//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on //! how this works. //! //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html use crate::infer::outlives::env::OutlivesEnvironment; use crate::infer::InferOk; use crate::solve::inspect; use crate::solve::inspect::{InspectGoal, ProofTreeInferCtxtExt, ProofTreeVisitor}; use crate::traits::engine::TraitEngineExt; use crate::traits::query::evaluate_obligation::InferCtxtExt; use crate::traits::select::{IntercrateAmbiguityCause, TreatInductiveCycleAs}; use crate::traits::structural_normalize::StructurallyNormalizeExt; use crate::traits::NormalizeExt; use crate::traits::SkipLeakCheck; use crate::traits::{ Obligation, ObligationCause, ObligationCtxt, PredicateObligation, PredicateObligations, SelectionContext, }; use rustc_data_structures::fx::FxIndexSet; use rustc_errors::Diagnostic; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, LOCAL_CRATE}; use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, TyCtxtInferExt}; use rustc_infer::traits::{util, TraitEngine}; use rustc_middle::traits::query::NoSolution; use rustc_middle::traits::solve::{Certainty, Goal}; use rustc_middle::traits::specialization_graph::OverlapMode; use rustc_middle::traits::DefiningAnchor; use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams}; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt}; use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor}; use rustc_session::lint::builtin::COINDUCTIVE_OVERLAP_IN_COHERENCE; use rustc_span::symbol::sym; use rustc_span::DUMMY_SP; use std::fmt::Debug; use std::ops::ControlFlow; /// Whether we do the orphan check relative to this crate or /// to some remote crate. #[derive(Copy, Clone, Debug)] enum InCrate { Local, Remote, } #[derive(Debug, Copy, Clone)] pub enum Conflict { Upstream, Downstream, } pub struct OverlapResult<'tcx> { pub impl_header: ty::ImplHeader<'tcx>, pub intercrate_ambiguity_causes: FxIndexSet, /// `true` if the overlap might've been permitted before the shift /// to universes. pub involves_placeholder: bool, } pub fn add_placeholder_note(err: &mut Diagnostic) { err.note( "this behavior recently changed as a result of a bug fix; \ see rust-lang/rust#56105 for details", ); } #[derive(Debug, Clone, Copy)] enum TrackAmbiguityCauses { Yes, No, } impl TrackAmbiguityCauses { fn is_yes(self) -> bool { match self { TrackAmbiguityCauses::Yes => true, TrackAmbiguityCauses::No => false, } } } /// If there are types that satisfy both impls, returns `Some` /// with a suitably-freshened `ImplHeader` with those types /// substituted. Otherwise, returns `None`. #[instrument(skip(tcx, skip_leak_check), level = "debug")] pub fn overlapping_impls( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, skip_leak_check: SkipLeakCheck, overlap_mode: OverlapMode, ) -> Option> { // Before doing expensive operations like entering an inference context, do // a quick check via fast_reject to tell if the impl headers could possibly // unify. let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsCandidateKey }; let impl1_ref = tcx.impl_trait_ref(impl1_def_id); let impl2_ref = tcx.impl_trait_ref(impl2_def_id); let may_overlap = match (impl1_ref, impl2_ref) { (Some(a), Some(b)) => drcx.args_may_unify(a.skip_binder().args, b.skip_binder().args), (None, None) => { let self_ty1 = tcx.type_of(impl1_def_id).skip_binder(); let self_ty2 = tcx.type_of(impl2_def_id).skip_binder(); drcx.types_may_unify(self_ty1, self_ty2) } _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"), }; if !may_overlap { // Some types involved are definitely different, so the impls couldn't possibly overlap. debug!("overlapping_impls: fast_reject early-exit"); return None; } let _overlap_with_bad_diagnostics = overlap( tcx, TrackAmbiguityCauses::No, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode, )?; // In the case where we detect an error, run the check again, but // this time tracking intercrate ambiguity causes for better // diagnostics. (These take time and can lead to false errors.) let overlap = overlap( tcx, TrackAmbiguityCauses::Yes, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode, ) .unwrap(); Some(overlap) } fn fresh_impl_header<'tcx>(infcx: &InferCtxt<'tcx>, impl_def_id: DefId) -> ty::ImplHeader<'tcx> { let tcx = infcx.tcx; let