use std::convert::TryFrom; use rustc_apfloat::Float; use rustc_ast::FloatTy; use rustc_middle::mir; use rustc_middle::mir::interpret::{InterpResult, Scalar}; use rustc_middle::ty::{self, layout::TyAndLayout, Ty}; use rustc_target::abi::LayoutOf; use super::{ImmTy, Immediate, InterpCx, Machine, PlaceTy}; impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { /// Applies the binary operation `op` to the two operands and writes a tuple of the result /// and a boolean signifying the potential overflow to the destination. pub fn binop_with_overflow( &mut self, op: mir::BinOp, left: ImmTy<'tcx, M::PointerTag>, right: ImmTy<'tcx, M::PointerTag>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { let (val, overflowed, ty) = self.overflowing_binary_op(op, left, right)?; debug_assert_eq!( self.tcx.intern_tup(&[ty, self.tcx.types.bool]), dest.layout.ty, "type mismatch for result of {:?}", op, ); let val = Immediate::ScalarPair(val.into(), Scalar::from_bool(overflowed).into()); self.write_immediate(val, dest) } /// Applies the binary operation `op` to the arguments and writes the result to the /// destination. pub fn binop_ignore_overflow( &mut self, op: mir::BinOp, left: ImmTy<'tcx, M::PointerTag>, right: ImmTy<'tcx, M::PointerTag>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { let (val, _overflowed, ty) = self.overflowing_binary_op(op, left, right)?; assert_eq!(ty, dest.layout.ty, "type mismatch for result of {:?}", op); self.write_scalar(val, dest) } } impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { fn binary_char_op( &self, bin_op: mir::BinOp, l: char, r: char, ) -> (Scalar, bool, Ty<'tcx>) { use rustc_middle::mir::BinOp::*; let res = match bin_op { Eq => l == r, Ne => l != r, Lt => l < r, Le => l <= r, Gt => l > r, Ge => l >= r, _ => span_bug!(self.cur_span(), "Invalid operation on char: {:?}", bin_op), }; (Scalar::from_bool(res), false, self.tcx.types.bool) } fn binary_bool_op( &self, bin_op: mir::BinOp, l: bool, r: bool, ) -> (Scalar, bool, Ty<'tcx>) { use rustc_middle::mir::BinOp::*; let res = match bin_op { Eq => l == r, Ne => l != r, Lt => l < r, Le => l <= r, Gt => l > r, Ge => l >= r, BitAnd => l & r, BitOr => l | r, BitXor => l ^ r, _ => span_bug!(self.cur_span(), "Invalid operation on bool: {:?}", bin_op), }; (Scalar::from_bool(res), false, self.tcx.types.bool) } fn binary_float_op>>( &self, bin_op: mir::BinOp, ty: Ty<'tcx>, l: F, r: F, ) -> (Scalar, bool, Ty<'tcx>) { use rustc_middle::mir::BinOp::*; let (val, ty) = match bin_op { Eq => (Scalar::from_bool(l == r), self.tcx.types.bool), Ne => (Scalar::from_bool(l != r), self.tcx.types.bool), Lt => (Scalar::from_bool(l < r), self.tcx.types.bool), Le => (Scalar::from_bool(l <= r), self.tcx.types.bool), Gt => (Scalar::from_bool(l > r), self.tcx.types.bool), Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool), Add => ((l + r).value.into(), ty), Sub => ((l - r).value.into(), ty), Mul => ((l * r).value.into(), ty), Div => ((l / r).value.into(), ty), Rem => ((l % r).value.into(), ty), _ => span_bug!(self.cur_span(), "invalid float op: `{:?}`", bin_op), }; (val, false, ty) } fn binary_int_op( &self, bin_op: mir::BinOp, // passing in raw bits l: u128, left_layout: TyAndLayout<'tcx>, r: u128, right_layout: TyAndLayout<'tcx>, ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> { use rustc_middle::mir::BinOp::*; // Shift ops can have an RHS with a different numeric type. if bin_op == Shl || bin_op == Shr { let signed = left_layout.abi.is_signed(); let size = u128::from(left_layout.size.bits()); let overflow = r >= size; let r = r % size; // mask to type size let r = u32::try_from(r).unwrap(); // we masked so this will always fit let result = if signed { let l = self.sign_extend(l, left_layout) as i128; let result = match bin_op { Shl => l.checked_shl(r).unwrap(), Shr => l.checked_shr(r).unwrap(), _ => bug!