ctxt); mark_tts(tts,outer_mark) } fn original_span(cx: @ExtCtxt) -> @codemap::ExpnInfo { let mut relevant_info = cx.backtrace(); let mut einfo = relevant_info.unwrap(); loop { match relevant_info { None => { break } Some(e) => { einfo = e; relevant_info = einfo.call_site.expn_info; } } } return einfo; } #[cfg(test)] mod test { use super::*; use ast; use ast::{Attribute_, AttrOuter, MetaWord, EMPTY_CTXT}; use ast_util::{get_sctable, mtwt_marksof, mtwt_resolve, new_rename}; use ast_util; use codemap; use codemap::Spanned; use fold; use parse; use parse::token::{fresh_mark, gensym, intern, get_ident_interner, ident_to_str}; use parse::token; use print::pprust; use std; use util::parser_testing::{string_to_crate, string_to_crate_and_sess}; use util::parser_testing::{string_to_pat, string_to_tts, strs_to_idents}; use visit; use visit::Visitor; // a visitor that extracts the paths // from a given thingy and puts them in a mutable // array (passed in to the traversal) #[deriving(Clone)] struct NewPathExprFinderContext { path_accumulator: ~[ast::Path], } impl Visitor<()> for NewPathExprFinderContext { fn visit_expr(&mut self, expr: @ast::Expr, _: ()) { match *expr { ast::Expr{id:_,span:_,node:ast::ExprPath(ref p)} => { self.path_accumulator.push(p.clone()); // not calling visit_path, should be fine. } _ => visit::walk_expr(self,expr,()) } } fn visit_ty(&mut self, typ: &ast::Ty, _: ()) { visit::walk_ty(self, typ, ()) } } // return a visitor that extracts the paths // from a given pattern and puts them in a mutable // array (passed in to the traversal) pub fn new_path_finder(paths: ~[ast::Path]) -> NewPathExprFinderContext { NewPathExprFinderContext { path_accumulator: paths } } // make sure that fail! is present #[test] fn fail_exists_test () { let src = @"fn main() { fail!(\"something appropriately gloomy\");}"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); let crate_ast = inject_std_macros(sess, ~[], crate_ast); // don't bother with striping, doesn't affect fail!. expand_crate(sess,~[],crate_ast); } // these following tests are quite fragile, in that they don't test what // *kind* of failure occurs. // make sure that macros can leave scope #[should_fail] #[test] fn macros_cant_escape_fns_test () { let src = @"fn bogus() {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); // should fail: expand_crate(sess,~[],crate_ast); } // make sure that macros can leave scope for modules #[should_fail] #[test] fn macros_cant_escape_mods_test () { let src = @"mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[],sess); // should fail: expand_crate(sess,~[],crate_ast); } // macro_escape modules shouldn't cause macros to leave scope #[test] fn macros_can_escape_flattened_mods_test () { let src = @"#[macro_escape] mod foo {macro_rules! z (() => (3+4))}\ fn inty() -> int { z!() }"; let sess = parse::new_parse_sess(None); let crate_ast = parse::parse_crate_from_source_str( @"", src, ~[], sess); // should fail: expand_crate(sess,~[],crate_ast); } #[test] fn std_macros_must_parse () { let src = super::std_macros(); let sess = parse::new_parse_sess(None); let cfg = ~[]; let item_ast = parse::parse_item_from_source_str( @"", src, cfg,~[],sess); match item_ast { Some(_) => (), // success None => fail!("expected this to parse") } } #[test] fn test_contains_flatten (){ let attr1 = make_dummy_attr (@"foo"); let attr2 = make_dummy_attr (@"bar"); let escape_attr = make_dummy_attr (@"macro_escape"); let attrs1 = ~[attr1, escape_attr, attr2]; assert_eq!(contains_macro_escape (attrs1),true); let attrs2 = ~[attr1,attr2]; assert_eq!