impl_args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id); ty::ImplHeader { impl_def_id, impl_args, self_ty: tcx.type_of(impl_def_id).instantiate(tcx, impl_args), trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.instantiate(tcx, impl_args)), predicates: tcx .predicates_of(impl_def_id) .instantiate(tcx, impl_args) .iter() .map(|(c, _)| c.as_predicate()) .collect(), } } fn fresh_impl_header_normalized<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, ) -> ty::ImplHeader<'tcx> { let header = fresh_impl_header(infcx, impl_def_id); let InferOk { value: mut header, obligations } = infcx.at(&ObligationCause::dummy(), param_env).normalize(header); header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); header } /// Can both impl `a` and impl `b` be satisfied by a common type (including /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. #[instrument(level = "debug", skip(tcx))] fn overlap<'tcx>( tcx: TyCtxt<'tcx>, track_ambiguity_causes: TrackAmbiguityCauses, skip_leak_check: SkipLeakCheck, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, ) -> Option> { if overlap_mode.use_negative_impl() { if impl_intersection_has_negative_obligation(tcx, impl1_def_id, impl2_def_id) || impl_intersection_has_negative_obligation(tcx, impl2_def_id, impl1_def_id) { return None; } } let infcx = tcx .infer_ctxt() .with_opaque_type_inference(DefiningAnchor::Bubble) .skip_leak_check(skip_leak_check.is_yes()) .intercrate(true) .with_next_trait_solver(tcx.next_trait_solver_in_coherence()) .build(); let selcx = &mut SelectionContext::new(&infcx); if track_ambiguity_causes.is_yes() { selcx.enable_tracking_intercrate_ambiguity_causes(); } // For the purposes of this check, we don't bring any placeholder // types into scope; instead, we replace the generic types with // fresh type variables, and hence we do our evaluations in an // empty environment. let param_env = ty::ParamEnv::empty(); let impl1_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl1_def_id); let impl2_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl2_def_id); // Equate the headers to find their intersection (the general type, with infer vars, // that may apply both impls). let mut obligations = equate_impl_headers(selcx.infcx, param_env, &impl1_header, &impl2_header)?; debug!("overlap: unification check succeeded"); obligations.extend( [&impl1_header.predicates, &impl2_header.predicates].into_iter().flatten().map( |&predicate| Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, predicate), ), ); if overlap_mode.use_implicit_negative() { for mode in [TreatInductiveCycleAs::Ambig, TreatInductiveCycleAs::Recur] { if let Some(failing_obligation) = selcx.with_treat_inductive_cycle_as(mode, |selcx| { impl_intersection_has_impossible_obligation(selcx, &obligations) }) { if matches!(mode, TreatInductiveCycleAs::Recur) { let first_local_impl = impl1_header .impl_def_id .as_local() .or(impl2_header.impl_def_id.as_local()) .expect("expected one of the impls to be local"); infcx.tcx.struct_span_lint_hir( COINDUCTIVE_OVERLAP_IN_COHERENCE, infcx.tcx.local_def_id_to_hir_id(first_local_impl), infcx.tcx.def_span(first_local_impl), format!( "implementations {} will conflict in the future", match impl1_header.trait_ref { Some(trait_ref) => { let trait_ref = infcx.resolve_vars_if_possible(trait_ref); format!( "of `{}` for `{}`", trait_ref.print_only_trait_path(), trait_ref.self_ty() ) } None => format!( "for `{}`", infcx.resolve_vars_if_possible(impl1_header.self_ty) ), }, ), |lint| { lint.note( "impls that are not considered to overlap may be considered to \ overlap in the future", ) .span_label( infcx.tcx.def_span(impl1_header.impl_def_id), "the first impl is here", ) .span_label( infcx.tcx.def_span(impl2_header.impl_def_id), "the second impl is here", ); lint.note(format!( "`{}` may be considered to hold in future releases, \ causing the impls to overlap", infcx.resolve_vars_if_possible(failing_obligation.predicate) )); lint }, ); } return None; } } } // We toggle the `leak_check` by using `skip_leak_check` when constructing the // inference context, so this may be a noop. if infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() { debug!