use std::mem; use rustc_ast::visit::FnKind; use rustc_ast::*; use rustc_ast_pretty::pprust; use rustc_expand::expand::AstFragment; use rustc_hir as hir; use rustc_hir::def::{CtorKind, CtorOf, DefKind}; use rustc_hir::def_id::LocalDefId; use rustc_span::hygiene::LocalExpnId; use rustc_span::{Span, Symbol, kw, sym}; use tracing::debug; use crate::{ImplTraitContext, InvocationParent, Resolver}; pub(crate) fn collect_definitions( resolver: &mut Resolver<'_, '_>, fragment: &AstFragment, expansion: LocalExpnId, ) { let InvocationParent { parent_def, impl_trait_context, in_attr } = resolver.invocation_parents[&expansion]; let mut visitor = DefCollector { resolver, parent_def, expansion, impl_trait_context, in_attr }; fragment.visit_with(&mut visitor); } /// Creates `DefId`s for nodes in the AST. struct DefCollector<'a, 'ra, 'tcx> { resolver: &'a mut Resolver<'ra, 'tcx>, parent_def: LocalDefId, impl_trait_context: ImplTraitContext, in_attr: bool, expansion: LocalExpnId, } impl<'a, 'ra, 'tcx> DefCollector<'a, 'ra, 'tcx> { fn create_def( &mut self, node_id: NodeId, name: Symbol, def_kind: DefKind, span: Span, ) -> LocalDefId { let parent_def = self.parent_def; debug!( "create_def(node_id={:?}, def_kind={:?}, parent_def={:?})", node_id, def_kind, parent_def ); self.resolver .create_def( parent_def, node_id, name, def_kind, self.expansion.to_expn_id(), span.with_parent(None), ) .def_id() } fn with_parent(&mut self, parent_def: LocalDefId, f: F) { let orig_parent_def = mem::replace(&mut self.parent_def, parent_def); f(self); self.parent_def = orig_parent_def; } fn with_impl_trait( &mut self, impl_trait_context: ImplTraitContext, f: F, ) { let orig_itc = mem::replace(&mut self.impl_trait_context, impl_trait_context); f(self); self.impl_trait_context = orig_itc; } fn collect_field(&mut self, field: &'a FieldDef, index: Option) { let index = |this: &Self| { index.unwrap_or_else(|| { let node_id = NodeId::placeholder_from_expn_id(this.expansion); this.resolver.placeholder_field_indices[&node_id] }) }; if field.is_placeholder { let old_index = self.resolver.placeholder_field_indices.insert(field.id, index(self)); assert!(old_index.is_none(), "placeholder field index is reset for a node ID"); self.visit_macro_invoc(field.id); } else { let name = field.ident.map_or_else(|| sym::integer(index(self)), |ident| ident.name); let def = self.create_def(field.id, name, DefKind::Field, field.span); self.with_parent(def, |this| visit::walk_field_def(this, field)); } } fn visit_macro_invoc(&mut self, id: NodeId) { let id = id.placeholder_to_expn_id(); let old_parent = self.resolver.invocation_parents.insert(id, InvocationParent { parent_def: self.parent_def, impl_trait_context: self.impl_trait_context, in_attr: self.in_attr, }); assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation"); } } impl<'a, 'ra, 'tcx> visit::Visitor<'a> for DefCollector<'a, 'ra, 'tcx> { fn visit_item(&mut self, i: &'a Item) { // Pick the def data. This need not be unique, but the more // information we encapsulate into, the better let mut opt_macro_data = None; let def_kind = match &i.kind { ItemKind::Impl(i) => DefKind::Impl { of_trait: i.of_trait.is_some() }, ItemKind::ForeignMod(..) => DefKind::ForeignMod, ItemKind::Mod(..) => DefKind::Mod, ItemKind::Trait(..) => DefKind::Trait, ItemKind::TraitAlias(..) => DefKind::TraitAlias, ItemKind::Enum(..) => DefKind::Enum, ItemKind::Struct(..) => DefKind::Struct, ItemKind::Union(..) => DefKind::Union, ItemKind::ExternCrate(..) => DefKind::ExternCrate, ItemKind::TyAlias(..) => DefKind::TyAlias, ItemKind::Static(s) => DefKind::Static { safety: hir::Safety::Safe, mutability: s.mutability, nested: false, }, ItemKind::Const(..) => DefKind::Const, ItemKind::Fn(..) | ItemKind::Delegation(..) => DefKind::Fn, ItemKind::MacroDef(def) => { let edition = i.span.edition(); let macro_data = self.resolver.compile_macro(def, i.ident, &i.attrs, i.span, i.id, edition); let macro_kind = macro_data.ext.macro_kind(); opt_macro_data = Some(macro_data); DefKind::Macro(macro_kind) } ItemKind::GlobalAsm(..) => DefKind::GlobalAsm, ItemKind::Use(..) => return visit::walk_item(self, i), ItemKind::MacCall(..) | ItemKind::DelegationMac(..) => { return self.visit_macro_invoc(i.id); } }; let def_id = self.create_def(i.id, i.ident.name, def_kind, i.span); if let Some(macro_data) = opt_macro_data { self.resolver.macro_map.insert(def_id.to_def_id(), macro_data); } self.with_parent(def_id, |this| { this.with_impl_trait(ImplTraitContext::Existential, |this| { match i.kind { ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => { // If this is a unit or tuple-like struct, register the constructor. if let Some((ctor_kind, ctor_node_id)) = CtorKind::from_ast(struct_def) { this.create_def( ctor_node_id, kw::Empty, DefKind::Ctor(CtorOf::Struct, ctor_kind), i.span, ); } } _ => {} } visit::walk_item(this, i); }) }); } fn visit_fn(&mut self, fn_kind: FnKind<'a>, span: Span, _: NodeId) { match fn_kind { FnKind::Fn( _ctxt, _ident, _vis, Fn { sig: FnSig { header, decl, span: _ }, generics, body, .. }, ) if let Some(coroutine_kind) = header.coroutine_kind => { self.visit_fn_header(header); self.visit_generics(generics); // For async functions, we need to create their inner defs inside of a // closure to match their desugared representation. Besides that, // we must mirror everything that `visit::walk_fn` below does. let FnDecl { inputs, output } = &**decl; for param in inputs { self.visit_param(param); } let (return_id, return_span) = coroutine_kind.return_id(); let return_def = self.create_def(return_id, kw::Empty, DefKind::OpaqueTy, return_span); self.with_parent(return_def, |this| this.visit_fn_ret_ty(output)); // If this async fn has no body (i.e. it's an async fn signature in a trait) // then the closure_def will never be used, and we should avoid generating a // def-id for it. if let Some(body) = body { let closure_def = self.create_def( coroutine_kind.closure_id(), kw::Empty, DefKind::Closure, span, ); self.with_parent(closure_def, |this| this.visit_block(body)); } } FnKind::Closure(binder, Some(coroutine_kind), decl, body) => { self.visit_closure_binder(binder); visit::walk_fn_decl(self, decl); // Async closures desugar to closures inside of closures, so // we must create two defs. let coroutine_def = self.create_def(coroutine_kind.closure_id(), kw::Empty, DefKind::Closure, span); self.with_parent(coroutine_def, |this| this.visit_expr(body)); } _ => visit::walk_fn(self, fn_kind), } } fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) { self.create_def(id, kw::Empty, DefKind::Use, use_tree.span); visit::walk_use_tree(self, use_tree, id); } fn visit_foreign_item(&mut self, fi: &'a ForeignItem) { let def_kind = match fi.kind { ForeignItemKind::Static(box StaticItem { ty: _, mutability, expr: _, safety }) => { let safety = match safety { ast::Safety::Unsafe(_) | ast::Safety::Default => hir::Safety::Unsafe, ast::Safety::Safe(_) => hir::Safety::Safe, }; DefKind::Static { safety, mutability, nested: false } } ForeignItemKind::Fn(_) => DefKind::Fn, ForeignItemKind::TyAlias(_) => DefKind::ForeignTy, ForeignItemKind::MacCall(_) => return self.visit_macro_invoc(fi.id), }; let def = self.create_def(fi.id, fi.ident.name, def_kind, fi.span); self.with_parent(def, |this| visit::walk_item(this, fi)); } fn visit_variant(&mut self, v: &'a Variant) { if v.is_placeholder { return self.visit_macro_invoc(v.id); } let def = self.create_def(v.id, v.ident.name, DefKind::Variant, v.span); self.with_parent(def, |this| { if let Some((ctor_kind, ctor_node_id)) = CtorKind::from_ast(&v.data) { this.create_def( ctor_node_id, kw::Empty, DefKind::Ctor(CtorOf::Variant, ctor_kind), v.span, ); } visit::walk_variant(this, v) }); } fn visit_variant_data(&mut self, data: &'a VariantData) { // The assumption here is that non-`cfg` macro expansion cannot change field indices. // It currently holds because only inert attributes are accepted on fields, // and every such attribute expands into a single field after it's resolved. for (index, field) in data.fields().iter().enumerate() { self.collect_field(field, Some(index)); } } fn visit_generic_param(&mut self, param: &'a GenericParam) { if param.is_placeholder { self.visit_macro_invoc(param.id); return; } let def_kind = match param.kind { GenericParamKind::Lifetime { .. } => DefKind::LifetimeParam, GenericParamKind::Type { .. } => DefKind::TyParam, GenericParamKind::Const { .. } => DefKind::ConstParam, }; self.create_def(param.id, param.ident.name, def_kind, param.ident.span); // impl-Trait can happen inside generic parameters, like // ``` // fn foo>() {} // ``` // // In that case, the impl-trait is lowered as an additional generic parameter. self.with_impl_trait(ImplTraitContext::Universal, |this| { visit::walk_generic_param(this, param) }); } fn