(contains_macro_escape (attrs2),false); } // make a MetaWord outer attribute with the given name fn make_dummy_attr(s: @str) -> ast::Attribute { Spanned { span:codemap::dummy_sp(), node: Attribute_ { style: AttrOuter, value: @Spanned { node: MetaWord(s), span: codemap::dummy_sp(), }, is_sugared_doc: false, } } } #[test] fn cancel_outer_mark_test(){ let invalid_name = token::special_idents::invalid.name; let ident_str = @"x"; let tts = string_to_tts(ident_str); let fm = fresh_mark(); let marked_once = fold::fold_tts(tts,new_mark_folder(fm)); assert_eq!(marked_once.len(),1); let marked_once_ctxt = match marked_once[0] { ast::tt_tok(_,token::IDENT(id,_)) => id.ctxt, _ => fail!(format!("unexpected shape for marked tts: {:?}",marked_once[0])) }; assert_eq!(mtwt_marksof(marked_once_ctxt,invalid_name),~[fm]); let remarked = mtwt_cancel_outer_mark(marked_once,marked_once_ctxt); assert_eq!(remarked.len(),1); match remarked[0] { ast::tt_tok(_,token::IDENT(id,_)) => assert_eq!(mtwt_marksof(id.ctxt,invalid_name),~[]), _ => fail!(format!("unexpected shape for marked tts: {:?}",remarked[0])) } } #[test] fn renaming () { let item_ast = string_to_crate(@"fn f() -> int { a }"); let a_name = intern("a"); let a2_name = gensym("a2"); let renamer = new_rename_folder(ast::Ident{name:a_name,ctxt:EMPTY_CTXT}, a2_name); let renamed_ast = renamer.fold_crate(item_ast.clone()); let mut path_finder = new_path_finder(~[]); visit::walk_crate(&mut path_finder, &renamed_ast, ()); match path_finder.path_accumulator { [ast::Path{segments:[ref seg],..}] => assert_eq!(mtwt_resolve(seg.identifier),a2_name), _ => assert_eq!(0,1) } // try a double-rename, with pending_renames. let a3_name = gensym("a3"); // a context that renames from ("a",empty) to "a2" : let ctxt2 = new_rename(ast::Ident::new(a_name),a2_name,EMPTY_CTXT); let pending_renames = @mut ~[(ast::Ident::new(a_name),a2_name), (ast::Ident{name:a_name,ctxt:ctxt2},a3_name)]; let double_renamed = renames_to_fold(pending_renames).fold_crate(item_ast); let mut path_finder = new_path_finder(~[]); visit::walk_crate(&mut path_finder, &double_renamed, ()); match path_finder.path_accumulator { [ast::Path{segments:[ref seg],..}] => assert_eq!(mtwt_resolve(seg.identifier),a3_name), _ => assert_eq!(0,1) } } fn fake_print_crate(crate: &ast::Crate) { let out = @mut std::io::stderr() as @mut std::io::Writer; let s = pprust::rust_printer(out, get_ident_interner()); pprust::print_crate_(s, crate); } fn expand_crate_str(crate_str: @str) -> ast::Crate { let (crate_ast,ps) = string_to_crate_and_sess(crate_str); // the cfg argument actually does matter, here... expand_crate(ps,~[],crate_ast) } //fn expand_and_resolve(crate_str: @str) -> ast::crate { //let expanded_ast = expand_crate_str(crate_str); // println(format!("expanded: {:?}\n",expanded_ast)); //mtwt_resolve_crate(expanded_ast) //} //fn expand_and_resolve_and_pretty_print (crate_str : @str) -> ~str { //let resolved_ast = expand_and_resolve(crate_str); //pprust::to_str(&resolved_ast,fake_print_crate,get_ident_interner()) //} #[test] fn macro_tokens_should_match(){ expand_crate_str(@"macro_rules! m((a)=>(13)) fn main(){m!