//! The memory subsystem. //! //! Generally, we use `Pointer` to denote memory addresses. However, some operations //! have a "size"-like parameter, and they take `Scalar` for the address because //! if the size is 0, then the pointer can also be a (properly aligned, non-NULL) //! integer. It is crucial that these operations call `check_align` *before* //! short-circuiting the empty case! use std::borrow::Cow; use std::collections::VecDeque; use std::convert::{TryFrom, TryInto}; use std::fmt; use std::ptr; use rustc_ast::Mutability; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_middle::ty::{Instance, ParamEnv, TyCtxt}; use rustc_target::abi::{Align, HasDataLayout, Size, TargetDataLayout}; use super::{ AllocId, AllocMap, Allocation, AllocationExtra, CheckInAllocMsg, GlobalAlloc, InterpResult, Machine, MayLeak, Pointer, PointerArithmetic, Scalar, }; use crate::util::pretty; #[derive(Debug, PartialEq, Copy, Clone)] pub enum MemoryKind { /// Stack memory. Error if deallocated except during a stack pop. Stack, /// Memory backing vtables. Error if ever deallocated. Vtable, /// Memory allocated by `caller_location` intrinsic. Error if ever deallocated. CallerLocation, /// Additional memory kinds a machine wishes to distinguish from the builtin ones. Machine(T), } impl MayLeak for MemoryKind { #[inline] fn may_leak(self) -> bool { match self { MemoryKind::Stack => false, MemoryKind::Vtable => true, MemoryKind::CallerLocation => true, MemoryKind::Machine(k) => k.may_leak(), } } } impl fmt::Display for MemoryKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { MemoryKind::Stack => write!(f, "stack variable"), MemoryKind::Vtable => write!(f, "vtable"), MemoryKind::CallerLocation => write!(f, "caller location"), MemoryKind::Machine(m) => write!(f, "{}", m), } } } /// Used by `get_size_and_align` to indicate whether the allocation needs to be live. #[derive(Debug, Copy, Clone)] pub enum AllocCheck { /// Allocation must be live and not a function pointer. Dereferenceable, /// Allocations needs to be live, but may be a function pointer. Live, /// Allocation may be dead. MaybeDead, } /// The value of a function pointer. #[derive(Debug, Copy, Clone)] pub enum FnVal<'tcx, Other> { Instance(Instance<'tcx>), Other(Other), } impl<'tcx, Other> FnVal<'tcx, Other> { pub fn as_instance(self) -> InterpResult<'tcx, Instance<'tcx>> { match self { FnVal::Instance(instance) => Ok(instance), FnVal::Other(_) => { throw_unsup_format!("'foreign' function pointers are not supported in this context") } } } } // `Memory` has to depend on the `Machine` because some of its operations // (e.g., `get`) call a `Machine` hook. pub struct Memory<'mir, 'tcx, M: Machine<'mir, 'tcx>> { /// Allocations local to this instance of the miri engine. The kind /// helps ensure that the same mechanism is used for allocation and /// deallocation. When an allocation is not found here, it is a /// global and looked up in the `tcx` for read access. Some machines may /// have to mutate this map even on a read-only access to a global (because /// they do pointer provenance tracking and the allocations in `tcx` have /// the wrong type), so we let the machine override this type. /// Either way, if the machine allows writing to a global, doing so will /// create a copy of the global allocation here. // FIXME: this should not be public, but interning currently needs access to it pub(super) alloc_map: M::MemoryMap, /// Map for "extra" function pointers. extra_fn_ptr_map: FxHashMap, /// To be able to compare pointers with NULL, and to check alignment for accesses /// to ZSTs (where pointers may dangle), we keep track of the size even for allocations /// that do not exist any more. // FIXME: this should not be public, but interning currently needs access to it pub(super) dead_alloc_map: FxHashMap, /// Extra data added by the machine. pub extra: M::MemoryExtra, /// Lets us implement `HasDataLayout`, which is awfully convenient. pub