//! Machinery for hygienic macros, inspired by the `MTWT[1]` paper. //! //! `[1]` Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012. //! *Macros that work together: Compile-time bindings, partial expansion, //! and definition contexts*. J. Funct. Program. 22, 2 (March 2012), 181-216. //! DOI=10.1017/S0956796812000093 // Hygiene data is stored in a global variable and accessed via TLS, which // means that accesses are somewhat expensive. (`HygieneData::with` // encapsulates a single access.) Therefore, on hot code paths it is worth // ensuring that multiple HygieneData accesses are combined into a single // `HygieneData::with`. // // This explains why `HygieneData`, `SyntaxContext` and `ExpnId` have interfaces // with a certain amount of redundancy in them. For example, // `SyntaxContext::outer_expn_info` combines `SyntaxContext::outer` and // `ExpnId::expn_info` so that two `HygieneData` accesses can be performed within // a single `HygieneData::with` call. // // It also explains why many functions appear in `HygieneData` and again in // `SyntaxContext` or `ExpnId`. For example, `HygieneData::outer` and // `SyntaxContext::outer` do the same thing, but the former is for use within a // `HygieneData::with` call while the latter is for use outside such a call. // When modifying this file it is important to understand this distinction, // because getting it wrong can lead to nested `HygieneData::with` calls that // trigger runtime aborts. (Fortunately these are obvious and easy to fix.) use crate::GLOBALS; use crate::{Span, DUMMY_SP}; use crate::edition::Edition; use crate::symbol::{kw, Symbol}; use serialize::{Encodable, Decodable, Encoder, Decoder}; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::sync::Lrc; use std::fmt; /// A SyntaxContext represents a chain of macro expansions (represented by marks). #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SyntaxContext(u32); #[derive(Debug)] struct SyntaxContextData { outer_mark: ExpnId, transparency: Transparency, prev_ctxt: SyntaxContext, /// This context, but with all transparent and semi-transparent marks filtered away. opaque: SyntaxContext, /// This context, but with all transparent marks filtered away. opaque_and_semitransparent: SyntaxContext, /// Name of the crate to which `$crate` with this context would resolve. dollar_crate_name: Symbol, } /// A mark is a unique ID associated with a macro expansion. #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ExpnId(u32); #[derive(Debug)] struct MarkData { parent: ExpnId, /// Each mark should have an associated expansion info, but sometimes there's a delay between /// creation of a mark and obtaining its info (e.g. macros are collected first and then /// resolved later), so we use an `Option` here. expn_info: Option, } /// A property of a macro expansion that determines how identifiers /// produced by that expansion are resolved. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug, RustcEncodable, RustcDecodable)] pub enum Transparency { /// Identifier produced by a transparent expansion is always resolved at call-site. /// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this. Transparent, /// Identifier produced by a semi-transparent expansion may be resolved /// either at call-site or at definition-site. /// If it's a local variable, label or `$crate` then it's resolved at def-site. /// Otherwise it's resolved at call-site. /// `macro_rules` macros behave like this, built-in macros currently behave like this too, /// but that's an implementation detail. SemiTransparent, /// Identifier produced by an opaque expansion is always resolved at definition-site. /// Def-site spans in procedural macros, identifiers from `macro` by default use this. Opaque, } impl ExpnId { pub fn fresh(parent: ExpnId, expn_info: Option) -> Self { HygieneData::with(|data| data.fresh_mark(parent, expn_info)) } /// The mark of the theoretical expansion that generates freshly parsed, unexpanded AST. #[inline] pub fn root() -> Self { ExpnId(0) } #[inline] pub fn as_u32(self) -> u32 { self.0 } #[inline] pub fn from_u32(raw: u32) -> ExpnId { ExpnId(raw) } #[inline] pub fn parent(self) -> ExpnId { HygieneData::with(|data| data.marks[self.0 as usize].parent) } #[inline] pub fn expn_info(self) -> Option { HygieneData::with(|data| data.expn_info(self).cloned()) } #[inline] pub fn set_expn_info(self, info: ExpnInfo) { HygieneData::with(|data| { let old_info = &mut data.marks[self.0 as usize].expn_info; assert!