("overlap: leak check failed"); return None; } let intercrate_ambiguity_causes = if !overlap_mode.use_implicit_negative() { Default::default() } else if infcx.next_trait_solver() { compute_intercrate_ambiguity_causes(&infcx, &obligations) } else { selcx.take_intercrate_ambiguity_causes() }; debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); let involves_placeholder = infcx .inner .borrow_mut() .unwrap_region_constraints() .data() .constraints .iter() .any(|c| c.0.involves_placeholders()); let impl_header = selcx.infcx.resolve_vars_if_possible(impl1_header); Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder }) } #[instrument(level = "debug", skip(infcx), ret)] fn equate_impl_headers<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, impl1: &ty::ImplHeader<'tcx>, impl2: &ty::ImplHeader<'tcx>, ) -> Option> { let result = match (impl1.trait_ref, impl2.trait_ref) { (Some(impl1_ref), Some(impl2_ref)) => infcx .at(&ObligationCause::dummy(), param_env) .eq(DefineOpaqueTypes::Yes, impl1_ref, impl2_ref), (None, None) => infcx.at(&ObligationCause::dummy(), param_env).eq( DefineOpaqueTypes::Yes, impl1.self_ty, impl2.self_ty, ), _ => bug!("mk_eq_impl_headers given mismatched impl kinds"), }; result.map(|infer_ok| infer_ok.obligations).ok() } /// Check if both impls can be satisfied by a common type by considering whether /// any of either impl's obligations is not known to hold. /// /// For example, given these two impls: /// `impl From for Box` (in my crate) /// `impl From for Box where E: Error` (in libstd) /// /// After replacing both impl headers with inference vars (which happens before /// this function is called), we get: /// `Box: From` /// `Box: From` /// /// This gives us `?E = MyLocalType`. We then certainly know that `MyLocalType: Error` /// never holds in intercrate mode since a local impl does not exist, and a /// downstream impl cannot be added -- therefore can consider the intersection /// of the two impls above to be empty. /// /// Importantly, this works even if there isn't a `impl !Error for MyLocalType`. fn impl_intersection_has_impossible_obligation<'a, 'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, obligations: &'a [PredicateObligation<'tcx>], ) -> Option<&'a PredicateObligation<'tcx>> { let infcx = selcx.infcx; obligations.iter().find(|obligation| { if infcx.next_trait_solver() { infcx.evaluate_obligation(obligation).map_or(false, |result| !result.may_apply()) } else { // We use `evaluate_root_obligation` to correctly track intercrate // ambiguity clauses. We cannot use this in the new solver. selcx.evaluate_root_obligation(obligation).map_or( false, // Overflow has occurred, and treat the obligation as possibly holding. |result| !result.may_apply(), ) } }) } /// Check if both impls can be satisfied by a common type by considering whether /// any of first impl's obligations is known not to hold *via a negative predicate*. /// /// For example, given these two impls: /// `struct MyCustomBox(Box);` /// `impl From<&str> for MyCustomBox` (in my crate) /// `impl From for MyCustomBox where E: Error` (in my crate) /// /// After replacing the second impl's header with inference vars, we get: /// `MyCustomBox: From<&str>` /// `MyCustomBox: From` /// /// This gives us `?E = &str`. We then try to prove the first impl's predicates /// after negating, giving us `&str: !Error`. This is a negative impl provided by /// libstd, and therefore we can guarantee for certain that libstd will never add /// a positive impl for `&str: Error` (without it being a breaking change). fn impl_intersection_has_negative_obligation( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, ) -> bool { debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); let ref infcx = tcx.infer_ctxt().intercrate(true).with_next_trait_solver(true).build(); let root_universe = infcx.universe(); assert_eq!