tcx: TyCtxt<'tcx>, } impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for Memory<'mir, 'tcx, M> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { pub fn new(tcx: TyCtxt<'tcx>, extra: M::MemoryExtra) -> Self { Memory { alloc_map: M::MemoryMap::default(), extra_fn_ptr_map: FxHashMap::default(), dead_alloc_map: FxHashMap::default(), extra, tcx, } } /// Call this to turn untagged "global" pointers (obtained via `tcx`) into /// the machine pointer to the allocation. Must never be used /// for any other pointers, nor for TLS statics. /// /// Using the resulting pointer represents a *direct* access to that memory /// (e.g. by directly using a `static`), /// as opposed to access through a pointer that was created by the program. /// /// This function can fail only if `ptr` points to an `extern static`. #[inline] pub fn global_base_pointer( &self, mut ptr: Pointer, ) -> InterpResult<'tcx, Pointer> { // We need to handle `extern static`. let ptr = match self.tcx.get_global_alloc(ptr.alloc_id) { Some(GlobalAlloc::Static(def_id)) if self.tcx.is_thread_local_static(def_id) => { bug!("global memory cannot point to thread-local static") } Some(GlobalAlloc::Static(def_id)) if self.tcx.is_foreign_item(def_id) => { ptr.alloc_id = M::extern_static_alloc_id(self, def_id)?; ptr } _ => { // No need to change the `AllocId`. ptr } }; // And we need to get the tag. let tag = M::tag_global_base_pointer(&self.extra, ptr.alloc_id); Ok(ptr.with_tag(tag)) } pub fn create_fn_alloc( &mut self, fn_val: FnVal<'tcx, M::ExtraFnVal>, ) -> Pointer { let id = match fn_val { FnVal::Instance(instance) => self.tcx.create_fn_alloc(instance), FnVal::Other(extra) => { // FIXME(RalfJung): Should we have a cache here? let id = self.tcx.reserve_alloc_id(); let old = self.extra_fn_ptr_map.insert(id, extra); assert!(old.is_none()); id } }; // Functions are global allocations, so make sure we get the right base pointer. // We know this is not an `extern static` so this cannot fail. self.global_base_pointer(Pointer::from(id)).unwrap() } pub fn allocate( &mut self, size: Size, align: Align, kind: MemoryKind, ) -> Pointer { let alloc = Allocation::uninit(size, align); self.allocate_with(alloc, kind) } pub fn allocate_bytes( &mut self, bytes: &[u8], kind: MemoryKind, ) -> Pointer { let alloc = Allocation::from_byte_aligned_bytes(bytes); self.allocate_with(alloc, kind) } pub fn allocate_with( &mut self, alloc: Allocation, kind: MemoryKind, ) -> Pointer { let id = self.tcx.reserve_alloc_id(); debug_assert_ne!( Some(kind), M::GLOBAL_KIND.map(MemoryKind::Machine), "dynamically allocating global memory" ); // This is a new allocation, not a new global one, so no `global_base_ptr`. let (alloc, tag) = M::init_allocation_extra(&self.extra, id, Cow::Owned(alloc), Some(kind)); self.alloc_map.insert(id, (kind, alloc.into_owned())); Pointer::from(id).with_tag(tag) } pub fn reallocate( &mut self, ptr: Pointer, old_size_and_align: Option<(Size, Align)>, new_size: Size, new_align: Align, kind: MemoryKind, ) -> InterpResult<'tcx, Pointer> { if ptr.offset.bytes() != 0 { throw_ub_format!( "reallocating {:?} which does not point to the beginning of an object", ptr ); } // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc". // This happens so rarely, the perf advantage is outweighed by the maintenance cost. let new_ptr = self.allocate(new_size, new_align, kind); let old_size = match old_size_and_align { Some((size, _align)) => size, None => self.get_raw(ptr.alloc_id)?.size, }; self.copy(ptr, new_ptr, old_size.min(new_size), /*nonoverlapping*/ true)?; self.deallocate(ptr, old_size_and_align, kind)?; Ok(new_ptr) } /// Deallocate a local, or do nothing if that local has been made into a global. pub fn deallocate_local(&mut self, ptr: Pointer) -> InterpResult<'tcx> { // The allocation might be already removed by global interning. // This can only really happen in the CTFE instance, not in miri. if self.alloc_map.contains_key(&ptr.alloc_id) { self.deallocate(ptr, None, MemoryKind::Stack) } else { Ok(()) } } pub fn deallocate( &mut self, ptr: Pointer, old_size_and_align: Option<(Size, Align)>, kind: MemoryKind, ) -> InterpResult<'tcx> { trace!