(old_info.is_none(), "expansion info is reset for a mark"); *old_info = Some(info); }) } pub fn is_descendant_of(self, ancestor: ExpnId) -> bool { HygieneData::with(|data| data.is_descendant_of(self, ancestor)) } /// `mark.outer_is_descendant_of(ctxt)` is equivalent to but faster than /// `mark.is_descendant_of(ctxt.outer())`. pub fn outer_is_descendant_of(self, ctxt: SyntaxContext) -> bool { HygieneData::with(|data| data.is_descendant_of(self, data.outer(ctxt))) } // Used for enabling some compatibility fallback in resolve. #[inline] pub fn looks_like_proc_macro_derive(self) -> bool { HygieneData::with(|data| { if data.default_transparency(self) == Transparency::Opaque { if let Some(expn_info) = data.expn_info(self) { if let ExpnKind::Macro(MacroKind::Derive, _) = expn_info.kind { return true; } } } false }) } } #[derive(Debug)] crate struct HygieneData { marks: Vec, syntax_contexts: Vec, markings: FxHashMap<(SyntaxContext, ExpnId, Transparency), SyntaxContext>, } impl HygieneData { crate fn new(edition: Edition) -> Self { HygieneData { marks: vec![MarkData { parent: ExpnId::root(), expn_info: Some(ExpnInfo::default(ExpnKind::Root, DUMMY_SP, edition)), }], syntax_contexts: vec![SyntaxContextData { outer_mark: ExpnId::root(), transparency: Transparency::Opaque, prev_ctxt: SyntaxContext(0), opaque: SyntaxContext(0), opaque_and_semitransparent: SyntaxContext(0), dollar_crate_name: kw::DollarCrate, }], markings: FxHashMap::default(), } } fn with T>(f: F) -> T { GLOBALS.with(|globals| f(&mut *globals.hygiene_data.borrow_mut())) } fn fresh_mark(&mut self, parent: ExpnId, expn_info: Option) -> ExpnId { self.marks.push(MarkData { parent, expn_info }); ExpnId(self.marks.len() as u32 - 1) } fn expn_info(&self, mark: ExpnId) -> Option<&ExpnInfo> { if mark != ExpnId::root() { Some(self.marks[mark.0 as usize].expn_info.as_ref() .expect("no expansion info for a mark")) } else { // FIXME: Some code relies on `expn_info().is_none()` meaning "no expansion". // Introduce a method for checking for "no expansion" instead and always return // `ExpnInfo` from this function instead of the `Option`. None } } fn is_descendant_of(&self, mut mark: ExpnId, ancestor: ExpnId) -> bool { while mark != ancestor { if mark == ExpnId::root() { return false; } mark = self.marks[mark.0 as usize].parent; } true } fn default_transparency(&self, mark: ExpnId) -> Transparency { self.expn_info(mark).map_or( Transparency::SemiTransparent, |einfo| einfo.default_transparency ) } fn modern(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_contexts[ctxt.0 as usize].opaque } fn modern_and_legacy(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_contexts[ctxt.0 as usize].opaque_and_semitransparent } fn outer(&self, ctxt: SyntaxContext) -> ExpnId { self.syntax_contexts[ctxt.0 as usize].outer_mark } fn transparency(&self, ctxt: SyntaxContext) -> Transparency { self.syntax_contexts[ctxt.0 as usize].transparency } fn prev_ctxt(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_contexts[ctxt.0 as usize].prev_ctxt } fn remove_mark(&self, ctxt: &mut SyntaxContext) -> ExpnId { let outer_mark = self.syntax_contexts[ctxt.0 as usize].outer_mark; *ctxt = self.prev_ctxt(*ctxt); outer_mark } fn marks(&self, mut ctxt: SyntaxContext) -> Vec<(ExpnId, Transparency)> { let mut marks = Vec::new(); while ctxt != SyntaxContext::empty() { let outer_mark = self.outer(ctxt); let transparency = self.transparency(ctxt); let prev_ctxt = self.prev_ctxt(ctxt); marks.push((outer_mark, transparency)); ctxt = prev_ctxt; } marks.reverse(); marks } fn walk_chain(&self, mut span: Span, to: SyntaxContext) -> Span { while span.ctxt() != crate::NO_EXPANSION && span.ctxt() != to { if let Some(info) = self.expn_info(self.outer(span.ctxt())) { span = info.call_site; } else { break; } } span } fn adjust(&self, ctxt: &mut SyntaxContext, expansion: ExpnId) -> Option { let mut scope = None; while !self.is_descendant_of(expansion, self.outer(*ctxt)) { scope = Some(self.remove_mark(ctxt)); } scope } fn apply_mark(&mut self, ctxt: SyntaxContext, mark: ExpnId) -> SyntaxContext { assert_ne!