(root_universe, ty::UniverseIndex::ROOT); let impl1_header = fresh_impl_header(infcx, impl1_def_id); let param_env = ty::EarlyBinder::bind(tcx.param_env(impl1_def_id)).instantiate(tcx, impl1_header.impl_args); let impl2_header = fresh_impl_header(infcx, impl2_def_id); // Equate the headers to find their intersection (the general type, with infer vars, // that may apply both impls). let Some(equate_obligations) = equate_impl_headers(infcx, param_env, &impl1_header, &impl2_header) else { return false; }; plug_infer_with_placeholders( infcx, root_universe, (impl1_header.impl_args, impl2_header.impl_args), ); let param_env = infcx.resolve_vars_if_possible(param_env); // FIXME(with_negative_coherence): the infcx has constraints from equating // the impl headers. We should use these constraints as assumptions, not as // requirements, when proving the negated where clauses below. drop(equate_obligations); drop(infcx.take_registered_region_obligations()); drop(infcx.take_and_reset_region_constraints()); util::elaborate(tcx, tcx.predicates_of(impl2_def_id).instantiate(tcx, impl2_header.impl_args)) .any(|(clause, _)| try_prove_negated_where_clause(infcx, clause, param_env)) } fn plug_infer_with_placeholders<'tcx>( infcx: &InferCtxt<'tcx>, universe: ty::UniverseIndex, value: impl TypeVisitable>, ) { struct PlugInferWithPlaceholder<'a, 'tcx> { infcx: &'a InferCtxt<'tcx>, universe: ty::UniverseIndex, var: ty::BoundVar, } impl<'tcx> PlugInferWithPlaceholder<'_, 'tcx> { fn next_var(&mut self) -> ty::BoundVar { let var = self.var; self.var = self.var + 1; var } } impl<'tcx> TypeVisitor> for PlugInferWithPlaceholder<'_, 'tcx> { fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow { let ty = self.infcx.shallow_resolve(ty); if ty.is_ty_var() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( DefineOpaqueTypes::No, ty, Ty::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: ty::BoundTy { var: self.next_var(), kind: ty::BoundTyKind::Anon, }, }, ), ) else { bug!() }; assert_eq!(obligations, &[]); ControlFlow::Continue(()) } else { ty.super_visit_with(self) } } fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow { let ct = self.infcx.shallow_resolve(ct); if ct.is_ct_infer() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( DefineOpaqueTypes::No, ct, ty::Const::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: self.next_var() }, ct.ty(), ), ) else { bug!() }; assert_eq!(obligations, &[]); ControlFlow::Continue(()) } else { ct.super_visit_with(self) } } fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow { if let ty::ReVar(vid) = *r { let r = self .infcx .inner .borrow_mut() .unwrap_region_constraints() .opportunistic_resolve_var(self.infcx.tcx, vid); if r.is_var() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( DefineOpaqueTypes::No, r, ty::Region::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: ty::BoundRegion { var: self.next_var(), kind: ty::BoundRegionKind::BrAnon, }, }, ), ) else { bug!() }; assert_eq!(obligations, &[]); } } ControlFlow::Continue(()) } } value.visit_with(&mut PlugInferWithPlaceholder { infcx, universe, var: ty::BoundVar::from_u32(0), }); } fn try_prove_negated_where_clause<'tcx>( root_infcx: &InferCtxt<'tcx>, clause: ty::Clause<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> bool { let Some(negative_predicate) = clause.as_predicate().flip_polarity(root_infcx.tcx) else { return false; }; let ref infcx = root_infcx.fork(); let ocx = ObligationCtxt::new(infcx); ocx.register_obligation(Obligation::new( infcx.tcx, ObligationCause::dummy(), param_env, negative_predicate, )); if !ocx.select_all_or_error().is_empty() { return false; } // FIXME: We could use the assumed_wf_types from both impls, I think, // if that wasn't implemented just for LocalDefId, and we'd need to do // the normalization ourselves since this is totally fallible... let outlives_env = OutlivesEnvironment::new(param_env); let errors = infcx.resolve_regions(&outlives_env); if !errors.is_empty() { return false; } true } /// Returns whether all impls which would apply to the `trait_ref` /// e.g. `Ty: Trait` are already known in the local crate. /// /// This both checks whether any downstream or sibling crates could /// implement it and whether an upstream crate can add this impl /// without breaking backwards compatibility. #[instrument(level = "debug", skip(tcx, lazily_normalize_ty), ret)] pub fn trait_ref_is_knowable<'tcx, E: Debug>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, mut lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result, E>, ) -> Result, E> { if orphan_check_trait_ref(trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok() { // A downstream or cousin crate is allowed to implement some // substitution of this trait-ref. return Ok(Err(Conflict::Downstream)); } if trait_ref_is_local_or_fundamental(tcx, trait_ref) { // This is a local or fundamental trait, so future-compatibility // is no