("it has already been checked that this is a shift op"), }; result as u128 } else { match bin_op { Shl => l.checked_shl(r).unwrap(), Shr => l.checked_shr(r).unwrap(), _ => bug!("it has already been checked that this is a shift op"), } }; let truncated = self.truncate(result, left_layout); return Ok((Scalar::from_uint(truncated, left_layout.size), overflow, left_layout.ty)); } // For the remaining ops, the types must be the same on both sides if left_layout.ty != right_layout.ty { span_bug!( self.cur_span(), "invalid asymmetric binary op {:?}: {:?} ({:?}), {:?} ({:?})", bin_op, l, left_layout.ty, r, right_layout.ty, ) } let size = left_layout.size; // Operations that need special treatment for signed integers if left_layout.abi.is_signed() { let op: Option bool> = match bin_op { Lt => Some(i128::lt), Le => Some(i128::le), Gt => Some(i128::gt), Ge => Some(i128::ge), _ => None, }; if let Some(op) = op { let l = self.sign_extend(l, left_layout) as i128; let r = self.sign_extend(r, right_layout) as i128; return Ok((Scalar::from_bool(op(&l, &r)), false, self.tcx.types.bool)); } let op: Option (i128, bool)> = match bin_op { Div if r == 0 => throw_ub!(DivisionByZero), Rem if r == 0 => throw_ub!(RemainderByZero), Div => Some(i128::overflowing_div), Rem => Some(i128::overflowing_rem), Add => Some(i128::overflowing_add), Sub => Some(i128::overflowing_sub), Mul => Some(i128::overflowing_mul), _ => None, }; if let Some(op) = op { let r = self.sign_extend(r, right_layout) as i128; // We need a special check for overflowing remainder: // "int_min % -1" overflows and returns 0, but after casting things to a larger int // type it does *not* overflow nor give an unrepresentable result! if bin_op == Rem { if r == -1 && l == (1 << (size.bits() - 1)) { return Ok((Scalar::from_int(0, size), true, left_layout.ty)); } } let l = self.sign_extend(l, left_layout) as i128; let (result, oflo) = op(l, r); // This may be out-of-bounds for the result type, so we have to truncate ourselves. // If that truncation loses any information, we have an overflow. let result = result as u128; let truncated = self.truncate(result, left_layout); return Ok(( Scalar::from_uint(truncated, size), oflo || self.sign_extend(truncated, left_layout) != result, left_layout.ty, )); } } let (val, ty) = match bin_op { Eq => (Scalar::from_bool(l == r), self.tcx.types.bool), Ne => (Scalar::from_bool(l != r), self.tcx.types.bool), Lt => (Scalar::from_bool(l < r), self.tcx.types.bool), Le => (Scalar::from_bool(l <= r), self.tcx.types.bool), Gt => (Scalar::from_bool(l > r), self.tcx.types.bool), Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool), BitOr => (Scalar::from_uint(l | r, size), left_layout.ty), BitAnd => (Scalar::from_uint(l & r, size), left_layout.ty), BitXor => (Scalar::from_uint(l ^ r, size), left_layout.ty), Add | Sub | Mul | Rem | Div => { assert!(!left_layout.abi.is_signed()); let op: fn(u128, u128) -> (u128, bool) = match bin_op { Add => u128::overflowing_add, Sub => u128::overflowing_sub, Mul => u128::overflowing_mul, Div if r == 0 => throw_ub!(DivisionByZero), Rem if r == 0 => throw_ub!(RemainderByZero), Div => u128::overflowing_div, Rem => u128::overflowing_rem, _ => bug!(), }; let (result, oflo) = op(l, r); // Truncate to target type. // If that truncation loses any information, we have an overflow. let truncated = self.truncate(result, left_layout); return Ok(( Scalar::from_uint(truncated, size), oflo || truncated != result, left_layout.ty, )); } _ => span_bug!( self.cur_span(), "invalid binary op {:?}: {:?}, {:?} (both {:?})", bin_op, l, r, right_layout.ty, ), }; Ok((val, false, ty)) } /// Returns the result of the specified operation, whether it overflowed, and /// the result type. pub fn overflowing_binary_op( &self, bin_op: mir::BinOp, left: ImmTy<'tcx, M::PointerTag>, right: ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> { trace!