use crate::def_id::{DefIndex, LocalDefId}; use crate::hygiene::SyntaxContext; use crate::SPAN_TRACK; use crate::{BytePos, SpanData}; use rustc_data_structures::fx::FxIndexSet; // This code is very hot and uses lots of arithmetic, avoid overflow checks for performance. // See https://github.com/rust-lang/rust/pull/119440#issuecomment-1874255727 use rustc_serialize::int_overflow::DebugStrictAdd; use std::mem::transmute; /// A compressed span. /// /// [`SpanData`] is 16 bytes, which is too big to stick everywhere. `Span` only /// takes up 8 bytes, with less space for the length, parent and context. The /// vast majority (99.9%+) of `SpanData` instances can be made to fit within /// those 8 bytes. Any `SpanData` whose fields don't fit into a `Span` are /// stored in a separate interner table, and the `Span` will index into that /// table. Interning is rare enough that the cost is low, but common enough /// that the code is exercised regularly. /// /// An earlier version of this code used only 4 bytes for `Span`, but that was /// slower because only 80--90% of spans could be stored inline (even less in /// very large crates) and so the interner was used a lot more. That version of /// the code also predated the storage of parents. /// /// There are four different span forms. /// /// Inline-context format (requires non-huge length, non-huge context, and no parent): /// - `span.lo_or_index == span_data.lo` /// - `span.len_with_tag_or_marker == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`) /// - `span.ctxt_or_parent_or_marker == span_data.ctxt` (must be `<= MAX_CTXT`) /// /// Inline-parent format (requires non-huge length, root context, and non-huge parent): /// - `span.lo_or_index == span_data.lo` /// - `span.len_with_tag_or_marker & !PARENT_TAG == len == span_data.hi - span_data.lo` /// (must be `<= MAX_LEN`) /// - `span.len_with_tag_or_marker` has top bit (`PARENT_TAG`) set /// - `span.ctxt_or_parent_or_marker == span_data.parent` (must be `<= MAX_CTXT`) /// /// Partially-interned format (requires non-huge context): /// - `span.lo_or_index == index` (indexes into the interner table) /// - `span.len_with_tag_or_marker == BASE_LEN_INTERNED_MARKER` /// - `span.ctxt_or_parent_or_marker == span_data.ctxt` (must be `<= MAX_CTXT`) /// /// Fully-interned format (all cases not covered above): /// - `span.lo_or_index == index` (indexes into the interner table) /// - `span.len_with_tag_or_marker == BASE_LEN_INTERNED_MARKER` /// - `span.ctxt_or_parent_or_marker == CTXT_INTERNED_MARKER` /// /// The partially-interned form requires looking in the interning table for /// lo and length, but the context is stored inline as well as interned. /// This is useful because context lookups are often done in isolation, and /// inline lookups are quicker. /// /// Notes about the choice of field sizes: /// - `lo` is 32 bits in both `Span` and `SpanData`, which means that `lo` /// values never cause interning. The number of bits needed for `lo` /// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate. /// Having no compression on this field means there is no performance cliff /// if a crate exceeds a particular size. /// - `len` is ~15 bits in `Span` (a u16, minus 1 bit for PARENT_TAG) and 32 /// bits in `SpanData`, which means that large `len` values will cause /// interning. The number of bits needed for `len` does not depend on the /// crate size. The most common numbers of bits for `len` are from 0 to 7, /// with a peak usually at 3 or 4, and then it drops off quickly from 8 /// onwards. 15 bits is enough for 99.99%+ of cases, but larger values /// (sometimes 20+ bits) might occur dozens of times in a typical crate. /// - `ctxt_or_parent_or_marker` is 16 bits in `Span` and two 32 bit fields in /// `SpanData`, which means intering will happen if `ctxt` is large, if /// `parent` is large, or if both values are non-zero. The number of bits /// needed for `ctxt` values depend partly on the crate size and partly on /// the form of the code. No crates in `rustc-perf` need more than 15 bits /// for `ctxt_or_parent_or_marker`, but larger crates might need more than 16 /// bits. The number of bits needed for `parent` hasn't been measured, /// because `parent` isn't currently used by default. /// /// In order to reliably use parented spans in incremental compilation, /// the dependency to the parent definition's span. This is performed /// using the callback `SPAN_TRACK` to access