concern. We know that downstream/cousin crates are not // allowed to implement a substitution of this trait ref, which // means impls could only come from dependencies of this crate, // which we already know about. return Ok(Ok(())); } // This is a remote non-fundamental trait, so if another crate // can be the "final owner" of a substitution of this trait-ref, // they are allowed to implement it future-compatibly. // // However, if we are a final owner, then nobody else can be, // and if we are an intermediate owner, then we don't care // about future-compatibility, which means that we're OK if // we are an owner. if orphan_check_trait_ref(trait_ref, InCrate::Local, &mut lazily_normalize_ty)?.is_ok() { Ok(Ok(())) } else { Ok(Err(Conflict::Upstream)) } } pub fn trait_ref_is_local_or_fundamental<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> bool { trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental) } #[derive(Debug)] pub enum OrphanCheckErr<'tcx> { NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>), UncoveredTy(Ty<'tcx>, Option>), } /// Checks the coherence orphan rules. `impl_def_id` should be the /// `DefId` of a trait impl. To pass, either the trait must be local, or else /// two conditions must be satisfied: /// /// 1. All type parameters in `Self` must be "covered" by some local type constructor. /// 2. Some local type must appear in `Self`. #[instrument(level = "debug", skip(tcx), ret)] pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> { // We only except this routine to be invoked on implementations // of a trait, not inherent implementations. let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity(); debug!(?trait_ref); // If the *trait* is local to the crate, ok. if trait_ref.def_id.is_local() { debug!("trait {:?} is local to current crate", trait_ref.def_id); return Ok(()); } orphan_check_trait_ref::(trait_ref, InCrate::Local, |ty| Ok(ty)).unwrap() } /// Checks whether a trait-ref is potentially implementable by a crate. /// /// The current rule is that a trait-ref orphan checks in a crate C: /// /// 1. Order the parameters in the trait-ref in subst order - Self first, /// others linearly (e.g., `>` is U < V < W). /// 2. Of these type parameters, there is at least one type parameter /// in which, walking the type as a tree, you can reach a type local /// to C where all types in-between are fundamental types. Call the /// first such parameter the "local key parameter". /// - e.g., `Box` is OK, because you can visit LocalType /// going through `Box`, which is fundamental. /// - similarly, `FundamentalPair, Box>` is OK for /// the same reason. /// - but (knowing that `Vec` is non-fundamental, and assuming it's /// not local), `Vec` is bad, because `Vec<->` is between /// the local type and the type parameter. /// 3. Before this local type, no generic type parameter of the impl must /// be reachable through fundamental types. /// - e.g. `impl Trait for Vec` is fine, as `Vec` is not fundamental. /// - while `impl Trait for Box` results in an error, as `T` is /// reachable through the fundamental type `Box`. /// 4. Every type in the local key parameter not known in C, going /// through the parameter's type tree, must appear only as a subtree of /// a type local to C, with only fundamental types between the type /// local to C and the local key parameter. /// - e.g., `Vec>>` (or equivalently `Box>>`) /// is bad, because the only local type with `T` as a subtree is /// `LocalType`, and `Vec<->` is between it and the type parameter. /// - similarly, `FundamentalPair, T>` is bad, because /// the second occurrence of `T` is not a subtree of *any* local type. /// - however, `LocalType>` is OK, because `T` is a subtree of /// `LocalType>`, which is local and has no types between it and /// the type parameter. /// /// The orphan rules actually serve several different purposes: /// /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where /// every type local to one crate is unknown in the other) can't implement /// the same trait-ref. This follows because it can be seen that no such /// type can orphan-check in 2 such crates. /// /// To check that a local impl follows the orphan rules, we check it in /// InCrate::Local mode, using type parameters for the "generic" types. /// /// 2. They ground