(mark, ExpnId::root()); self.apply_mark_with_transparency(ctxt, mark, self.default_transparency(mark)) } fn apply_mark_with_transparency(&mut self, ctxt: SyntaxContext, mark: ExpnId, transparency: Transparency) -> SyntaxContext { assert_ne!(mark, ExpnId::root()); if transparency == Transparency::Opaque { return self.apply_mark_internal(ctxt, mark, transparency); } let call_site_ctxt = self.expn_info(mark).map_or(SyntaxContext::empty(), |info| info.call_site.ctxt()); let mut call_site_ctxt = if transparency == Transparency::SemiTransparent { self.modern(call_site_ctxt) } else { self.modern_and_legacy(call_site_ctxt) }; if call_site_ctxt == SyntaxContext::empty() { return self.apply_mark_internal(ctxt, mark, transparency); } // Otherwise, `mark` is a macros 1.0 definition and the call site is in a // macros 2.0 expansion, i.e., a macros 1.0 invocation is in a macros 2.0 definition. // // In this case, the tokens from the macros 1.0 definition inherit the hygiene // at their invocation. That is, we pretend that the macros 1.0 definition // was defined at its invocation (i.e., inside the macros 2.0 definition) // so that the macros 2.0 definition remains hygienic. // // See the example at `test/run-pass/hygiene/legacy_interaction.rs`. for (mark, transparency) in self.marks(ctxt) { call_site_ctxt = self.apply_mark_internal(call_site_ctxt, mark, transparency); } self.apply_mark_internal(call_site_ctxt, mark, transparency) } fn apply_mark_internal(&mut self, ctxt: SyntaxContext, mark: ExpnId, transparency: Transparency) -> SyntaxContext { let syntax_contexts = &mut self.syntax_contexts; let mut opaque = syntax_contexts[ctxt.0 as usize].opaque; let mut opaque_and_semitransparent = syntax_contexts[ctxt.0 as usize].opaque_and_semitransparent; if transparency >= Transparency::Opaque { let prev_ctxt = opaque; opaque = *self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| { let new_opaque = SyntaxContext(syntax_contexts.len() as u32); syntax_contexts.push(SyntaxContextData { outer_mark: mark, transparency, prev_ctxt, opaque: new_opaque, opaque_and_semitransparent: new_opaque, dollar_crate_name: kw::DollarCrate, }); new_opaque }); } if transparency >= Transparency::SemiTransparent { let prev_ctxt = opaque_and_semitransparent; opaque_and_semitransparent = *self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| { let new_opaque_and_semitransparent = SyntaxContext(syntax_contexts.len() as u32); syntax_contexts.push(SyntaxContextData { outer_mark: mark, transparency, prev_ctxt, opaque, opaque_and_semitransparent: new_opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent }); } let prev_ctxt = ctxt; *self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| { let new_opaque_and_semitransparent_and_transparent = SyntaxContext(syntax_contexts.len() as u32); syntax_contexts.push(SyntaxContextData { outer_mark: mark, transparency, prev_ctxt, opaque, opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent_and_transparent }) } } pub fn clear_markings() { HygieneData::with(|data| data.markings = FxHashMap::default()); } pub fn walk_chain(span: Span, to: SyntaxContext) -> Span { HygieneData::with(|data| data.walk_chain(span, to)) } pub fn update_dollar_crate_names(mut get_name: impl FnMut(SyntaxContext) -> Symbol) { // The new contexts that need updating are at the end of the list and have `$crate` as a name. let (len, to_update) = HygieneData::with(|data| ( data.syntax_contexts.len(), data.syntax_contexts.iter().rev() .take_while(|scdata| scdata.dollar_crate_name == kw::DollarCrate).count() )); // The callback must be called from outside of the `HygieneData` lock, // since it will try to acquire it too. let range_to_update = len - to_update .. len; let names: Vec<_> = range_to_update.clone().map(|idx| get_name(SyntaxContext::from_u32(idx as u32))).collect(); HygieneData::with(|data| range_to_update.zip(names.into_iter()).for_each(|(idx, name)| { data.syntax_contexts[idx].dollar_crate_name = name; })) } impl SyntaxContext { #[inline] pub