//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on //! how this works. //! //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html use std::fmt::Debug; use rustc_data_structures::fx::{FxHashSet, FxIndexSet}; use rustc_errors::{Diag, EmissionGuarantee}; use rustc_hir::def::DefKind; use rustc_hir::def_id::{CRATE_DEF_ID, DefId}; use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, TyCtxtInferExt}; use rustc_infer::traits::PredicateObligations; use rustc_middle::bug; use rustc_middle::traits::query::NoSolution; use rustc_middle::traits::solve::{CandidateSource, Certainty, Goal}; use rustc_middle::traits::specialization_graph::OverlapMode; use rustc_middle::ty::fast_reject::DeepRejectCtxt; use rustc_middle::ty::{ self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode, }; pub use rustc_next_trait_solver::coherence::*; use rustc_next_trait_solver::solve::SolverDelegateEvalExt; use rustc_span::{DUMMY_SP, Span, sym}; use tracing::{debug, instrument, warn}; use super::ObligationCtxt; use crate::error_reporting::traits::suggest_new_overflow_limit; use crate::infer::InferOk; use crate::solve::inspect::{InspectGoal, ProofTreeInferCtxtExt, ProofTreeVisitor}; use crate::solve::{SolverDelegate, deeply_normalize_for_diagnostics, inspect}; use crate::traits::query::evaluate_obligation::InferCtxtExt; use crate::traits::select::IntercrateAmbiguityCause; use crate::traits::{ FulfillmentErrorCode, NormalizeExt, Obligation, ObligationCause, PredicateObligation, SelectionContext, SkipLeakCheck, util, }; pub struct OverlapResult<'tcx> { pub impl_header: ty::ImplHeader<'tcx>, pub intercrate_ambiguity_causes: FxIndexSet>, /// `true` if the overlap might've been permitted before the shift /// to universes. pub involves_placeholder: bool, /// Used in the new solver to suggest increasing the recursion limit. pub overflowing_predicates: Vec>, } pub fn add_placeholder_note(err: &mut Diag<'_, G>) { err.note( "this behavior recently changed as a result of a bug fix; \ see rust-lang/rust#56105 for details", ); } pub(crate) fn suggest_increasing_recursion_limit<'tcx, G: EmissionGuarantee>( tcx: TyCtxt<'tcx>, err: &mut Diag<'_, G>, overflowing_predicates: &[ty::Predicate<'tcx>], ) { for pred in overflowing_predicates { err.note(format!("overflow evaluating the requirement `{}`", pred)); } suggest_new_overflow_limit(tcx, err); } #[derive(Debug, Clone, Copy)] enum TrackAmbiguityCauses { Yes, No, } impl TrackAmbiguityCauses { fn is_yes(self) -> bool { match self { TrackAmbiguityCauses::Yes => true, TrackAmbiguityCauses::No => false, } } } /// If there are types that satisfy both impls, returns `Some` /// with a suitably-freshened `ImplHeader` with those types /// instantiated. Otherwise, returns `None`. #[instrument(skip(tcx, skip_leak_check), level = "debug")] pub fn overlapping_impls( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, skip_leak_check: SkipLeakCheck, overlap_mode: OverlapMode, ) -> Option> { // Before doing expensive operations like entering an inference context, do // a quick check via fast_reject to tell if the impl headers could possibly // unify. let drcx = DeepRejectCtxt::relate_infer_infer(tcx); let impl1_ref = tcx.impl_trait_ref(impl1_def_id); let impl2_ref = tcx.impl_trait_ref(impl2_def_id); let may_overlap = match (impl1_ref, impl2_ref) { (Some(a), Some(b)) => drcx.args_may_unify(a.skip_binder().args, b.skip_binder().args), (None, None) => { let self_ty1 = tcx.type_of(impl1_def_id).skip_binder(); let self_ty2 = tcx.type_of(impl2_def_id).skip_binder(); drcx.types_may_unify(self_ty1, self_ty2) } _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"), }; if !may_overlap { // Some types involved are definitely different, so the impls couldn't possibly overlap. debug!