negative reasoning for coherence. If a user wants to /// write both a conditional blanket impl and a specific impl, we need to /// make sure they do not overlap. For example, if we write /// ```ignore (illustrative) /// impl IntoIterator for Vec /// impl IntoIterator for T /// ``` /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0. /// We can observe that this holds in the current crate, but we need to make /// sure this will also hold in all unknown crates (both "independent" crates, /// which we need for link-safety, and also child crates, because we don't want /// child crates to get error for impl conflicts in a *dependency*). /// /// For that, we only allow negative reasoning if, for every assignment to the /// inference variables, every unknown crate would get an orphan error if they /// try to implement this trait-ref. To check for this, we use InCrate::Remote /// mode. That is sound because we already know all the impls from known crates. /// /// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can /// add "non-blanket" impls without breaking negative reasoning in dependent /// crates. This is the "rebalancing coherence" (RFC 1023) restriction. /// /// For that, we only a allow crate to perform negative reasoning on /// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2). /// /// Because we never perform negative reasoning generically (coherence does /// not involve type parameters), this can be interpreted as doing the full /// orphan check (using InCrate::Local mode), substituting non-local known /// types for all inference variables. /// /// This allows for crates to future-compatibly add impls as long as they /// can't apply to types with a key parameter in a child crate - applying /// the rules, this basically means that every type parameter in the impl /// must appear behind a non-fundamental type (because this is not a /// type-system requirement, crate owners might also go for "semantic /// future-compatibility" involving things such as sealed traits, but /// the above requirement is sufficient, and is necessary in "open world" /// cases). /// /// Note that this function is never called for types that have both type /// parameters and inference variables. #[instrument(level = "trace", skip(lazily_normalize_ty), ret)] fn orphan_check_trait_ref<'tcx, E: Debug>( trait_ref: ty::TraitRef<'tcx>, in_crate: InCrate, lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result, E>, ) -> Result>, E> { if trait_ref.has_infer() && trait_ref.has_param() { bug!( "can't orphan check a trait ref with both params and inference variables {:?}", trait_ref ); } let mut checker = OrphanChecker::new(in_crate, lazily_normalize_ty); Ok(match trait_ref.visit_with(&mut checker) { ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)), ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)) => return Err(err), ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => { // Does there exist some local type after the `ParamTy`. checker.search_first_local_ty = true; if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) = trait_ref.visit_with(&mut checker).break_value() { Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty))) } else { Err(OrphanCheckErr::UncoveredTy(ty, None)) } } ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()), }) } struct OrphanChecker<'tcx, F> { in_crate: InCrate, in_self_ty: bool, lazily_normalize_ty: F, /// Ignore orphan check failures and exclusively search for the first /// local type. search_first_local_ty: bool, non_local_tys: Vec<(Ty<'tcx>, bool)>, } impl<'tcx, F, E> OrphanChecker<'tcx, F> where F: FnOnce(Ty<'tcx>) -> Result, E>, { fn new(in_crate: InCrate, lazily_normalize_ty: F) -> Self { OrphanChecker { in_crate, in_self_ty: true, lazily_normalize_ty, search_first_local_ty: false, non_local_tys: Vec::new(), } } fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow> { self.non_local_tys.push((t, self.in_self_ty)); ControlFlow::Continue(()) } fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow> { if self.search_first_local_ty { ControlFlow::Continue(()) } else { ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t)) } } fn def_id_is_local(&mut self, def_id: DefId) -> bool { match self.in_crate { InCrate::Local => def_id.is_local(), InCrate::Remote => false, } } } enum