//! Some lints that are only useful in the compiler or crates that use compiler internals, such as //! Clippy. use rustc_ast as ast; use rustc_hir::def::Res; use rustc_hir::def_id::DefId; use rustc_hir::{ BinOp, BinOpKind, Expr, ExprKind, GenericArg, HirId, Impl, Item, ItemKind, Node, Pat, PatKind, Path, PathSegment, QPath, Ty, TyKind, }; use rustc_middle::ty::{self, GenericArgsRef, Ty as MiddleTy}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::hygiene::{ExpnKind, MacroKind}; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; use tracing::debug; use crate::lints::{ BadOptAccessDiag, DefaultHashTypesDiag, DiagOutOfImpl, LintPassByHand, NonExistentDocKeyword, NonGlobImportTypeIrInherent, QueryInstability, QueryUntracked, SpanUseEqCtxtDiag, TyQualified, TykindDiag, TykindKind, TypeIrInherentUsage, UntranslatableDiag, }; use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext}; declare_tool_lint! { /// The `default_hash_type` lint detects use of [`std::collections::HashMap`] and /// [`std::collections::HashSet`], suggesting the use of `FxHashMap`/`FxHashSet`. /// /// This can help as `FxHasher` can perform better than the default hasher. DOS protection is /// not required as input is assumed to be trusted. pub rustc::DEFAULT_HASH_TYPES, Allow, "forbid HashMap and HashSet and suggest the FxHash* variants", report_in_external_macro: true } declare_lint_pass!(DefaultHashTypes => [DEFAULT_HASH_TYPES]); impl LateLintPass<'_> for DefaultHashTypes { fn check_path(&mut self, cx: &LateContext<'_>, path: &Path<'_>, hir_id: HirId) { let Res::Def(rustc_hir::def::DefKind::Struct, def_id) = path.res else { return }; if matches!(cx.tcx.hir_node(hir_id), Node::Item(Item { kind: ItemKind::Use(..), .. })) { // Don't lint imports, only actual usages. return; } let preferred = match cx.tcx.get_diagnostic_name(def_id) { Some(sym::HashMap) => "FxHashMap", Some(sym::HashSet) => "FxHashSet", _ => return, }; cx.emit_span_lint( DEFAULT_HASH_TYPES, path.span, DefaultHashTypesDiag { preferred, used: cx.tcx.item_name(def_id) }, ); } } /// Helper function for lints that check for expressions with calls and use typeck results to /// get the `DefId` and `GenericArgsRef` of the function. fn typeck_results_of_method_fn<'tcx>( cx: &LateContext<'tcx>, expr: &Expr<'_>, ) -> Option<(Span, DefId, ty::GenericArgsRef<'tcx>)> { match expr.kind { ExprKind::MethodCall(segment, ..) if let Some(def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) => { Some((segment.ident.span, def_id, cx.typeck_results().node_args(expr.hir_id))) } _ => match cx.typeck_results().node_type(expr.hir_id).kind() { &ty::FnDef(def_id, args) => Some((expr.span, def_id, args)), _ => None, }, } } declare_tool_lint! { /// The `potential_query_instability` lint detects use of methods which can lead to /// potential query instability, such as iterating over a `HashMap`. /// /// Due to the [incremental compilation](https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html) model, /// queries must return deterministic, stable results. `HashMap` iteration order can change /// between compilations, and will introduce instability if query results expose the order. pub rustc::POTENTIAL_QUERY_INSTABILITY, Allow, "require explicit opt-in when using potentially unstable methods or functions", report_in_external_macro: true } declare_tool_lint! { /// The `untracked_query_information` lint detects use of methods which leak information not /// tracked by the query system, such as whether a `Steal` value has already been stolen. In /// order not to break incremental compilation, such methods must be used very carefully or not /// at all. pub rustc::UNTRACKED_QUERY_INFORMATION, Allow, "require explicit opt-in when accessing information not tracked by the query system", report_in_external_macro: true } declare_lint_pass!