("overlapping_impls: fast_reject early-exit"); return None; } if tcx.next_trait_solver_in_coherence() { overlap( tcx, TrackAmbiguityCauses::Yes, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode, ) } else { let _overlap_with_bad_diagnostics = overlap( tcx, TrackAmbiguityCauses::No, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode, )?; // In the case where we detect an error, run the check again, but // this time tracking intercrate ambiguity causes for better // diagnostics. (These take time and can lead to false errors.) let overlap = overlap( tcx, TrackAmbiguityCauses::Yes, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode, ) .unwrap(); Some(overlap) } } fn fresh_impl_header<'tcx>(infcx: &InferCtxt<'tcx>, impl_def_id: DefId) -> ty::ImplHeader<'tcx> { let tcx = infcx.tcx; let impl_args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id); ty::ImplHeader { impl_def_id, impl_args, self_ty: tcx.type_of(impl_def_id).instantiate(tcx, impl_args), trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.instantiate(tcx, impl_args)), predicates: tcx .predicates_of(impl_def_id) .instantiate(tcx, impl_args) .iter() .map(|(c, _)| c.as_predicate()) .collect(), } } fn fresh_impl_header_normalized<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, ) -> ty::ImplHeader<'tcx> { let header = fresh_impl_header(infcx, impl_def_id); let InferOk { value: mut header, obligations } = infcx.at(&ObligationCause::dummy(), param_env).normalize(header); header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); header } /// Can both impl `a` and impl `b` be satisfied by a common type (including /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. #[instrument(level = "debug", skip(tcx))] fn overlap<'tcx>( tcx: TyCtxt<'tcx>, track_ambiguity_causes: TrackAmbiguityCauses, skip_leak_check: SkipLeakCheck, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, ) -> Option> { if overlap_mode.use_negative_impl() { if impl_intersection_has_negative_obligation(tcx, impl1_def_id, impl2_def_id) || impl_intersection_has_negative_obligation(tcx, impl2_def_id, impl1_def_id) { return None; } } let infcx = tcx .infer_ctxt() .skip_leak_check(skip_leak_check.is_yes()) .with_next_trait_solver(tcx.next_trait_solver_in_coherence()) .build(TypingMode::Coherence); let selcx = &mut SelectionContext::new(&infcx); if track_ambiguity_causes.is_yes() { selcx.enable_tracking_intercrate_ambiguity_causes(); } // For the purposes of this check, we don't bring any placeholder // types into scope; instead, we replace the generic types with // fresh type variables, and hence we do our evaluations in an // empty environment. let param_env = ty::ParamEnv::empty(); let impl1_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl1_def_id); let impl2_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl2_def_id); // Equate the headers to find their intersection (the general type, with infer vars, // that may apply both impls). let mut obligations = equate_impl_headers(selcx.infcx, param_env, &impl1_header, &impl2_header)?; debug!("overlap: unification check succeeded"); obligations.extend( [&impl1_header.predicates, &impl2_header.predicates].into_iter().flatten().map( |&predicate| Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, predicate), ), ); let mut overflowing_predicates = Vec::new(); if overlap_mode.use_implicit_negative() { match impl_intersection_has_impossible_obligation(selcx, &obligations) { IntersectionHasImpossibleObligations::Yes => return None, IntersectionHasImpossibleObligations::No { overflowing_predicates: p } => { overflowing_predicates = p } } } // We toggle the `leak_check` by using `skip_leak_check` when constructing the // inference context, so this may be a noop. if infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() { debug!