OrphanCheckEarlyExit<'tcx, E> { NormalizationFailure(E), ParamTy(Ty<'tcx>), LocalTy(Ty<'tcx>), } impl<'tcx, F, E> TypeVisitor> for OrphanChecker<'tcx, F> where F: FnMut(Ty<'tcx>) -> Result, E>, { type BreakTy = OrphanCheckEarlyExit<'tcx, E>; fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow { ControlFlow::Continue(()) } fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow { // Need to lazily normalize here in with `-Ztrait-solver=next-coherence`. let ty = match (self.lazily_normalize_ty)(ty) { Ok(ty) => ty, Err(err) => return ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)), }; let result = match *ty.kind() { ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::FnDef(..) | ty::FnPtr(_) | ty::Array(..) | ty::Slice(..) | ty::RawPtr(..) | ty::Never | ty::Tuple(..) | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..) => { self.found_non_local_ty(ty) } ty::Param(..) => self.found_param_ty(ty), ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate { InCrate::Local => self.found_non_local_ty(ty), // The inference variable might be unified with a local // type in that remote crate. InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), }, // For fundamental types, we just look inside of them. ty::Ref(_, ty, _) => ty.visit_with(self), ty::Adt(def, args) => { if self.def_id_is_local(def.did()) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else if def.is_fundamental() { args.visit_with(self) } else { self.found_non_local_ty(ty) } } ty::Foreign(def_id) => { if self.def_id_is_local(def_id) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } ty::Dynamic(tt, ..) => { let principal = tt.principal().map(|p| p.def_id()); if principal.is_some_and(|p| self.def_id_is_local(p)) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), ty::Closure(did, ..) | ty::Coroutine(did, ..) => { if self.def_id_is_local(did) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } // This should only be created when checking whether we have to check whether some // auto trait impl applies. There will never be multiple impls, so we can just // act as if it were a local type here. ty::CoroutineWitness(..) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), ty::Alias(ty::Opaque, ..) => { // This merits some explanation. // Normally, opaque types are not involved when performing // coherence checking, since it is illegal to directly // implement a trait on an opaque type. However, we might // end up looking at an opaque type during coherence checking // if an opaque type gets used within another type (e.g. as // the type of a field) when checking for auto trait or `Sized` // impls. This requires us to decide whether or not an opaque // type should be considered 'local' or not. // // We choose to treat all opaque types as non-local, even // those that appear within the same crate. This seems // somewhat surprising at first, but makes sense when // you consider that opaque types are supposed to hide // the underlying type *within the same crate*. When an // opaque type is used from outside the module // where it is declared, it should be impossible to observe // anything about it other than the traits that it implements. // // The alternative would be to look at the underlying type // to determine whether or not the opaque type itself should // be considered local. However, this could make it a breaking change // to switch the underlying ('defining') type from a local type // to a remote type. This would violate the rule that opaque // types should be completely opaque apart from the traits // that they implement, so we don't use this behavior. self.found_non_local_ty(ty) } }; // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so // the first type we visit is always the self type. self.in_self_ty = false; result } /// All possible values for a constant parameter already exist /// in the crate defining the trait, so they are always non-local[^1]. /// /// Because there's no way to have an impl where the first local /// generic argument is a constant, we also don't have to fail /// the orphan check when encountering a parameter or a generic constant. /// /// This means that we can completely ignore constants during the orphan check. /// /// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples. /// /// [^1]: This might not hold for function pointers