#![unstable(reason = "not public", issue = "none", feature = "fd")] #[cfg(test)] mod tests; use crate::cmp; use crate::io::{self, Initializer, IoSlice, IoSliceMut, Read}; use crate::mem; use crate::sys::cvt; use crate::sys_common::AsInner; use libc::{c_int, c_void}; #[derive(Debug)] pub struct FileDesc { fd: c_int, } // The maximum read limit on most POSIX-like systems is `SSIZE_MAX`, // with the man page quoting that if the count of bytes to read is // greater than `SSIZE_MAX` the result is "unspecified". // // On macOS, however, apparently the 64-bit libc is either buggy or // intentionally showing odd behavior by rejecting any read with a size // larger than or equal to INT_MAX. To handle both of these the read // size is capped on both platforms. #[cfg(target_os = "macos")] const READ_LIMIT: usize = c_int::MAX as usize - 1; #[cfg(not(target_os = "macos"))] const READ_LIMIT: usize = libc::ssize_t::MAX as usize; #[cfg(any( target_os = "dragonfly", target_os = "freebsd", target_os = "ios", target_os = "macos", target_os = "netbsd", target_os = "openbsd", ))] const fn max_iov() -> usize { libc::IOV_MAX as usize } #[cfg(any(target_os = "android", target_os = "emscripten", target_os = "linux"))] const fn max_iov() -> usize { libc::UIO_MAXIOV as usize } #[cfg(not(any( target_os = "android", target_os = "dragonfly", target_os = "emscripten", target_os = "freebsd", target_os = "ios", target_os = "linux", target_os = "macos", target_os = "netbsd", target_os = "openbsd", )))] const fn max_iov() -> usize { 16 // The minimum value required by POSIX. } impl FileDesc { pub fn new(fd: c_int) -> FileDesc { FileDesc { fd } } pub fn raw(&self) -> c_int { self.fd } /// Extracts the actual file descriptor without closing it. pub fn into_raw(self) -> c_int { let fd = self.fd; mem::forget(self); fd } pub fn read(&self, buf: &mut [u8]) -> io::Result { let ret = cvt(unsafe { libc::read(self.fd, buf.as_mut_ptr() as *mut c_void, cmp::min(buf.len(), READ_LIMIT)) })?; Ok(ret as usize) } pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result { let ret = cvt(unsafe { libc::readv( self.fd, bufs.as_ptr() as *const libc::iovec, cmp::min(bufs.len(), max_iov()) as c_int, ) })?; Ok(ret as usize) } #[inline] pub fn is_read_vectored(&self) -> bool { true } pub fn read_to_end(&self, buf: &mut Vec) -> io::Result { let mut me = self; (&mut me).read_to_end(buf) } pub fn read_at(&self, buf: &mut [u8], offset: u64) -> io::Result { #[cfg(target_os = "android")] use super::android::cvt_pread64; #[cfg(not(target_os = "android"))] unsafe fn cvt_pread64( fd: c_int, buf: *mut c_void, count: usize, offset: i64, ) -> io::Result { #[cfg(not(target_os = "linux"))] use libc::pread as pread64; #[cfg(target_os = "linux")] use libc::pread64; cvt(pread64(fd, buf, count, offset)) } unsafe { cvt_pread64( self.fd, buf.as_mut_ptr() as *mut c_void, cmp::min(buf.len(), READ_LIMIT), offset as i64, ) .map(|n| n as usize) } } pub fn write(&self, buf: &[u8]) -> io::Result { let ret = cvt(unsafe { libc::write(self.fd, buf.as_ptr() as *const c_void, cmp::min(buf.len(), READ_LIMIT)) })?; Ok(ret as usize) } pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result { let ret = cvt(unsafe { libc::writev( self.fd, bufs.as_ptr() as *const libc::iovec, cmp::min(bufs.len(), max_iov()) as c_int, ) })?; Ok(ret as usize) } #[inline] pub fn is_write_vectored(&self) -> bool { true } pub fn write_at(&self, buf: &[u8], offset: u64) -> io::Result { #[cfg(target_os = "android")] use super::android::cvt_pwrite64; #[cfg(not(target_os = "android"))] unsafe fn cvt_pwrite64( fd: c_int, buf: *const c_void, count: usize, offset: i64, ) -> io::Result { #[cfg(not(target_os = "linux"))] use libc::pwrite as pwrite64; #[cfg(target_os = "linux")] use libc::pwrite64; cvt(pwrite64(fd, buf, count, offset)) } unsafe { cvt_pwrite64( self.fd, buf.as_ptr() as *const c_void, cmp::min(buf.len(), READ_LIMIT), offset as i64, ) .map(|n| n as usize) } } #[cfg(target_os = "linux")] pub fn get_cloexec(&self) -> io::Result { unsafe { Ok((cvt(libc::fcntl(self.fd, libc::F_GETFD))? & libc::FD_CLOEXEC) != 0) } } #[cfg(not(any( target_env = "newlib", target_os = "solaris", target_os = "illumos", target_os = "emscripten", target_os = "fuchsia", target_os = "l4re", target_os = "linux", target_os = "haiku", target_os = "redox", target_os = "vxworks" )))] pub fn set_cloexec(&self) -> io::Result<()> { unsafe { cvt(libc::ioctl(self.fd, libc::FIOCLEX))?; Ok(()) } } #[cfg(any( target_env = "newlib", target_os = "solaris", target_os = "illumos", target_os = "emscripten", target_os = "fuchsia", target_os = "l4re", target_os = "linux", target_os = "haiku", target_os = "redox", target_os = "vxworks" ))] pub fn set_cloexec(&self) -> io::Result<()> { unsafe { let previous = cvt(libc::fcntl(self.fd, libc::F_GETFD))?; let new = previous | libc::FD_CLOEXEC; if new != previous { cvt(libc::fcntl(self.fd, libc::F_SETFD, new))?; } Ok(()) } } #[cfg(target_os = "linux")] pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { unsafe { let v = nonblocking as c_int; cvt(libc::ioctl(self.fd, libc::FIONBIO, &v))?; Ok(()) } } #[cfg(not(target_os = "linux"))] pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { unsafe { let previous = cvt(libc::fcntl(self.fd, libc::F_GETFL))?; let new = if nonblocking { previous | libc::O_NONBLOCK } else { previous & !libc::O_NONBLOCK }; if new != previous { cvt(libc::fcntl(self.fd, libc::F_SETFL, new))?; } Ok(()) } } pub fn duplicate(&self) -> io::Result { // We want to atomically duplicate this file descriptor and set the // CLOEXEC flag, and currently that's done via F_DUPFD_CLOEXEC. This // is a POSIX flag that was added to Linux in 2.6.24. let fd = cvt(unsafe { libc::fcntl(self.raw(), libc::F_DUPFD_CLOEXEC, 0) })?; Ok(FileDesc::new(fd)) } } impl<'a> Read for &'a FileDesc { fn read(&mut self, buf: &mut [u8]) -> io::Result { (**self).read(buf) } #[inline] unsafe fn initializer(&self) -> Initializer { Initializer::nop() } } impl AsInner for FileDesc { fn as_inner(&self) -> &c_int { &self.fd } } impl Drop for FileDesc { fn drop(&mut self) { // Note that errors are ignored when closing a file descriptor. The // reason for this is that if an error occurs we don't actually know if // the file descriptor was closed or not, and if we retried (for // something like EINTR), we might close another valid file descriptor // opened after we closed ours. let _ = unsafe { libc::close(self.fd) }; } }