const fn empty() -> Self { SyntaxContext(0) } #[inline] crate fn as_u32(self) -> u32 { self.0 } #[inline] crate fn from_u32(raw: u32) -> SyntaxContext { SyntaxContext(raw) } /// Extend a syntax context with a given mark and default transparency for that mark. pub fn apply_mark(self, mark: ExpnId) -> SyntaxContext { HygieneData::with(|data| data.apply_mark(self, mark)) } /// Extend a syntax context with a given mark and transparency pub fn apply_mark_with_transparency(self, mark: ExpnId, transparency: Transparency) -> SyntaxContext { HygieneData::with(|data| data.apply_mark_with_transparency(self, mark, transparency)) } /// Pulls a single mark off of the syntax context. This effectively moves the /// context up one macro definition level. That is, if we have a nested macro /// definition as follows: /// /// ```rust /// macro_rules! f { /// macro_rules! g { /// ... /// } /// } /// ``` /// /// and we have a SyntaxContext that is referring to something declared by an invocation /// of g (call it g1), calling remove_mark will result in the SyntaxContext for the /// invocation of f that created g1. /// Returns the mark that was removed. pub fn remove_mark(&mut self) -> ExpnId { HygieneData::with(|data| data.remove_mark(self)) } pub fn marks(self) -> Vec<(ExpnId, Transparency)> { HygieneData::with(|data| data.marks(self)) } /// Adjust this context for resolution in a scope created by the given expansion. /// For example, consider the following three resolutions of `f`: /// /// ```rust /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty. /// m!(f); /// macro m($f:ident) { /// mod bar { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $f() {} // `$f`'s `SyntaxContext` is empty. /// } /// foo::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`, /// //| and it resolves to `::foo::f`. /// bar::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`, /// //| and it resolves to `::bar::f`. /// bar::$f(); // `f`'s `SyntaxContext` is empty. /// //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`, /// //| and it resolves to `::bar::$f`. /// } /// ``` /// This returns the expansion whose definition scope we use to privacy check the resolution, /// or `None` if we privacy check as usual (i.e., not w.r.t. a macro definition scope). pub fn adjust(&mut self, expansion: ExpnId) -> Option { HygieneData::with(|data| data.adjust(self, expansion)) } /// Like `SyntaxContext::adjust`, but also modernizes `self`. pub fn modernize_and_adjust(&mut self, expansion: ExpnId) -> Option { HygieneData::with(|data| { *self = data.modern(*self); data.adjust(self, expansion) }) } /// Adjust this context for resolution in a scope created by the given expansion /// via a glob import with the given `SyntaxContext`. /// For example: /// /// ```rust /// m!(f); /// macro m($i:ident) { /// mod foo { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $i() {} // `$i`'s `SyntaxContext` is empty. /// } /// n(f); /// macro n($j:ident) { /// use foo::*; /// f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`. /// $i(); // `$i`'s `SyntaxContext` has a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`. /// $j(); // `$j`'s `SyntaxContext` has a mark from `m` /// //^ This cannot be glob-adjusted, so this is a resolution error. /// } /// } /// ``` /// This returns `None` if the context cannot be glob-adjusted. /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details). pub fn glob_adjust(&mut self, expansion: ExpnId, glob_span: Span) -> Option> { HygieneData::with(|data| { let mut scope = None; let mut glob_ctxt = data.modern(glob_span.ctxt()); while !data.is_descendant_of(expansion, data.outer(glob_ctxt)) { scope = Some(data.remove_mark(&mut glob_ctxt)); if data.remove_mark(self) != scope.unwrap() { return None; } } if data.adjust(self, expansion).is_some() { return None; } Some(scope) }) } /// Undo `glob_adjust` if possible: /// /// ```rust /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) { /// assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope)); /// } /// ``` pub fn reverse_glob_adjust(&mut self, expansion: ExpnId, glob_span: Span) -> Option> { HygieneData::with(|data| { if data.adjust(self, expansion).is_some() { return