("deallocating: {}", ptr.alloc_id); if ptr.offset.bytes() != 0 { throw_ub_format!( "deallocating {:?} which does not point to the beginning of an object", ptr ); } M::before_deallocation(&mut self.extra, ptr.alloc_id)?; let (alloc_kind, mut alloc) = match self.alloc_map.remove(&ptr.alloc_id) { Some(alloc) => alloc, None => { // Deallocating global memory -- always an error return Err(match self.tcx.get_global_alloc(ptr.alloc_id) { Some(GlobalAlloc::Function(..)) => err_ub_format!("deallocating a function"), Some(GlobalAlloc::Static(..) | GlobalAlloc::Memory(..)) => { err_ub_format!("deallocating static memory") } None => err_ub!(PointerUseAfterFree(ptr.alloc_id)), } .into()); } }; if alloc_kind != kind { throw_ub_format!( "deallocating {} memory using {} deallocation operation", alloc_kind, kind ); } if let Some((size, align)) = old_size_and_align { if size != alloc.size || align != alloc.align { throw_ub_format!( "incorrect layout on deallocation: allocation has size {} and alignment {}, but gave size {} and alignment {}", alloc.size.bytes(), alloc.align.bytes(), size.bytes(), align.bytes(), ) } } // Let the machine take some extra action let size = alloc.size; AllocationExtra::memory_deallocated(&mut alloc, ptr, size)?; // Don't forget to remember size and align of this now-dead allocation let old = self.dead_alloc_map.insert(ptr.alloc_id, (alloc.size, alloc.align)); if old.is_some() { bug!("Nothing can be deallocated twice"); } Ok(()) } /// Check if the given scalar is allowed to do a memory access of given `size` /// and `align`. On success, returns `None` for zero-sized accesses (where /// nothing else is left to do) and a `Pointer` to use for the actual access otherwise. /// Crucially, if the input is a `Pointer`, we will test it for liveness /// *even if* the size is 0. /// /// Everyone accessing memory based on a `Scalar` should use this method to get the /// `Pointer` they need. And even if you already have a `Pointer`, call this method /// to make sure it is sufficiently aligned and not dangling. Not doing that may /// cause ICEs. /// /// Most of the time you should use `check_mplace_access`, but when you just have a pointer, /// this method is still appropriate. #[inline(always)] pub fn check_ptr_access( &self, sptr: Scalar, size: Size, align: Align, ) -> InterpResult<'tcx, Option>> { let align = M::enforce_alignment(&self.extra).then_some(align); self.check_ptr_access_align(sptr, size, align, CheckInAllocMsg::MemoryAccessTest) } /// Like `check_ptr_access`, but *definitely* checks alignment when `align` /// is `Some` (overriding `M::enforce_alignment`). Also lets the caller control /// the error message for the out-of-bounds case. pub fn check_ptr_access_align( &self, sptr: Scalar, size: Size, align: Option, msg: CheckInAllocMsg, ) -> InterpResult<'tcx, Option>> { fn check_offset_align(offset: u64, align: Align) -> InterpResult<'static> { if offset % align.bytes() == 0 { Ok(()) } else { // The biggest power of two through which `offset` is divisible. let offset_pow2 = 1 << offset.trailing_zeros(); throw_ub!(AlignmentCheckFailed { has: Align::from_bytes(offset_pow2).unwrap(), required: align, }) } } // Normalize to a `Pointer` if we definitely need one. let normalized = if size.bytes() == 0 { // Can be an integer, just take what we got. We do NOT `force_bits` here; // if this is already a `Pointer` we want to do the bounds checks! sptr } else { // A "real" access, we must get a pointer to be able to check the bounds. Scalar::from(self.force_ptr(sptr)?) }; Ok(match normalized.to_bits_or_ptr(self.pointer_size(), self) { Ok(bits) => { let bits = u64::try_from(bits).unwrap(); // it's ptr-sized assert!(size.bytes() == 0); // Must be non-NULL. if bits == 0 { throw_ub!