(QueryStability => [POTENTIAL_QUERY_INSTABILITY, UNTRACKED_QUERY_INFORMATION]); impl LateLintPass<'_> for QueryStability { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let Some((span, def_id, args)) = typeck_results_of_method_fn(cx, expr) else { return }; if let Ok(Some(instance)) = ty::Instance::try_resolve(cx.tcx, cx.param_env, def_id, args) { let def_id = instance.def_id(); if cx.tcx.has_attr(def_id, sym::rustc_lint_query_instability) { cx.emit_span_lint( POTENTIAL_QUERY_INSTABILITY, span, QueryInstability { query: cx.tcx.item_name(def_id) }, ); } if cx.tcx.has_attr(def_id, sym::rustc_lint_untracked_query_information) { cx.emit_span_lint( UNTRACKED_QUERY_INFORMATION, span, QueryUntracked { method: cx.tcx.item_name(def_id) }, ); } } } } declare_tool_lint! { /// The `usage_of_ty_tykind` lint detects usages of `ty::TyKind::`, /// where `ty::` would suffice. pub rustc::USAGE_OF_TY_TYKIND, Allow, "usage of `ty::TyKind` outside of the `ty::sty` module", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_qualified_ty` lint detects usages of `ty::TyKind`, /// where `Ty` should be used instead. pub rustc::USAGE_OF_QUALIFIED_TY, Allow, "using `ty::{Ty,TyCtxt}` instead of importing it", report_in_external_macro: true } declare_lint_pass!(TyTyKind => [ USAGE_OF_TY_TYKIND, USAGE_OF_QUALIFIED_TY, ]); impl<'tcx> LateLintPass<'tcx> for TyTyKind { fn check_path( &mut self, cx: &LateContext<'tcx>, path: &rustc_hir::Path<'tcx>, _: rustc_hir::HirId, ) { if let Some(segment) = path.segments.iter().nth_back(1) && lint_ty_kind_usage(cx, &segment.res) { let span = path.span.with_hi(segment.args.map_or(segment.ident.span, |a| a.span_ext).hi()); cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }); } } fn check_ty(&mut self, cx: &LateContext<'_>, ty: &'tcx Ty<'tcx>) { match &ty.kind { TyKind::Path(QPath::Resolved(_, path)) => { if lint_ty_kind_usage(cx, &path.res) { let span = match cx.tcx.parent_hir_node(ty.hir_id) { Node::Pat(Pat { kind: PatKind::Path(qpath) | PatKind::TupleStruct(qpath, ..) | PatKind::Struct(qpath, ..), .. }) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } Node::Expr(Expr { kind: ExprKind::Path(qpath), .. }) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } // Can't unify these two branches because qpath below is `&&` and above is `&` // and `A | B` paths don't play well together with adjustments, apparently. Node::Expr(Expr { kind: ExprKind::Struct(qpath, ..), .. }) => { if let QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } _ => None, }; match span { Some(span) => { cx.emit_span_lint( USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }, ); } None => cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindDiag), } } else if !ty.span.from_expansion() && path.segments.len() > 1 && let Some(ty) = is_ty_or_ty_ctxt(cx, path) { cx.emit_span_lint( USAGE_OF_QUALIFIED_TY, path.span, TyQualified { ty, suggestion: path.span }, ); } } _ => {} } } } fn lint_ty_kind_usage(cx: &LateContext<'_>, res: &Res) -> bool { if let Some(did) = res.opt_def_id() { cx.tcx.is_diagnostic_item(sym::TyKind, did) || cx.tcx.is_diagnostic_item(sym::IrTyKind, did) } else { false } } fn is_ty_or_ty_ctxt(cx: &LateContext<'_>, path: &Path<'_>) -> Option { match &path.res { Res::Def(_, def_id) => { if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(*def_id) { return Some(format!("{}{}", name, gen_args(path.segments.last().unwrap()))); } } // Only lint on `&Ty` and `&TyCtxt` if it is used outside of a trait. Res::SelfTyAlias { alias_to: did, is_trait_impl: false, .. } => { if let ty::Adt(adt, args) = cx.tcx.type_of(did).instantiate_identity().kind() { if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(adt.did()) { // NOTE: This path is currently unreachable as `Ty<'tcx>` is // defined as a type alias meaning that `impl<'tcx> Ty<'tcx>` // is not actually allowed. // // I(@lcnr) still kept this branch in so we don't miss this // if we ever change it in the future. return Some(format!("{}<{}>", name, args[0])); } } } _ => (), } None } fn gen_args(segment: &PathSegment<'_>) -> String { if let Some(args) = &segment.args { let lifetimes = args .args .iter() .filter_map(|arg| { if let GenericArg::Lifetime(lt) = arg { Some(lt.ident.to_string()) } else { None } }) .collect::>(); if !lifetimes.is_empty() { return format!