("overlap: leak check failed"); return None; } let intercrate_ambiguity_causes = if !overlap_mode.use_implicit_negative() { Default::default() } else if infcx.next_trait_solver() { compute_intercrate_ambiguity_causes(&infcx, &obligations) } else { selcx.take_intercrate_ambiguity_causes() }; debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); let involves_placeholder = infcx .inner .borrow_mut() .unwrap_region_constraints() .data() .constraints .iter() .any(|c| c.0.involves_placeholders()); let mut impl_header = infcx.resolve_vars_if_possible(impl1_header); // Deeply normalize the impl header for diagnostics, ignoring any errors if this fails. if infcx.next_trait_solver() { impl_header = deeply_normalize_for_diagnostics(&infcx, param_env, impl_header); } Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder, overflowing_predicates, }) } #[instrument(level = "debug", skip(infcx), ret)] fn equate_impl_headers<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, impl1: &ty::ImplHeader<'tcx>, impl2: &ty::ImplHeader<'tcx>, ) -> Option> { let result = match (impl1.trait_ref, impl2.trait_ref) { (Some(impl1_ref), Some(impl2_ref)) => infcx .at(&ObligationCause::dummy(), param_env) .eq(DefineOpaqueTypes::Yes, impl1_ref, impl2_ref), (None, None) => infcx.at(&ObligationCause::dummy(), param_env).eq( DefineOpaqueTypes::Yes, impl1.self_ty, impl2.self_ty, ), _ => bug!("equate_impl_headers given mismatched impl kinds"), }; result.map(|infer_ok| infer_ok.obligations).ok() } /// The result of [fn impl_intersection_has_impossible_obligation]. #[derive(Debug)] enum IntersectionHasImpossibleObligations<'tcx> { Yes, No { /// With `-Znext-solver=coherence`, some obligations may /// fail if only the user increased the recursion limit. /// /// We return those obligations here and mention them in the /// error message. overflowing_predicates: Vec>, }, } /// Check if both impls can be satisfied by a common type by considering whether /// any of either impl's obligations is not known to hold. /// /// For example, given these two impls: /// `impl From for Box` (in my crate) /// `impl From for Box where E: Error` (in libstd) /// /// After replacing both impl headers with inference vars (which happens before /// this function is called), we get: /// `Box: From` /// `Box: From` /// /// This gives us `?E = MyLocalType`. We then certainly know that `MyLocalType: Error` /// never holds in intercrate mode since a local impl does not exist, and a /// downstream impl cannot be added -- therefore can consider the intersection /// of the two impls above to be empty. /// /// Importantly, this works even if there isn't a `impl !Error for MyLocalType`. #[instrument(level = "debug", skip(selcx), ret)] fn impl_intersection_has_impossible_obligation<'a, 'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, obligations: &'a [PredicateObligation<'tcx>], ) -> IntersectionHasImpossibleObligations<'tcx> { let infcx = selcx.infcx; if infcx.next_trait_solver() { // A fast path optimization, try evaluating all goals with // a very low recursion depth and bail if any of them don't // hold. if !obligations.iter().all(|o| { <&SolverDelegate<'tcx>>::from(infcx) .root_goal_may_hold_with_depth(8, Goal::new(infcx.tcx, o.param_env, o.predicate)) }) { return IntersectionHasImpossibleObligations::Yes; } let ocx = ObligationCtxt::new_with_diagnostics(infcx); ocx.register_obligations(obligations.iter().cloned()); let errors_and_ambiguities = ocx.select_all_or_error(); // We only care about the obligations that are *definitely* true errors. // Ambiguities do not prove the disjointness of two impls. let (errors, ambiguities): (Vec<_>, Vec<_>) = errors_and_ambiguities.into_iter().partition(|error| error.is_true_error()); if errors.is_empty() { IntersectionHasImpossibleObligations::No { overflowing_predicates: ambiguities .into_iter() .filter(|error| { matches!