(a);}"); } // renaming tests expand a crate and then check that the bindings match // the right varrefs. The specification of the test case includes the // text of the crate, and also an array of arrays. Each element in the // outer array corresponds to a binding in the traversal of the AST // induced by visit. Each of these arrays contains a list of indexes, // interpreted as the varrefs in the varref traversal that this binding // should match. So, for instance, in a program with two bindings and // three varrefs, the array ~[~[1,2],~[0]] would indicate that the first // binding should match the second two varrefs, and the second binding // should match the first varref. // // The comparisons are done post-mtwt-resolve, so we're comparing renamed // names; differences in marks don't matter any more. // // oog... I also want tests that check "binding-identifier-=?". That is, // not just "do these have the same name", but "do they have the same // name *and* the same marks"? Understanding this is really pretty painful. // in principle, you might want to control this boolean on a per-varref basis, // but that would make things even harder to understand, and might not be // necessary for thorough testing. type renaming_test = (&'static str, ~[~[uint]], bool); #[test] fn automatic_renaming () { let tests : ~[renaming_test] = ~[// b & c should get new names throughout, in the expr too: ("fn a() -> int { let b = 13; let c = b; b+c }", ~[~[0,1],~[2]], false), // both x's should be renamed (how is this causing a bug?) ("fn main () {let x : int = 13;x;}", ~[~[0]], false), // the use of b after the + should be renamed, the other one not: ("macro_rules! f (($x:ident) => (b + $x)) fn a() -> int { let b = 13; f!(b)}", ~[~[1]], false), // the b before the plus should not be renamed (requires marks) ("macro_rules! f (($x:ident) => ({let b=9; ($x + b)})) fn a() -> int { f!(b)}", ~[~[1]], false), // the marks going in and out of letty should cancel, allowing that $x to // capture the one following the semicolon. // this was an awesome test case, and caught a *lot* of bugs. ("macro_rules! letty(($x:ident) => (let $x = 15;)) macro_rules! user(($x:ident) => ({letty!($x); $x})) fn main() -> int {user!(z)}", ~[~[0]], false), // no longer a fixme #8062: this test exposes a *potential* bug; our system does // not behave exactly like MTWT, but a conversation with Matthew Flatt // suggests that this can only occur in the presence of local-expand, which // we have no plans to support. // ("fn main() {let hrcoo = 19; macro_rules! getx(()=>(hrcoo)); getx!();}", // ~[~[0]], true) // FIXME #6994: the next string exposes the bug referred to in issue 6994, so I'm // commenting it out. // the z flows into and out of two macros (g & f) along one path, and one // (just g) along the other, so the result of the whole thing should // be "let z_123 = 3; z_123" //"macro_rules! g (($x:ident) => // ({macro_rules! f(($y:ident)=>({let $y=3;$x}));f!($x)})) // fn a(){g!(z)}" // create a really evil test case where a $x appears inside a binding of $x // but *shouldnt* bind because it was inserted by a different macro.... // can't write this test case until we have macro-generating macros. ]; for (idx,s) in tests.iter().enumerate() { run_renaming_test(s,idx); } } // run one of the renaming tests fn run_renaming_test(t : &renaming_test, test_idx: uint) { let invalid_name = token::special_idents::invalid.name; let (teststr, bound_connections, bound_ident_check) = match *t { (ref str,ref conns, bic) => (str.to_managed(), conns.clone(), bic) }; let cr = expand_crate_str(teststr.to_managed()); // find the bindings: let mut name_finder = new_name_finder(~[]); visit::walk_crate(&mut name_finder,&cr,()); let bindings = name_finder.ident_accumulator; // find the varrefs: let mut path_finder = new_path_finder(~[]); visit::walk_crate(&mut path_finder,&cr,()); let varrefs = path_finder.path_accumulator; // must be one check clause for each binding: assert_eq!