("<{}>", lifetimes.join(", ")); } } String::new() } declare_tool_lint! { /// The `non_glob_import_of_type_ir_inherent_item` lint detects /// non-glob imports of module `rustc_type_ir::inherent`. pub rustc::NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, Allow, "non-glob import of `rustc_type_ir::inherent`", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_type_ir_inherent` lint detects usage `rustc_type_ir::inherent`. /// /// This module should only be used within the trait solver. pub rustc::USAGE_OF_TYPE_IR_INHERENT, Allow, "usage `rustc_type_ir::inherent` outside of trait system", report_in_external_macro: true } declare_lint_pass!(TypeIr => [NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, USAGE_OF_TYPE_IR_INHERENT]); impl<'tcx> LateLintPass<'tcx> for TypeIr { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'tcx>) { let rustc_hir::ItemKind::Use(path, kind) = item.kind else { return }; let is_mod_inherent = |def_id| cx.tcx.is_diagnostic_item(sym::type_ir_inherent, def_id); // Path segments except for the final. if let Some(seg) = path.segments.iter().find(|seg| seg.res.opt_def_id().is_some_and(is_mod_inherent)) { cx.emit_span_lint(USAGE_OF_TYPE_IR_INHERENT, seg.ident.span, TypeIrInherentUsage); } // Final path resolutions, like `use rustc_type_ir::inherent` else if path.res.iter().any(|res| res.opt_def_id().is_some_and(is_mod_inherent)) { cx.emit_span_lint( USAGE_OF_TYPE_IR_INHERENT, path.segments.last().unwrap().ident.span, TypeIrInherentUsage, ); } let (lo, hi, snippet) = match path.segments { [.., penultimate, segment] if penultimate.res.opt_def_id().is_some_and(is_mod_inherent) => { (segment.ident.span, item.ident.span, "*") } [.., segment] if path.res.iter().flat_map(Res::opt_def_id).any(is_mod_inherent) && let rustc_hir::UseKind::Single = kind => { let (lo, snippet) = match cx.tcx.sess.source_map().span_to_snippet(path.span).as_deref() { Ok("self") => (path.span, "*"), _ => (segment.ident.span.shrink_to_hi(), "::*"), }; (lo, if segment.ident == item.ident { lo } else { item.ident.span }, snippet) } _ => return, }; cx.emit_span_lint( NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, path.span, NonGlobImportTypeIrInherent { suggestion: lo.eq_ctxt(hi).then(|| lo.to(hi)), snippet }, ); } } declare_tool_lint! { /// The `lint_pass_impl_without_macro` detects manual implementations of a lint /// pass, without using [`declare_lint_pass`] or [`impl_lint_pass`]. pub rustc::LINT_PASS_IMPL_WITHOUT_MACRO, Allow, "`impl LintPass` without the `declare_lint_pass!` or `impl_lint_pass!` macros" } declare_lint_pass!(LintPassImpl => [LINT_PASS_IMPL_WITHOUT_MACRO]); impl EarlyLintPass for LintPassImpl { fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { if let ast::ItemKind::Impl(box ast::Impl { of_trait: Some(lint_pass), .. }) = &item.kind { if let Some(last) = lint_pass.path.segments.last() { if last.ident.name == sym::LintPass { let expn_data = lint_pass.path.span.ctxt().outer_expn_data(); let call_site = expn_data.call_site; if expn_data.kind != ExpnKind::Macro(MacroKind::Bang, sym::impl_lint_pass) && call_site.ctxt().outer_expn_data().kind != ExpnKind::Macro(MacroKind::Bang, sym::declare_lint_pass) { cx.emit_span_lint( LINT_PASS_IMPL_WITHOUT_MACRO, lint_pass.path.span, LintPassByHand, ); } } } } } } declare_tool_lint! { /// The `existing_doc_keyword` lint detects use `#[doc()]` keywords /// that don't exist, e.g. `#[doc(keyword = "..")]`. pub rustc::EXISTING_DOC_KEYWORD, Allow, "Check that documented keywords in std and core actually exist", report_in_external_macro: true } declare_lint_pass!(ExistingDocKeyword => [EXISTING_DOC_KEYWORD]); fn is_doc_keyword(s: Symbol) -> bool { s <= kw::Union } impl<'tcx> LateLintPass<'tcx> for ExistingDocKeyword { fn check_item(&mut self, cx: &LateContext<'_>, item: &rustc_hir::Item<'_>) { for attr in cx.tcx.hir().attrs(item.hir_id()) { if !attr.has_name(sym::doc) { continue; } if let Some(list) = attr.meta_item_list() { for nested in list { if nested.has_name(sym::keyword) { let keyword = nested .value_str() .expect("#[doc(keyword = \"...