(DanglingIntPointer(0, msg)) } // Must be aligned. if let Some(align) = align { check_offset_align(bits, align)?; } None } Err(ptr) => { let (allocation_size, alloc_align) = self.get_size_and_align(ptr.alloc_id, AllocCheck::Dereferenceable)?; // Test bounds. This also ensures non-NULL. // It is sufficient to check this for the end pointer. The addition // checks for overflow. let end_ptr = ptr.offset(size, self)?; if end_ptr.offset > allocation_size { // equal is okay! throw_ub!(PointerOutOfBounds { ptr: end_ptr.erase_tag(), msg, allocation_size }) } // Test align. Check this last; if both bounds and alignment are violated // we want the error to be about the bounds. if let Some(align) = align { if M::force_int_for_alignment_check(&self.extra) { let bits = self .force_bits(ptr.into(), self.pointer_size()) .expect("ptr-to-int cast for align check should never fail"); check_offset_align(bits.try_into().unwrap(), align)?; } else { // Check allocation alignment and offset alignment. if alloc_align.bytes() < align.bytes() { throw_ub!(AlignmentCheckFailed { has: alloc_align, required: align }); } check_offset_align(ptr.offset.bytes(), align)?; } } // We can still be zero-sized in this branch, in which case we have to // return `None`. if size.bytes() == 0 { None } else { Some(ptr) } } }) } /// Test if the pointer might be NULL. pub fn ptr_may_be_null(&self, ptr: Pointer) -> bool { let (size, _align) = self .get_size_and_align(ptr.alloc_id, AllocCheck::MaybeDead) .expect("alloc info with MaybeDead cannot fail"); // If the pointer is out-of-bounds, it may be null. // Note that one-past-the-end (offset == size) is still inbounds, and never null. ptr.offset > size } } /// Allocation accessors impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { /// Helper function to obtain a global (tcx) allocation. /// This attempts to return a reference to an existing allocation if /// one can be found in `tcx`. That, however, is only possible if `tcx` and /// this machine use the same pointer tag, so it is indirected through /// `M::tag_allocation`. fn get_global_alloc( memory_extra: &M::MemoryExtra, tcx: TyCtxt<'tcx>, id: AllocId, is_write: bool, ) -> InterpResult<'tcx, Cow<'tcx, Allocation>> { let (alloc, def_id) = match tcx.get_global_alloc(id) { Some(GlobalAlloc::Memory(mem)) => { // Memory of a constant or promoted or anonymous memory referenced by a static. (mem, None) } Some(GlobalAlloc::Function(..)) => throw_ub!(DerefFunctionPointer(id)), None => throw_ub!(PointerUseAfterFree(id)), Some(GlobalAlloc::Static(def_id)) => { assert!(tcx.is_static(def_id)); assert!(!tcx.is_thread_local_static(def_id)); // Notice that every static has two `AllocId` that will resolve to the same // thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID, // and the other one is maps to `GlobalAlloc::Memory`, this is returned by // `const_eval_raw` and it is the "resolved" ID. // The resolved ID is never used by the interpreted program, it is hidden. // This is relied upon for soundness of const-patterns; a pointer to the resolved // ID would "sidestep" the checks that make sure consts do not point to statics! // The `GlobalAlloc::Memory` branch here is still reachable though; when a static // contains a reference to memory that was created during its evaluation (i.e., not // to another static), those inner references only exist in "resolved" form. if tcx.is_foreign_item(def_id) { throw_unsup!(ReadExternStatic(def_id)); } (tcx.eval_static_initializer(def_id)?, Some(def_id)) } }; M::before_access_global(memory_extra, id, alloc, def_id, is_write)?; let alloc = Cow::Borrowed(alloc); // We got tcx memory. Let the machine initialize its "extra" stuff. let (alloc, tag) = M::init_allocation_extra( memory_extra, id, // always use the ID we got as input, not the "hidden" one. alloc, M::GLOBAL_KIND.map(MemoryKind::Machine), ); // Sanity check that this is the same pointer we would have gotten via `global_base_pointer`. debug_assert_eq!