( error.code, FulfillmentErrorCode::Ambiguity { overflow: Some(true) } ) }) .map(|e| infcx.resolve_vars_if_possible(e.obligation.predicate)) .collect(), } } else { IntersectionHasImpossibleObligations::Yes } } else { for obligation in obligations { // We use `evaluate_root_obligation` to correctly track intercrate // ambiguity clauses. let evaluation_result = selcx.evaluate_root_obligation(obligation); match evaluation_result { Ok(result) => { if !result.may_apply() { return IntersectionHasImpossibleObligations::Yes; } } // If overflow occurs, we need to conservatively treat the goal as possibly holding, // since there can be instantiations of this goal that don't overflow and result in // success. While this isn't much of a problem in the old solver, since we treat overflow // fatally, this still can be encountered: . Err(_overflow) => {} } } IntersectionHasImpossibleObligations::No { overflowing_predicates: Vec::new() } } } /// Check if both impls can be satisfied by a common type by considering whether /// any of first impl's obligations is known not to hold *via a negative predicate*. /// /// For example, given these two impls: /// `struct MyCustomBox(Box);` /// `impl From<&str> for MyCustomBox` (in my crate) /// `impl From for MyCustomBox where E: Error` (in my crate) /// /// After replacing the second impl's header with inference vars, we get: /// `MyCustomBox: From<&str>` /// `MyCustomBox: From` /// /// This gives us `?E = &str`. We then try to prove the first impl's predicates /// after negating, giving us `&str: !Error`. This is a negative impl provided by /// libstd, and therefore we can guarantee for certain that libstd will never add /// a positive impl for `&str: Error` (without it being a breaking change). fn impl_intersection_has_negative_obligation( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, ) -> bool { debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); // N.B. We need to unify impl headers *with* intercrate mode, even if proving negative predicates // do not need intercrate mode enabled. let ref infcx = tcx.infer_ctxt().with_next_trait_solver(true).build(TypingMode::Coherence); let root_universe = infcx.universe(); assert_eq!(root_universe, ty::UniverseIndex::ROOT); let impl1_header = fresh_impl_header(infcx, impl1_def_id); let param_env = ty::EarlyBinder::bind(tcx.param_env(impl1_def_id)).instantiate(tcx, impl1_header.impl_args); let impl2_header = fresh_impl_header(infcx, impl2_def_id); // Equate the headers to find their intersection (the general type, with infer vars, // that may apply both impls). let Some(equate_obligations) = equate_impl_headers(infcx, param_env, &impl1_header, &impl2_header) else { return false; }; // FIXME(with_negative_coherence): the infcx has constraints from equating // the impl headers. We should use these constraints as assumptions, not as // requirements, when proving the negated where clauses below. drop(equate_obligations); drop(infcx.take_registered_region_obligations()); drop(infcx.take_and_reset_region_constraints()); plug_infer_with_placeholders( infcx, root_universe, (impl1_header.impl_args, impl2_header.impl_args), ); let param_env = infcx.resolve_vars_if_possible(param_env); util::elaborate(tcx, tcx.predicates_of(impl2_def_id).instantiate(tcx, impl2_header.impl_args)) .any(|(clause, _)| try_prove_negated_where_clause(infcx, clause, param_env)) } fn plug_infer_with_placeholders<'tcx>( infcx: &InferCtxt<'tcx>, universe: ty::UniverseIndex, value: impl TypeVisitable>, ) { struct PlugInferWithPlaceholder<'a, 'tcx> { infcx: &'a InferCtxt<'tcx>, universe: ty::UniverseIndex, var: ty::BoundVar, } impl<'tcx> PlugInferWithPlaceholder<'_, 'tcx> { fn next_var(&mut self) -> ty::BoundVar { let var = self.var; self.var = self.var + 1; var } } impl<'tcx> TypeVisitor> for PlugInferWithPlaceholder<'_, 'tcx> { fn visit_ty(&mut self, ty: Ty<'tcx>) { let ty = self.infcx.shallow_resolve(ty); if ty.is_ty_var() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( // Comparing against a type variable never registers hidden types anyway DefineOpaqueTypes::Yes, ty, Ty::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: ty::BoundTy { var: self.next_var(), kind: ty::BoundTyKind::Anon, }, }, ), ) else { bug!