\")] expected a value!"); if is_doc_keyword(keyword) { return; } cx.emit_span_lint( EXISTING_DOC_KEYWORD, attr.span, NonExistentDocKeyword { keyword }, ); } } } } } } declare_tool_lint! { /// The `untranslatable_diagnostic` lint detects messages passed to functions with `impl /// Into<{D,Subd}iagMessage` parameters without using translatable Fluent strings. /// /// More details on translatable diagnostics can be found /// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html). pub rustc::UNTRANSLATABLE_DIAGNOSTIC, Deny, "prevent creation of diagnostics which cannot be translated", report_in_external_macro: true } declare_tool_lint! { /// The `diagnostic_outside_of_impl` lint detects calls to functions annotated with /// `#[rustc_lint_diagnostics]` that are outside an `Diagnostic`, `Subdiagnostic`, or /// `LintDiagnostic` impl (either hand-written or derived). /// /// More details on diagnostics implementations can be found /// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html). pub rustc::DIAGNOSTIC_OUTSIDE_OF_IMPL, Deny, "prevent diagnostic creation outside of `Diagnostic`/`Subdiagnostic`/`LintDiagnostic` impls", report_in_external_macro: true } declare_lint_pass!(Diagnostics => [UNTRANSLATABLE_DIAGNOSTIC, DIAGNOSTIC_OUTSIDE_OF_IMPL]); impl LateLintPass<'_> for Diagnostics { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let collect_args_tys_and_spans = |args: &[Expr<'_>], reserve_one_extra: bool| { let mut result = Vec::with_capacity(args.len() + usize::from(reserve_one_extra)); result.extend(args.iter().map(|arg| (cx.typeck_results().expr_ty(arg), arg.span))); result }; // Only check function calls and method calls. let (span, def_id, fn_gen_args, arg_tys_and_spans) = match expr.kind { ExprKind::Call(callee, args) => { match cx.typeck_results().node_type(callee.hir_id).kind() { &ty::FnDef(def_id, fn_gen_args) => { (callee.span, def_id, fn_gen_args, collect_args_tys_and_spans(args, false)) } _ => return, // occurs for fns passed as args } } ExprKind::MethodCall(_segment, _recv, args, _span) => { let Some((span, def_id, fn_gen_args)) = typeck_results_of_method_fn(cx, expr) else { return; }; let mut args = collect_args_tys_and_spans(args, true); args.insert(0, (cx.tcx.types.self_param, _recv.span)); // dummy inserted for `self` (span, def_id, fn_gen_args, args) } _ => return, }; Self::diagnostic_outside_of_impl(cx, span, expr.hir_id, def_id, fn_gen_args); Self::untranslatable_diagnostic(cx, def_id, &arg_tys_and_spans); } } impl Diagnostics { // Is the type `{D,Subd}iagMessage`? fn is_diag_message<'cx>(cx: &LateContext<'cx>, ty: MiddleTy<'cx>) -> bool { if let Some(adt_def) = ty.ty_adt_def() && let Some(name) = cx.tcx.get_diagnostic_name(adt_def.did()) && matches!(name, sym::DiagMessage | sym::SubdiagMessage) { true } else { false } } fn untranslatable_diagnostic<'cx>( cx: &LateContext<'cx>, def_id: DefId, arg_tys_and_spans: &[(MiddleTy<'cx>, Span)], ) { let fn_sig = cx.tcx.fn_sig(def_id).instantiate_identity().skip_binder(); let predicates = cx.tcx.predicates_of(def_id).instantiate_identity(cx.tcx).predicates; for (i, ¶m_ty) in fn_sig.inputs().iter().enumerate() { if let ty::Param(sig_param) = param_ty.kind() { // It is a type parameter. Check if it is `impl Into<{D,Subd}iagMessage>`. for pred in predicates.iter() { if let Some(trait_pred) = pred.as_trait_clause() && let trait_ref = trait_pred.skip_binder().trait_ref && trait_ref.self_ty() == param_ty // correct predicate for the param? && cx.tcx.is_diagnostic_item(sym::Into, trait_ref.def_id) && let ty1 = trait_ref.args.type_at(1) && Self::is_diag_message(cx, ty1) { // Calls to methods with an `impl Into<{D,Subd}iagMessage>` parameter must be passed an arg // with type `{D,Subd}iagMessage` or `impl Into<{D,Subd}iagMessage>`. Otherwise, emit an // `UNTRANSLATABLE_DIAGNOSTIC` lint. let (arg_ty, arg_span) = arg_tys_and_spans[i]; // Is the arg type `{Sub,D}iagMessage`or `impl Into<{Sub,D}iagMessage>`? let is_translatable = Self::is_diag_message(cx, arg_ty) || matches!