(tag, M::tag_global_base_pointer(memory_extra, id)); Ok(alloc) } /// Gives raw access to the `Allocation`, without bounds or alignment checks. /// Use the higher-level, `PlaceTy`- and `OpTy`-based APIs in `InterpCx` instead! pub fn get_raw( &self, id: AllocId, ) -> InterpResult<'tcx, &Allocation> { // The error type of the inner closure here is somewhat funny. We have two // ways of "erroring": An actual error, or because we got a reference from // `get_global_alloc` that we can actually use directly without inserting anything anywhere. // So the error type is `InterpResult<'tcx, &Allocation>`. let a = self.alloc_map.get_or(id, || { let alloc = Self::get_global_alloc(&self.extra, self.tcx, id, /*is_write*/ false) .map_err(Err)?; match alloc { Cow::Borrowed(alloc) => { // We got a ref, cheaply return that as an "error" so that the // map does not get mutated. Err(Ok(alloc)) } Cow::Owned(alloc) => { // Need to put it into the map and return a ref to that let kind = M::GLOBAL_KIND.expect( "I got a global allocation that I have to copy but the machine does \ not expect that to happen", ); Ok((MemoryKind::Machine(kind), alloc)) } } }); // Now unpack that funny error type match a { Ok(a) => Ok(&a.1), Err(a) => a, } } /// Gives raw mutable access to the `Allocation`, without bounds or alignment checks. /// Use the higher-level, `PlaceTy`- and `OpTy`-based APIs in `InterpCx` instead! pub fn get_raw_mut( &mut self, id: AllocId, ) -> InterpResult<'tcx, &mut Allocation> { let tcx = self.tcx; let memory_extra = &self.extra; let a = self.alloc_map.get_mut_or(id, || { // Need to make a copy, even if `get_global_alloc` is able // to give us a cheap reference. let alloc = Self::get_global_alloc(memory_extra, tcx, id, /*is_write*/ true)?; if alloc.mutability == Mutability::Not { throw_ub!(WriteToReadOnly(id)) } let kind = M::GLOBAL_KIND.expect( "I got a global allocation that I have to copy but the machine does \ not expect that to happen", ); Ok((MemoryKind::Machine(kind), alloc.into_owned())) }); // Unpack the error type manually because type inference doesn't // work otherwise (and we cannot help it because `impl Trait`) match a { Err(e) => Err(e), Ok(a) => { let a = &mut a.1; if a.mutability == Mutability::Not { throw_ub!(WriteToReadOnly(id)) } Ok(a) } } } /// Obtain the size and alignment of an allocation, even if that allocation has /// been deallocated. /// /// If `liveness` is `AllocCheck::MaybeDead`, this function always returns `Ok`. pub fn get_size_and_align( &self, id: AllocId, liveness: AllocCheck, ) -> InterpResult<'static, (Size, Align)> { // # Regular allocations // Don't use `self.get_raw` here as that will // a) cause cycles in case `id` refers to a static // b) duplicate a global's allocation in miri if let Some((_, alloc)) = self.alloc_map.get(id) { return Ok((alloc.size, alloc.align)); } // # Function pointers // (both global from `alloc_map` and local from `extra_fn_ptr_map`) if self.get_fn_alloc(id).is_some() { return if let AllocCheck::Dereferenceable = liveness { // The caller requested no function pointers. throw_ub!(DerefFunctionPointer(id)) } else { Ok((Size::ZERO, Align::from_bytes(1).unwrap())) }; } // # Statics // Can't do this in the match argument, we may get cycle errors since the lock would // be held throughout the match. match self.tcx.get_global_alloc(id) { Some(GlobalAlloc::Static(did)) => { assert!(!self.tcx.is_thread_local_static(did)); // Use size and align of the type. let ty = self.tcx.type_of(did); let layout = self.tcx.layout_of(ParamEnv::empty().and(ty)).unwrap(); Ok((layout.size, layout.align.abi)) } Some(GlobalAlloc::Memory(alloc)) => { // Need to duplicate the logic here, because the global allocations have // different associated types than the interpreter-local ones. Ok((alloc.size, alloc.align)) } Some(GlobalAlloc::Function(_)) => bug!