or trait objects in the future. /// As these should be quite rare as const arguments and especially rare as impl /// parameters, allowing uncovered const parameters in impls seems more useful /// than allowing `impl Trait for i32` to compile. fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow { ControlFlow::Continue(()) } } /// Compute the `intercrate_ambiguity_causes` for the new solver using /// "proof trees". /// /// This is a bit scuffed but seems to be good enough, at least /// when looking at UI tests. Given that it is only used to improve /// diagnostics this is good enough. We can always improve it once there /// are test cases where it is currently not enough. fn compute_intercrate_ambiguity_causes<'tcx>( infcx: &InferCtxt<'tcx>, obligations: &[PredicateObligation<'tcx>], ) -> FxIndexSet { let mut causes: FxIndexSet = Default::default(); for obligation in obligations { search_ambiguity_causes(infcx, obligation.clone().into(), &mut causes); } causes } struct AmbiguityCausesVisitor<'a> { causes: &'a mut FxIndexSet, } impl<'a, 'tcx> ProofTreeVisitor<'tcx> for AmbiguityCausesVisitor<'a> { type BreakTy = !; fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) -> ControlFlow { let infcx = goal.infcx(); for cand in goal.candidates() { cand.visit_nested(self)?; } // When searching for intercrate ambiguity causes, we only need to look // at ambiguous goals, as for others the coherence unknowable candidate // was irrelevant. match goal.result() { Ok(Certainty::Maybe(_)) => {} Ok(Certainty::Yes) | Err(NoSolution) => return ControlFlow::Continue(()), } let Goal { param_env, predicate } = goal.goal(); // For bound predicates we simply call `infcx.replace_bound_vars_with_placeholders` // and then prove the resulting predicate as a nested goal. let trait_ref = match predicate.kind().no_bound_vars() { Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(tr))) => tr.trait_ref, Some(ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj))) if matches!( infcx.tcx.def_kind(proj.projection_ty.def_id), DefKind::AssocTy | DefKind::AssocConst ) => { proj.projection_ty.trait_ref(infcx.tcx) } _ => return ControlFlow::Continue(()), }; let mut ambiguity_cause = None; for cand in goal.candidates() { // FIXME: boiiii, using string comparisions here sure is scuffed. if let inspect::ProbeKind::MiscCandidate { name: "coherence unknowable", result: _ } = cand.kind() { let lazily_normalize_ty = |ty: Ty<'tcx>| { let mut fulfill_cx = >::new(infcx); if matches!(ty.kind(), ty::Alias(..)) { // FIXME(-Ztrait-solver=next-coherence): we currently don't // normalize opaque types here, resulting in diverging behavior // for TAITs. match infcx .at(&ObligationCause::dummy(), param_env) .structurally_normalize(ty, &mut *fulfill_cx) { Ok(ty) => Ok(ty), Err(_errs) => Err(()), } } else { Ok(ty) } }; infcx.probe(|_| { match trait_ref_is_knowable(infcx.tcx, trait_ref, lazily_normalize_ty) { Err(()) => {} Ok(Ok(())) => warn!("expected an unknowable trait ref: {trait_ref:?}"), Ok(Err(conflict)) => { if !trait_ref.references_error() { let self_ty = trait_ref.self_ty(); let (trait_desc, self_desc) = with_no_trimmed_paths!({ let trait_desc = trait_ref.print_only_trait_path().to_string(); let self_desc = self_ty .has_concrete_skeleton() .then(|| self_ty.to_string()); (trait_desc, self_desc) }); ambiguity_cause = Some(match conflict { Conflict::Upstream => { IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc, } } Conflict::Downstream => { IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc, } } }); } } } }) } else { match cand.result() { // We only add an ambiguity cause if the goal would otherwise // result in an error. // // FIXME: While this matches the behavior of the // old solver, it is not the only way in which the unknowable // candidates *weaken* coherence, they can also force otherwise // sucessful normalization to be ambiguous. Ok(Certainty::Maybe(_) | Certainty::Yes) => { ambiguity_cause = None; break; } Err(NoSolution) => continue, } } } if let Some(ambiguity_cause) = ambiguity_cause { self.causes.insert(ambiguity_cause); } ControlFlow::Continue(()) } } fn search_ambiguity_causes<'tcx>( infcx: &InferCtxt<'tcx>, goal: Goal<'tcx, ty::Predicate<'tcx>>, causes: &mut FxIndexSet, ) { infcx.visit_proof_tree(goal, &mut AmbiguityCausesVisitor { causes }); }