(arg_ty.kind(), ty::Param(arg_param) if arg_param.name == sig_param.name); if !is_translatable { cx.emit_span_lint( UNTRANSLATABLE_DIAGNOSTIC, arg_span, UntranslatableDiag, ); } } } } } } fn diagnostic_outside_of_impl<'cx>( cx: &LateContext<'cx>, span: Span, current_id: HirId, def_id: DefId, fn_gen_args: GenericArgsRef<'cx>, ) { // Is the callee marked with `#[rustc_lint_diagnostics]`? let Some(inst) = ty::Instance::try_resolve(cx.tcx, cx.param_env, def_id, fn_gen_args).ok().flatten() else { return; }; let has_attr = cx.tcx.has_attr(inst.def_id(), sym::rustc_lint_diagnostics); if !has_attr { return; }; for (hir_id, _parent) in cx.tcx.hir().parent_iter(current_id) { if let Some(owner_did) = hir_id.as_owner() && cx.tcx.has_attr(owner_did, sym::rustc_lint_diagnostics) { // The parent method is marked with `#[rustc_lint_diagnostics]` return; } } // Calls to `#[rustc_lint_diagnostics]`-marked functions should only occur: // - inside an impl of `Diagnostic`, `Subdiagnostic`, or `LintDiagnostic`, or // - inside a parent function that is itself marked with `#[rustc_lint_diagnostics]`. // // Otherwise, emit a `DIAGNOSTIC_OUTSIDE_OF_IMPL` lint. let mut is_inside_appropriate_impl = false; for (_hir_id, parent) in cx.tcx.hir().parent_iter(current_id) { debug!(?parent); if let Node::Item(Item { kind: ItemKind::Impl(impl_), .. }) = parent && let Impl { of_trait: Some(of_trait), .. } = impl_ && let Some(def_id) = of_trait.trait_def_id() && let Some(name) = cx.tcx.get_diagnostic_name(def_id) && matches!(name, sym::Diagnostic | sym::Subdiagnostic | sym::LintDiagnostic) { is_inside_appropriate_impl = true; break; } } debug!(?is_inside_appropriate_impl); if !is_inside_appropriate_impl { cx.emit_span_lint(DIAGNOSTIC_OUTSIDE_OF_IMPL, span, DiagOutOfImpl); } } } declare_tool_lint! { /// The `bad_opt_access` lint detects accessing options by field instead of /// the wrapper function. pub rustc::BAD_OPT_ACCESS, Deny, "prevent using options by field access when there is a wrapper function", report_in_external_macro: true } declare_lint_pass!(BadOptAccess => [BAD_OPT_ACCESS]); impl LateLintPass<'_> for BadOptAccess { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { let ExprKind::Field(base, target) = expr.kind else { return }; let Some(adt_def) = cx.typeck_results().expr_ty(base).ty_adt_def() else { return }; // Skip types without `#[rustc_lint_opt_ty]` - only so that the rest of the lint can be // avoided. if !cx.tcx.has_attr(adt_def.did(), sym::rustc_lint_opt_ty) { return; } for field in adt_def.all_fields() { if field.name == target.name && let Some(attr) = cx.tcx.get_attr(field.did, sym::rustc_lint_opt_deny_field_access) && let Some(items) = attr.meta_item_list() && let Some(item) = items.first() && let Some(lit) = item.lit() && let ast::LitKind::Str(val, _) = lit.kind { cx.emit_span_lint( BAD_OPT_ACCESS, expr.span, BadOptAccessDiag { msg: val.as_str() }, ); } } } } declare_tool_lint! { pub rustc::SPAN_USE_EQ_CTXT, Allow, "forbid uses of `==` with `Span::ctxt`, suggest `Span::eq_ctxt` instead", report_in_external_macro: true } declare_lint_pass!(SpanUseEqCtxt => [SPAN_USE_EQ_CTXT]); impl<'tcx> LateLintPass<'tcx> for SpanUseEqCtxt { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &Expr<'_>) { if let ExprKind::Binary(BinOp { node: BinOpKind::Eq | BinOpKind::Ne, .. }, lhs, rhs) = expr.kind { if is_span_ctxt_call(cx, lhs) && is_span_ctxt_call(cx, rhs) { cx.emit_span_lint(SPAN_USE_EQ_CTXT, expr.span, SpanUseEqCtxtDiag); } } } } fn is_span_ctxt_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { match &expr.kind { ExprKind::MethodCall(..) => cx .typeck_results() .type_dependent_def_id(expr.hir_id) .is_some_and(|call_did| cx.tcx.is_diagnostic_item(sym::SpanCtxt, call_did)), _ => false, } }