("We already checked function pointers above"), // The rest must be dead. None => { if let AllocCheck::MaybeDead = liveness { // Deallocated pointers are allowed, we should be able to find // them in the map. Ok(*self .dead_alloc_map .get(&id) .expect("deallocated pointers should all be recorded in `dead_alloc_map`")) } else { throw_ub!(PointerUseAfterFree(id)) } } } } fn get_fn_alloc(&self, id: AllocId) -> Option> { trace!("reading fn ptr: {}", id); if let Some(extra) = self.extra_fn_ptr_map.get(&id) { Some(FnVal::Other(*extra)) } else { match self.tcx.get_global_alloc(id) { Some(GlobalAlloc::Function(instance)) => Some(FnVal::Instance(instance)), _ => None, } } } pub fn get_fn( &self, ptr: Scalar, ) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>> { let ptr = self.force_ptr(ptr)?; // We definitely need a pointer value. if ptr.offset.bytes() != 0 { throw_ub!(InvalidFunctionPointer(ptr.erase_tag())) } self.get_fn_alloc(ptr.alloc_id) .ok_or_else(|| err_ub!(InvalidFunctionPointer(ptr.erase_tag())).into()) } pub fn mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> { self.get_raw_mut(id)?.mutability = Mutability::Not; Ok(()) } /// Create a lazy debug printer that prints the given allocation and all allocations it points /// to, recursively. #[must_use] pub fn dump_alloc<'a>(&'a self, id: AllocId) -> DumpAllocs<'a, 'mir, 'tcx, M> { self.dump_allocs(vec![id]) } /// Create a lazy debug printer for a list of allocations and all allocations they point to, /// recursively. #[must_use] pub fn dump_allocs<'a>(&'a self, mut allocs: Vec) -> DumpAllocs<'a, 'mir, 'tcx, M> { allocs.sort(); allocs.dedup(); DumpAllocs { mem: self, allocs } } /// Print leaked memory. Allocations reachable from `static_roots` or a `Global` allocation /// are not considered leaked. Leaks whose kind `may_leak()` returns true are not reported. pub fn leak_report(&self, static_roots: &[AllocId]) -> usize { // Collect the set of allocations that are *reachable* from `Global` allocations. let reachable = { let mut reachable = FxHashSet::default(); let global_kind = M::GLOBAL_KIND.map(MemoryKind::Machine); let mut todo: Vec<_> = self.alloc_map.filter_map_collect(move |&id, &(kind, _)| { if Some(kind) == global_kind { Some(id) } else { None } }); todo.extend(static_roots); while let Some(id) = todo.pop() { if reachable.insert(id) { // This is a new allocation, add its relocations to `todo`. if let Some((_, alloc)) = self.alloc_map.get(id) { todo.extend(alloc.relocations().values().map(|&(_, target_id)| target_id)); } } } reachable }; // All allocations that are *not* `reachable` and *not* `may_leak` are considered leaking. let leaks: Vec<_> = self.alloc_map.filter_map_collect(|&id, &(kind, _)| { if kind.may_leak() || reachable.contains(&id) { None } else { Some(id) } }); let n = leaks.len(); if n > 0 { eprintln!("The following memory was leaked: {:?}", self.dump_allocs(leaks)); } n } /// This is used by [priroda](https://github.com/oli-obk/priroda) pub fn alloc_map(&self) -> &M::MemoryMap { &self.alloc_map } } #[doc(hidden)] /// There's no way to use this directly, it's just a helper struct for the `dump_alloc(s)` methods. pub struct DumpAllocs<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> { mem: &'a Memory<'mir, 'tcx, M>, allocs: Vec, } impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> std::fmt::Debug for DumpAllocs<'a, 'mir, 'tcx, M> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // Cannot be a closure because it is generic in `Tag`, `Extra`. fn write_allocation_track_relocs<'tcx, Tag: Copy + fmt::Debug, Extra>( fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'tcx>, allocs_to_print: &mut VecDeque, alloc: &Allocation, ) -> std::fmt::Result { for &(_, target_id) in alloc.relocations().values() { allocs_to_print.push_back(target_id); } write!(fmt, "{}", pretty::display_allocation(tcx, alloc)) } let mut allocs_to_print: VecDeque<_> = self.allocs.iter().copied().collect(); // `allocs_printed` contains all allocations that we have already printed. let mut allocs_printed = FxHashSet::default(); while let Some(id) = allocs_to_print.pop_front() { if !allocs_printed.insert(id) { // Already printed, so skip this. continue; } write!