visit_assoc_item(&mut self, i: &'a AssocItem, ctxt: visit::AssocCtxt) { let def_kind = match &i.kind { AssocItemKind::Fn(..) | AssocItemKind::Delegation(..) => DefKind::AssocFn, AssocItemKind::Const(..) => DefKind::AssocConst, AssocItemKind::Type(..) => DefKind::AssocTy, AssocItemKind::MacCall(..) | AssocItemKind::DelegationMac(..) => { return self.visit_macro_invoc(i.id); } }; let def = self.create_def(i.id, i.ident.name, def_kind, i.span); self.with_parent(def, |this| visit::walk_assoc_item(this, i, ctxt)); } fn visit_pat(&mut self, pat: &'a Pat) { match pat.kind { PatKind::MacCall(..) => self.visit_macro_invoc(pat.id), _ => visit::walk_pat(self, pat), } } fn visit_anon_const(&mut self, constant: &'a AnonConst) { let parent = self.create_def(constant.id, kw::Empty, DefKind::AnonConst, constant.value.span); self.with_parent(parent, |this| visit::walk_anon_const(this, constant)); } fn visit_expr(&mut self, expr: &'a Expr) { let parent_def = match expr.kind { ExprKind::MacCall(..) => return self.visit_macro_invoc(expr.id), ExprKind::Closure(..) | ExprKind::Gen(..) => { self.create_def(expr.id, kw::Empty, DefKind::Closure, expr.span) } ExprKind::ConstBlock(ref constant) => { for attr in &expr.attrs { visit::walk_attribute(self, attr); } let def = self.create_def( constant.id, kw::Empty, DefKind::InlineConst, constant.value.span, ); self.with_parent(def, |this| visit::walk_anon_const(this, constant)); return; } _ => self.parent_def, }; self.with_parent(parent_def, |this| visit::walk_expr(this, expr)) } fn visit_ty(&mut self, ty: &'a Ty) { match &ty.kind { TyKind::MacCall(..) => self.visit_macro_invoc(ty.id), TyKind::ImplTrait(id, _) => { // HACK: pprust breaks strings with newlines when the type // gets too long. We don't want these to show up in compiler // output or built artifacts, so replace them here... // Perhaps we should instead format APITs more robustly. let name = Symbol::intern(&pprust::ty_to_string(ty).replace('\n', " ")); let kind = match self.impl_trait_context { ImplTraitContext::Universal => DefKind::TyParam, ImplTraitContext::Existential => DefKind::OpaqueTy, ImplTraitContext::InBinding => return visit::walk_ty(self, ty), }; let id = self.create_def(*id, name, kind, ty.span); match self.impl_trait_context { // Do not nest APIT, as we desugar them as `impl_trait: bounds`, // so the `impl_trait` node is not a parent to `bounds`. ImplTraitContext::Universal => visit::walk_ty(self, ty), ImplTraitContext::Existential => { self.with_parent(id, |this| visit::walk_ty(this, ty)) } ImplTraitContext::InBinding => unreachable!(), }; } _ => visit::walk_ty(self, ty), } } fn visit_stmt(&mut self, stmt: &'a Stmt) { match stmt.kind { StmtKind::MacCall(..) => self.visit_macro_invoc(stmt.id), // FIXME(impl_trait_in_bindings): We don't really have a good way of // introducing the right `ImplTraitContext` here for all the cases we // care about, in case we want to introduce ITIB to other positions // such as turbofishes (e.g. `foo::(|| {})`). StmtKind::Let(ref local) => self.with_impl_trait(ImplTraitContext::InBinding, |this| { visit::walk_local(this, local) }), _ => visit::walk_stmt(self, stmt), } } fn visit_arm(&mut self, arm: &'a Arm) { if arm.is_placeholder { self.visit_macro_invoc(arm.id) } else { visit::walk_arm(self, arm) } } fn visit_expr_field(&mut self, f: &'a ExprField) { if f.is_placeholder { self.visit_macro_invoc(f.id) } else { visit::walk_expr_field(self, f) } } fn visit_pat_field(&mut self, fp: &'a PatField) { if fp.is_placeholder { self.visit_macro_invoc(fp.id) } else { visit::walk_pat_field(self, fp) } } fn visit_param(&mut self, p: &'a Param) { if p.is_placeholder { self.visit_macro_invoc(p.id) } else { self.with_impl_trait(ImplTraitContext::Universal, |this| visit::walk_param(this, p)) } } // This method is called only when we are visiting an individual field // after expanding an attribute on it. fn visit_field_def(&mut self, field: &'a FieldDef) { self.collect_field(field, None); } fn visit_crate(&mut self, krate: &'a Crate) { if krate.is_placeholder { self.visit_macro_invoc(krate.id) } else { visit::walk_crate(self, krate) } } fn visit_attribute(&mut self, attr: &'a Attribute) -> Self::Result { let orig_in_attr = mem::replace(&mut self.in_attr, true); visit::walk_attribute(self, attr); self.in_attr = orig_in_attr; } }