("we always expect to be able to plug an infer var with placeholder") }; assert_eq!(obligations.len(), 0); } else { ty.super_visit_with(self); } } fn visit_const(&mut self, ct: ty::Const<'tcx>) { let ct = self.infcx.shallow_resolve_const(ct); if ct.is_ct_infer() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( // The types of the constants are the same, so there is no hidden type // registration happening anyway. DefineOpaqueTypes::Yes, ct, ty::Const::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: self.next_var() }, ), ) else { bug!("we always expect to be able to plug an infer var with placeholder") }; assert_eq!(obligations.len(), 0); } else { ct.super_visit_with(self); } } fn visit_region(&mut self, r: ty::Region<'tcx>) { if let ty::ReVar(vid) = r.kind() { let r = self .infcx .inner .borrow_mut() .unwrap_region_constraints() .opportunistic_resolve_var(self.infcx.tcx, vid); if r.is_var() { let Ok(InferOk { value: (), obligations }) = self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( // Lifetimes don't contain opaque types (or any types for that matter). DefineOpaqueTypes::Yes, r, ty::Region::new_placeholder( self.infcx.tcx, ty::Placeholder { universe: self.universe, bound: ty::BoundRegion { var: self.next_var(), kind: ty::BoundRegionKind::Anon, }, }, ), ) else { bug!("we always expect to be able to plug an infer var with placeholder") }; assert_eq!(obligations.len(), 0); } } } } value.visit_with(&mut PlugInferWithPlaceholder { infcx, universe, var: ty::BoundVar::ZERO }); } fn try_prove_negated_where_clause<'tcx>( root_infcx: &InferCtxt<'tcx>, clause: ty::Clause<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> bool { let Some(negative_predicate) = clause.as_predicate().flip_polarity(root_infcx.tcx) else { return false; }; // N.B. We don't need to use intercrate mode here because we're trying to prove // the *existence* of a negative goal, not the non-existence of a positive goal. // Without this, we over-eagerly register coherence ambiguity candidates when // impl candidates do exist. // FIXME(#132279): `TypingMode::non_body_analysis` is a bit questionable here as it // would cause us to reveal opaque types to leak their auto traits. let ref infcx = root_infcx.fork_with_typing_mode(TypingMode::non_body_analysis()); let ocx = ObligationCtxt::new(infcx); ocx.register_obligation(Obligation::new( infcx.tcx, ObligationCause::dummy(), param_env, negative_predicate, )); if !ocx.select_all_or_error().is_empty() { return false; } // FIXME: We could use the assumed_wf_types from both impls, I think, // if that wasn't implemented just for LocalDefId, and we'd need to do // the normalization ourselves since this is totally fallible... let errors = ocx.resolve_regions(CRATE_DEF_ID, param_env, []); if !errors.is_empty() { return false; } true } /// Compute the `intercrate_ambiguity_causes` for the new solver using /// "proof trees". /// /// This is a bit scuffed but seems to be good enough, at least /// when looking at UI tests. Given that it is only used to improve /// diagnostics this is good enough. We can always improve it once there /// are test cases where it is currently not enough. fn compute_intercrate_ambiguity_causes<'tcx>( infcx: &InferCtxt<'tcx>, obligations: &[PredicateObligation<'tcx>], ) -> FxIndexSet> { let mut causes: FxIndexSet> = Default::default(); for obligation in obligations { search_ambiguity_causes(infcx, obligation.as_goal(), &mut