(bindings.len(),bound_connections.len()); for (binding_idx,shouldmatch) in bound_connections.iter().enumerate() { let binding_name = mtwt_resolve(bindings[binding_idx]); let binding_marks = mtwt_marksof(bindings[binding_idx].ctxt,invalid_name); // shouldmatch can't name varrefs that don't exist: assert!((shouldmatch.len() == 0) || (varrefs.len() > *shouldmatch.iter().max().unwrap())); for (idx,varref) in varrefs.iter().enumerate() { if shouldmatch.contains(&idx) { // it should be a path of length 1, and it should // be free-identifier=? or bound-identifier=? to the given binding assert_eq!(varref.segments.len(),1); let varref_name = mtwt_resolve(varref.segments[0].identifier); let varref_marks = mtwt_marksof(varref.segments[0].identifier.ctxt, invalid_name); if (!(varref_name==binding_name)){ println("uh oh, should match but doesn't:"); println!("varref: {:?}",varref); println!("binding: {:?}", bindings[binding_idx]); ast_util::display_sctable(get_sctable()); } assert_eq!(varref_name,binding_name); if (bound_ident_check) { // we're checking bound-identifier=?, and the marks // should be the same, too: assert_eq!(varref_marks,binding_marks.clone()); } } else { let fail = (varref.segments.len() == 1) && (mtwt_resolve(varref.segments[0].identifier) == binding_name); // temp debugging: if (fail) { println!("failure on test {}",test_idx); println!("text of test case: \"{}\"", teststr); println!(""); println!("uh oh, matches but shouldn't:"); println!("varref: {:?}",varref); // good lord, you can't make a path with 0 segments, can you? println!("varref's first segment's uint: {}, and string: \"{}\"", varref.segments[0].identifier.name, ident_to_str(&varref.segments[0].identifier)); println!("binding: {:?}", bindings[binding_idx]); ast_util::display_sctable(get_sctable()); } assert!(!fail); } } } } #[test] fn fmt_in_macro_used_inside_module_macro() { let crate_str = @"macro_rules! fmt_wrap(($b:expr)=>($b.to_str())) macro_rules! foo_module (() => (mod generated { fn a() { let xx = 147; fmt_wrap!(xx);}})) foo_module!() "; let cr = expand_crate_str(crate_str); // find the xx binding let mut name_finder = new_name_finder(~[]); visit::walk_crate(&mut name_finder, &cr, ()); let bindings = name_finder.ident_accumulator; let cxbinds : ~[&ast::Ident] = bindings.iter().filter(|b|{@"xx" == (ident_to_str(*b))}).collect(); let cxbind = match cxbinds { [b] => b, _ => fail!("expected just one binding for ext_cx") }; let resolved_binding = mtwt_resolve(*cxbind); // find all the xx varrefs: let mut path_finder = new_path_finder(~[]); visit::walk_crate(&mut path_finder, &cr, ()); let varrefs = path_finder.path_accumulator; // the xx binding should bind all of the xx varrefs: for (idx,v) in varrefs.iter().filter(|p|{ p.segments.len() == 1 && (@"xx" == (ident_to_str(&p.segments[0].identifier))) }).enumerate() { if (mtwt_resolve(v.segments[0].identifier) != resolved_binding) { println("uh oh, xx binding didn't match xx varref:"); println!("this is xx varref \\# {:?}",idx); println!("binding: {:?}",cxbind); println!("resolves to: {:?}",resolved_binding); println!("varref: {:?}",v.segments[0].identifier); println!("resolves to: {:?}", mtwt_resolve(v.segments[0].identifier)); let table = get_sctable(); println("SC table:"); for (idx,val) in table.table.iter().enumerate() { println!("{:4u} : {:?}",idx,val); } } assert_eq!(mtwt_resolve(v.segments[0].identifier),resolved_binding); }; } #[test] fn pat_idents(){ let pat = string_to_pat(@"(a,Foo{x:c @ (b,9),y:Bar(4,d)})"); let mut pat_idents = new_name_finder(~[]); pat_idents.visit_pat(pat, ()); assert_eq!(pat_idents.ident_accumulator, strs_to_idents(~["a","c","b","d"])); } }