(fmt, "{}", id)?; match self.mem.alloc_map.get(id) { Some(&(kind, ref alloc)) => { // normal alloc write!(fmt, " ({}, ", kind)?; write_allocation_track_relocs( &mut *fmt, self.mem.tcx, &mut allocs_to_print, alloc, )?; } None => { // global alloc match self.mem.tcx.get_global_alloc(id) { Some(GlobalAlloc::Memory(alloc)) => { write!(fmt, " (unchanged global, ")?; write_allocation_track_relocs( &mut *fmt, self.mem.tcx, &mut allocs_to_print, alloc, )?; } Some(GlobalAlloc::Function(func)) => { write!(fmt, " (fn: {})", func)?; } Some(GlobalAlloc::Static(did)) => { write!(fmt, " (static: {})", self.mem.tcx.def_path_str(did))?; } None => { write!(fmt, " (deallocated)")?; } } } } writeln!(fmt)?; } Ok(()) } } /// Reading and writing. impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { /// Reads the given number of bytes from memory. Returns them as a slice. /// /// Performs appropriate bounds checks. pub fn read_bytes(&self, ptr: Scalar, size: Size) -> InterpResult<'tcx, &[u8]> { let ptr = match self.check_ptr_access(ptr, size, Align::from_bytes(1).unwrap())? { Some(ptr) => ptr, None => return Ok(&[]), // zero-sized access }; self.get_raw(ptr.alloc_id)?.get_bytes(self, ptr, size) } /// Reads a 0-terminated sequence of bytes from memory. Returns them as a slice. /// /// Performs appropriate bounds checks. pub fn read_c_str(&self, ptr: Scalar) -> InterpResult<'tcx, &[u8]> { let ptr = self.force_ptr(ptr)?; // We need to read at least 1 byte, so we *need* a ptr. self.get_raw(ptr.alloc_id)?.read_c_str(self, ptr) } /// Reads a 0x0000-terminated u16-sequence from memory. Returns them as a Vec. /// Terminator 0x0000 is not included in the returned Vec. /// /// Performs appropriate bounds checks. pub fn read_wide_str(&self, ptr: Scalar) -> InterpResult<'tcx, Vec> { let size_2bytes = Size::from_bytes(2); let align_2bytes = Align::from_bytes(2).unwrap(); // We need to read at least 2 bytes, so we *need* a ptr. let mut ptr = self.force_ptr(ptr)?; let allocation = self.get_raw(ptr.alloc_id)?; let mut u16_seq = Vec::new(); loop { ptr = self .check_ptr_access(ptr.into(), size_2bytes, align_2bytes)? .expect("cannot be a ZST"); let single_u16 = allocation.read_scalar(self, ptr, size_2bytes)?.to_u16()?; if single_u16 != 0x0000 { u16_seq.push(single_u16); ptr = ptr.offset(size_2bytes, self)?; } else { break; } } Ok(u16_seq) } /// Writes the given stream of bytes into memory. /// /// Performs appropriate bounds checks. pub fn write_bytes( &mut self, ptr: Scalar, src: impl IntoIterator, ) -> InterpResult<'tcx> { let mut src = src.into_iter(); let size = Size::from_bytes(src.size_hint().0); // `write_bytes` checks that this lower bound `size` matches the upper bound and reality. let ptr = match self.check_ptr_access(ptr, size, Align::from_bytes(1).unwrap())? { Some(ptr) => ptr, None => { // zero-sized access src.next().expect_none("iterator said it was empty but returned an element"); return Ok(()); } }; let tcx = self.tcx; self.get_raw_mut(ptr.alloc_id)?.write_bytes(&tcx, ptr, src) } /// Writes the given stream of u16s into memory. /// /// Performs appropriate bounds checks. pub fn write_u16s( &mut self, ptr: Scalar, src: impl IntoIterator, ) -> InterpResult<'tcx> { let mut src = src.into_iter(); let (lower, upper) = src.size_hint(); let len = upper.expect("can only write bounded iterators"); assert_eq!