the query engine. /// #[derive(Clone, Copy, Eq, PartialEq, Hash)] #[rustc_pass_by_value] pub struct Span { lo_or_index: u32, len_with_tag_or_marker: u16, ctxt_or_parent_or_marker: u16, } // Convenience structures for all span formats. #[derive(Clone, Copy)] struct InlineCtxt { lo: u32, len: u16, ctxt: u16, } #[derive(Clone, Copy)] struct InlineParent { lo: u32, len_with_tag: u16, parent: u16, } #[derive(Clone, Copy)] struct PartiallyInterned { index: u32, _marker1: u16, ctxt: u16, } #[derive(Clone, Copy)] struct Interned { index: u32, _marker1: u16, _marker2: u16, } impl InlineCtxt { #[inline] fn data(self) -> SpanData { let len = self.len as u32; debug_assert!(len <= MAX_LEN); SpanData { lo: BytePos(self.lo), hi: BytePos(self.lo.debug_strict_add(len)), ctxt: SyntaxContext::from_u32(self.ctxt as u32), parent: None, } } #[inline] fn span(lo: u32, len: u16, ctxt: u16) -> Span { unsafe { transmute(InlineCtxt { lo, len, ctxt }) } } } impl InlineParent { #[inline] fn data(self) -> SpanData { let len = (self.len_with_tag & !PARENT_TAG) as u32; debug_assert!(len <= MAX_LEN); SpanData { lo: BytePos(self.lo), hi: BytePos(self.lo.debug_strict_add(len)), ctxt: SyntaxContext::root(), parent: Some(LocalDefId { local_def_index: DefIndex::from_u32(self.parent as u32) }), } } #[inline] fn span(lo: u32, len_with_tag: u16, parent: u16) -> Span { unsafe { transmute(InlineParent { lo, len_with_tag, parent }) } } } impl PartiallyInterned { #[inline] fn data(self) -> SpanData { SpanData { ctxt: SyntaxContext::from_u32(self.ctxt as u32), ..with_span_interner(|interner| interner.spans[self.index as usize]) } } #[inline] fn span(index: u32, ctxt: u16) -> Span { unsafe { transmute(PartiallyInterned { index, _marker1: BASE_LEN_INTERNED_MARKER, ctxt }) } } } impl Interned { #[inline] fn data(self) -> SpanData { with_span_interner(|interner| interner.spans[self.index as usize]) } #[inline] fn span(index: u32) -> Span { let _marker1 = BASE_LEN_INTERNED_MARKER; unsafe { transmute(Interned { index, _marker1, _marker2: CTXT_INTERNED_MARKER }) } } } // This code is very hot, and converting span to an enum and matching on it doesn't optimize away // properly. So we are using a macro emulating such a match, but expand it directly to an if-else // chain. macro_rules! match_span_kind { ( $span:expr, InlineCtxt($span1:ident) => $arm1:expr, InlineParent($span2:ident) => $arm2:expr, PartiallyInterned($span3:ident) => $arm3:expr, Interned($span4:ident) => $arm4:expr, ) => { if $span.len_with_tag_or_marker != BASE_LEN_INTERNED_MARKER { if $span.len_with_tag_or_marker & PARENT_TAG == 0 { // Inline-context format. let $span1: &mut InlineCtxt = unsafe { transmute(&mut *$span) }; $arm1 } else { // Inline-parent format. let $span2: &mut InlineParent = unsafe { transmute(&mut *$span) }; $arm2 } } else if $span.ctxt_or_parent_or_marker != CTXT_INTERNED_MARKER { // Partially-interned format. let $span3: &mut PartiallyInterned = unsafe { transmute(&mut *$span) }; $arm3 } else { // Interned format. let $span4: &mut Interned = unsafe { transmute(&mut *$span) }; $arm4 } }; } // `MAX_LEN` is chosen so that `PARENT_TAG | MAX_LEN` is distinct from // `BASE_LEN_INTERNED_MARKER`. (If `MAX_LEN` was 1 higher, this wouldn't be true.) const MAX_LEN: u32 = 0b0111_1111_1111_1110; const MAX_CTXT: u32 = 0b0111_1111_1111_1110; const PARENT_TAG: u16 = 0b1000_0000_0000_0000; const BASE_LEN_INTERNED_MARKER: u16 = 0b1111_1111_1111_1111; const CTXT_INTERNED_MARKER: u16 = 0b1111_1111_1111_1111; /// The dummy span has zero position, length, and context, and no parent. pub const DUMMY_SP: Span = Span { lo_or_index: 0, len_with_tag_or_marker: 0, ctxt_or_parent_or_marker: 0 }; impl Span { #[inline] pub fn new( mut lo: BytePos, mut hi: BytePos, ctxt: SyntaxContext, parent: Option, ) -> Self { if lo > hi { std::mem::swap(&mut lo, &mut hi); } // Small len may enable one of fully inline formats (or may not). let (len, ctxt32) = (hi.0 - lo.0, ctxt.as_u32()); if len <= MAX_LEN { if ctxt32 <= MAX_CTXT && parent.is_none() { return InlineCtxt::span(lo.0, len as u16, ctxt32 as u16); } else if ctxt32 == 0 && let Some(parent) = parent && let parent32 = parent.local_def_index.as_u32() && parent32 <= MAX_CTXT { return InlineParent::span(lo.0, PARENT_TAG | len as u16, parent32 as u16); } } // Otherwise small ctxt may enable the partially inline format. let index = |ctxt| { with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt, parent })) }; if ctxt32 <= MAX_CTXT { // Interned ctxt should never be read, so it can use any value. PartiallyInterned::span(index(SyntaxContext::from_u32(u32::MAX)), ctxt32 as u16) } else { Interned::span(index(ctxt)) } } #[inline] pub fn data(self) -> SpanData { let data = self.data_untracked(); if let Some(parent) = data.parent { (*SPAN_TRACK)(parent); } data } /// Internal function to translate between an encoded span and the expanded representation. /// This function must not be used outside the incremental engine. #[inline] pub fn data_untracked(mut self) -> SpanData { match_span_kind! { &mut self, InlineCtxt(span) => span.data(), InlineParent(span) => span.data(), PartiallyInterned(span) => span.data(), Interned(span) => span.data(), } } /// Returns `true` if this is a dummy span with any hygienic context. #[inline] pub fn is_dummy(self) -> bool { if self.len_with_tag_or_marker != BASE_LEN_INTERNED_MARKER { // Inline-context or inline-parent format. let lo = self.lo_or_index; let len = (self.len_with_tag_or_marker & !PARENT_TAG) as u32; debug_assert!(len <= MAX_LEN); lo == 0 && len == 0 } else { // Fully-interned or partially-interned format. let index = self.lo_or_index; let data = with_span_interner(|interner| interner.spans[index as usize]); data.lo == BytePos(0) && data.hi == BytePos(0) } } // For optimization we are interested in cases in which the context is inline and the context // update doesn't change format. All non-inline or format changing scenarios require accessing // interner and can fall back to `Span::new`. #[inline] pub fn update_ctxt(&mut self, update: impl FnOnce(SyntaxContext) -> SyntaxContext) { let (updated_ctxt32, data); match_span_kind! { self, InlineCtxt(span) => { updated_ctxt32 = update(SyntaxContext::from_u32(span.ctxt as u32)).as_u32(); // Any small new context including zero will preserve the format. if updated_ctxt32 <= MAX_CTXT { span.ctxt = updated_ctxt32 as u16; return; } data = span.data(); }, InlineParent(span) => { updated_ctxt32 = update(SyntaxContext::root()).as_u32(); // Only if the new context is zero the format will be preserved. if updated_ctxt32 == 0 { // Do nothing. return; } data = span.data(); }, PartiallyInterned(span) => { updated_ctxt32 = update(SyntaxContext::from_u32(span.ctxt as u32)).as_u32(); // Any small new context excluding zero will preserve the format. // Zero may change the format to `InlineParent` if parent and len are small enough. if updated_ctxt32 <= MAX_CTXT && updated_ctxt32 != 0 { span.ctxt = updated_ctxt32 as u16; return; } data = span.data(); }, Interned(span) => { data = span.data(); updated_ctxt32 = update(data.ctxt).as_u32(); }, } // We could not keep the span in the same inline format, fall back to the complete logic. *self = data.with_ctxt(SyntaxContext::from_u32(updated_ctxt32)); } // Returns either syntactic context, if it can be retrieved without taking the interner lock, // or an index into the interner if it cannot. #[inline] fn inline_ctxt(mut self) -> Result { match_span_kind! { &mut self, InlineCtxt(span) => Ok(SyntaxContext::from_u32(span.ctxt as u32)), InlineParent(_span) => Ok(SyntaxContext::root()), PartiallyInterned(span) => Ok(SyntaxContext::from_u32(span.ctxt as u32)), Interned(span) => Err(span.index as usize), } } /// This function is used as a fast path when decoding the full `SpanData` is not necessary. /// It's a cut-down version of `data_untracked`. #[cfg_attr(not(test), rustc_diagnostic_item = "SpanCtxt")] #[inline] pub fn ctxt(self) -> SyntaxContext { self.inline_ctxt() .unwrap_or_else(|index| with_span_interner(|interner| interner.spans[index].ctxt)) } #[inline] pub fn eq_ctxt(self, other: Span) -> bool { match (self.inline_ctxt(), other.inline_ctxt()) { (Ok(ctxt1), Ok(ctxt2)) => ctxt1 == ctxt2, (Ok(ctxt), Err(index)) | (Err(index), Ok(ctxt)) => { with_span_interner(|interner| ctxt == interner.spans[index].ctxt) } (Err(index1), Err(index2)) => with_span_interner(|interner| { interner.spans[index1].ctxt == interner.spans[index2].ctxt }), } } } #[derive(Default)] pub struct SpanInterner { spans: FxIndexSet, } impl SpanInterner { fn intern(&mut self, span_data: &SpanData) -> u32 { let (index, _) = self.spans.insert_full(*span_data); index as u32 } } // If an interner exists, return it. Otherwise, prepare a fresh one. #[inline] fn with_span_interner T>(f: F) -> T { crate::with_session_globals(|session_globals| f(&mut session_globals.span_interner.lock())) }