( "Running binary op {:?}: {:?} ({:?}), {:?} ({:?})", bin_op, *left, left.layout.ty, *right, right.layout.ty ); match left.layout.ty.kind() { ty::Char => { assert_eq!(left.layout.ty, right.layout.ty); let left = left.to_scalar()?; let right = right.to_scalar()?; Ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?)) } ty::Bool => { assert_eq!(left.layout.ty, right.layout.ty); let left = left.to_scalar()?; let right = right.to_scalar()?; Ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?)) } ty::Float(fty) => { assert_eq!(left.layout.ty, right.layout.ty); let ty = left.layout.ty; let left = left.to_scalar()?; let right = right.to_scalar()?; Ok(match fty { FloatTy::F32 => { self.binary_float_op(bin_op, ty, left.to_f32()?, right.to_f32()?) } FloatTy::F64 => { self.binary_float_op(bin_op, ty, left.to_f64()?, right.to_f64()?) } }) } _ if left.layout.ty.is_integral() => { // the RHS type can be different, e.g. for shifts -- but it has to be integral, too assert!( right.layout.ty.is_integral(), "Unexpected types for BinOp: {:?} {:?} {:?}", left.layout.ty, bin_op, right.layout.ty ); let l = self.force_bits(left.to_scalar()?, left.layout.size)?; let r = self.force_bits(right.to_scalar()?, right.layout.size)?; self.binary_int_op(bin_op, l, left.layout, r, right.layout) } _ if left.layout.ty.is_any_ptr() => { // The RHS type must be the same *or an integer type* (for `Offset`). assert!( right.layout.ty == left.layout.ty || right.layout.ty.is_integral(), "Unexpected types for BinOp: {:?} {:?} {:?}", left.layout.ty, bin_op, right.layout.ty ); M::binary_ptr_op(self, bin_op, left, right) } _ => span_bug!( self.cur_span(), "Invalid MIR: bad LHS type for binop: {:?}", left.layout.ty ), } } /// Typed version of `overflowing_binary_op`, returning an `ImmTy`. Also ignores overflows. #[inline] pub fn binary_op( &self, bin_op: mir::BinOp, left: ImmTy<'tcx, M::PointerTag>, right: ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> { let (val, _overflow, ty) = self.overflowing_binary_op(bin_op, left, right)?; Ok(ImmTy::from_scalar(val, self.layout_of(ty)?)) } /// Returns the result of the specified operation, whether it overflowed, and /// the result type. pub fn overflowing_unary_op( &self, un_op: mir::UnOp, val: ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> { use rustc_middle::mir::UnOp::*; let layout = val.layout; let val = val.to_scalar()?; trace!("Running unary op {:?}: {:?} ({:?})", un_op, val, layout.ty); match layout.ty.kind() { ty::Bool => { let val = val.to_bool()?; let res = match un_op { Not => !val, _ => span_bug!(self.cur_span(), "Invalid bool op {:?}", un_op), }; Ok((Scalar::from_bool(res), false, self.tcx.types.bool)) } ty::Float(fty) => { let res = match (un_op, fty) { (Neg, FloatTy::F32) => Scalar::from_f32(-val.to_f32()?), (Neg, FloatTy::F64) => Scalar::from_f64(-val.to_f64()?), _ => span_bug!(self.cur_span(), "Invalid float op {:?}", un_op), }; Ok((res, false, layout.ty)) } _ => { assert!(layout.ty.is_integral()); let val = self.force_bits(val, layout.size)?; let (res, overflow) = match un_op { Not => (self.truncate(!val, layout), false), // bitwise negation, then truncate Neg => { // arithmetic negation assert!(layout.abi.is_signed()); let val = self.sign_extend(val, layout) as i128; let (res, overflow) = val.overflowing_neg(); let res = res as u128; // Truncate to target type. // If that truncation loses any information, we have an overflow. let truncated = self.truncate(res, layout); (truncated, overflow || self.sign_extend(truncated, layout) != res) } }; Ok((Scalar::from_uint(res, layout.size), overflow, layout.ty)) } } } pub fn unary_op( &self, un_op: mir::UnOp, val: ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> { let (val, _overflow, ty) = self.overflowing_unary_op(un_op, val)?; Ok(ImmTy::from_scalar(val, self.layout_of(ty)?)) } }