causes); } causes } struct AmbiguityCausesVisitor<'a, 'tcx> { cache: FxHashSet>>, causes: &'a mut FxIndexSet>, } impl<'a, 'tcx> ProofTreeVisitor<'tcx> for AmbiguityCausesVisitor<'a, 'tcx> { fn span(&self) -> Span { DUMMY_SP } fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) { if !self.cache.insert(goal.goal()) { return; } let infcx = goal.infcx(); for cand in goal.candidates() { cand.visit_nested_in_probe(self); } // When searching for intercrate ambiguity causes, we only need to look // at ambiguous goals, as for others the coherence unknowable candidate // was irrelevant. match goal.result() { Ok(Certainty::Yes) | Err(NoSolution) => return, Ok(Certainty::Maybe(_)) => {} } // For bound predicates we simply call `infcx.enter_forall` // and then prove the resulting predicate as a nested goal. let Goal { param_env, predicate } = goal.goal(); let trait_ref = match predicate.kind().no_bound_vars() { Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(tr))) => tr.trait_ref, Some(ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj))) if matches!( infcx.tcx.def_kind(proj.projection_term.def_id), DefKind::AssocTy | DefKind::AssocConst ) => { proj.projection_term.trait_ref(infcx.tcx) } _ => return, }; if trait_ref.references_error() { return; } let mut candidates = goal.candidates(); for cand in goal.candidates() { if let inspect::ProbeKind::TraitCandidate { source: CandidateSource::Impl(def_id), result: Ok(_), } = cand.kind() { if let ty::ImplPolarity::Reservation = infcx.tcx.impl_polarity(def_id) { let message = infcx .tcx .get_attr(def_id, sym::rustc_reservation_impl) .and_then(|a| a.value_str()); if let Some(message) = message { self.causes.insert(IntercrateAmbiguityCause::ReservationImpl { message }); } } } } // We also look for unknowable candidates. In case a goal is unknowable, there's // always exactly 1 candidate. let Some(cand) = candidates.pop() else { return; }; let inspect::ProbeKind::TraitCandidate { source: CandidateSource::CoherenceUnknowable, result: Ok(_), } = cand.kind() else { return; }; let lazily_normalize_ty = |mut ty: Ty<'tcx>| { if matches!(ty.kind(), ty::Alias(..)) { let ocx = ObligationCtxt::new(infcx); ty = ocx .structurally_normalize_ty(&ObligationCause::dummy(), param_env, ty) .map_err(|_| ())?; if !ocx.select_where_possible().is_empty() { return Err(()); } } Ok(ty) }; infcx.probe(|_| { let conflict = match trait_ref_is_knowable(infcx, trait_ref, lazily_normalize_ty) { Err(()) => return, Ok(Ok(())) => { warn!("expected an unknowable trait ref: {trait_ref:?}"); return; } Ok(Err(conflict)) => conflict, }; // It is only relevant that a goal is unknowable if it would have otherwise // failed. // FIXME(#132279): Forking with `TypingMode::non_body_analysis` is a bit questionable // as it would allow us to reveal opaque types, potentially causing unexpected // cycles. let non_intercrate_infcx = infcx.fork_with_typing_mode(TypingMode::non_body_analysis()); if non_intercrate_infcx.predicate_may_hold(&Obligation::new( infcx.tcx, ObligationCause::dummy(), param_env, predicate, )) { return; } // Normalize the trait ref for diagnostics, ignoring any errors if this fails. let trait_ref = deeply_normalize_for_diagnostics(infcx, param_env, trait_ref); let self_ty = trait_ref.self_ty(); let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty); self.causes.insert(match conflict { Conflict::Upstream => { IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } } Conflict::Downstream => { IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } } }); }); } } fn search_ambiguity_causes<'tcx>( infcx: &InferCtxt<'tcx>, goal: Goal<'tcx, ty::Predicate<'tcx>>, causes: &mut FxIndexSet>, ) { infcx.probe(|_| { infcx.visit_proof_tree( goal, &mut AmbiguityCausesVisitor { cache: Default::default(), causes }, ) }); }