(lower, len, "can only write iterators with a precise length"); let size = Size::from_bytes(lower); let ptr = match self.check_ptr_access(ptr, size, Align::from_bytes(2).unwrap())? { Some(ptr) => ptr, None => { // zero-sized access src.next().expect_none("iterator said it was empty but returned an element"); return Ok(()); } }; let tcx = self.tcx; let allocation = self.get_raw_mut(ptr.alloc_id)?; for idx in 0..len { let val = Scalar::from_u16( src.next().expect("iterator was shorter than it said it would be"), ); let offset_ptr = ptr.offset(Size::from_bytes(idx) * 2, &tcx)?; // `Size` multiplication allocation.write_scalar(&tcx, offset_ptr, val.into(), Size::from_bytes(2))?; } src.next().expect_none("iterator was longer than it said it would be"); Ok(()) } /// Expects the caller to have checked bounds and alignment. pub fn copy( &mut self, src: Pointer, dest: Pointer, size: Size, nonoverlapping: bool, ) -> InterpResult<'tcx> { self.copy_repeatedly(src, dest, size, 1, nonoverlapping) } /// Expects the caller to have checked bounds and alignment. pub fn copy_repeatedly( &mut self, src: Pointer, dest: Pointer, size: Size, length: u64, nonoverlapping: bool, ) -> InterpResult<'tcx> { // first copy the relocations to a temporary buffer, because // `get_bytes_mut` will clear the relocations, which is correct, // since we don't want to keep any relocations at the target. // (`get_bytes_with_uninit_and_ptr` below checks that there are no // relocations overlapping the edges; those would not be handled correctly). let relocations = self.get_raw(src.alloc_id)?.prepare_relocation_copy(self, src, size, dest, length); let tcx = self.tcx; // This checks relocation edges on the src. let src_bytes = self.get_raw(src.alloc_id)?.get_bytes_with_uninit_and_ptr(&tcx, src, size)?.as_ptr(); let dest_bytes = self.get_raw_mut(dest.alloc_id)?.get_bytes_mut(&tcx, dest, size * length)?; // `Size` multiplication // If `dest_bytes` is empty we just optimize to not run anything for zsts. // See #67539 if dest_bytes.is_empty() { return Ok(()); } let dest_bytes = dest_bytes.as_mut_ptr(); // Prepare a copy of the initialization mask. let compressed = self.get_raw(src.alloc_id)?.compress_uninit_range(src, size); if compressed.no_bytes_init() { // Fast path: If all bytes are `uninit` then there is nothing to copy. The target range // is marked as uninitialized but we otherwise omit changing the byte representation which may // be arbitrary for uninitialized bytes. // This also avoids writing to the target bytes so that the backing allocation is never // touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary // operating system this can avoid physically allocating the page. let dest_alloc = self.get_raw_mut(dest.alloc_id)?; dest_alloc.mark_init(dest, size * length, false); // `Size` multiplication dest_alloc.mark_relocation_range(relocations); return Ok(()); } // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. // The pointers above remain valid even if the `HashMap` table is moved around because they // point into the `Vec` storing the bytes. unsafe { if src.alloc_id == dest.alloc_id { if nonoverlapping { // `Size` additions if (src.offset <= dest.offset && src.offset + size > dest.offset) || (dest.offset <= src.offset && dest.offset + size > src.offset) { throw_ub_format!("copy_nonoverlapping called on overlapping ranges") } } for i in 0..length { ptr::copy( src_bytes, dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication size.bytes_usize(), ); } } else { for i in 0..length { ptr::copy_nonoverlapping( src_bytes, dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication size.bytes_usize(), ); } } } // now fill in all the data self.get_raw_mut(dest.alloc_id)?.mark_compressed_init_range( &compressed, dest, size, length, ); // copy the relocations to the destination self.get_raw_mut(dest.alloc_id)?.mark_relocation_range(relocations); Ok(()) } } /// Machine pointer introspection. impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { pub fn force_ptr( &self, scalar: Scalar, ) -> InterpResult<'tcx, Pointer> { match scalar { Scalar::Ptr(ptr) => Ok(ptr), _ => M::int_to_ptr(&self, scalar.to_machine_usize(self)?), } } pub fn force_bits( &self, scalar: Scalar, size: Size, ) -> InterpResult<'tcx, u128> { match scalar.to_bits_or_ptr(size, self) { Ok(bits) => Ok(bits), Err(ptr) => Ok(M::ptr_to_int(&self, ptr)?.into()), } } }