None; } let mut glob_ctxt = data.modern(glob_span.ctxt()); let mut marks = Vec::new(); while !data.is_descendant_of(expansion, data.outer(glob_ctxt)) { marks.push(data.remove_mark(&mut glob_ctxt)); } let scope = marks.last().cloned(); while let Some(mark) = marks.pop() { *self = data.apply_mark(*self, mark); } Some(scope) }) } pub fn hygienic_eq(self, other: SyntaxContext, mark: ExpnId) -> bool { HygieneData::with(|data| { let mut self_modern = data.modern(self); data.adjust(&mut self_modern, mark); self_modern == data.modern(other) }) } #[inline] pub fn modern(self) -> SyntaxContext { HygieneData::with(|data| data.modern(self)) } #[inline] pub fn modern_and_legacy(self) -> SyntaxContext { HygieneData::with(|data| data.modern_and_legacy(self)) } #[inline] pub fn outer(self) -> ExpnId { HygieneData::with(|data| data.outer(self)) } /// `ctxt.outer_expn_info()` is equivalent to but faster than /// `ctxt.outer().expn_info()`. #[inline] pub fn outer_expn_info(self) -> Option { HygieneData::with(|data| data.expn_info(data.outer(self)).cloned()) } /// `ctxt.outer_and_expn_info()` is equivalent to but faster than /// `{ let outer = ctxt.outer(); (outer, outer.expn_info()) }`. #[inline] pub fn outer_and_expn_info(self) -> (ExpnId, Option) { HygieneData::with(|data| { let outer = data.outer(self); (outer, data.expn_info(outer).cloned()) }) } pub fn dollar_crate_name(self) -> Symbol { HygieneData::with(|data| data.syntax_contexts[self.0 as usize].dollar_crate_name) } } impl fmt::Debug for SyntaxContext { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "#{}", self.0) } } impl Span { /// Creates a fresh expansion with given properties. /// Expansions are normally created by macros, but in some cases expansions are created for /// other compiler-generated code to set per-span properties like allowed unstable features. /// The returned span belongs to the created expansion and has the new properties, /// but its location is inherited from the current span. pub fn fresh_expansion(self, parent: ExpnId, expn_info: ExpnInfo) -> Span { HygieneData::with(|data| { let mark = data.fresh_mark(parent, Some(expn_info)); self.with_ctxt(data.apply_mark(SyntaxContext::empty(), mark)) }) } } /// A subset of properties from both macro definition and macro call available through global data. /// Avoid using this if you have access to the original definition or call structures. #[derive(Clone, Debug, RustcEncodable, RustcDecodable)] pub struct ExpnInfo { // --- The part unique to each expansion. /// The location of the actual macro invocation or syntax sugar , e.g. /// `let x = foo!();` or `if let Some(y) = x {}` /// /// This may recursively refer to other macro invocations, e.g., if /// `foo!()` invoked `bar!()` internally, and there was an /// expression inside `bar!`; the call_site of the expression in /// the expansion would point to the `bar!` invocation; that /// call_site span would have its own ExpnInfo, with the call_site /// pointing to the `foo!` invocation. pub call_site: Span, /// The kind of this expansion - macro or compiler desugaring. pub kind: ExpnKind, // --- The part specific to the macro/desugaring definition. // --- FIXME: Share it between expansions with the same definition. /// The span of the macro definition (possibly dummy). /// This span serves only informational purpose and is not used for resolution. pub def_site: Span, /// Transparency used by `apply_mark` for mark with this expansion info by default. pub default_transparency: Transparency, /// List of #[unstable]/feature-gated features that the macro is allowed to use /// internally without forcing the whole crate to opt-in /// to them. pub allow_internal_unstable: Option>, /// Whether the macro is allowed to use `unsafe` internally /// even if the user crate has `#![forbid(unsafe_code)]`. pub allow_internal_unsafe: bool, /// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) /// for a given macro. pub local_inner_macros: bool, /// Edition of the crate in which the macro is defined. pub edition: Edition, } impl ExpnInfo { /// Constructs an expansion info with default properties. pub fn default(kind: ExpnKind, call_site: Span, edition: Edition) -> ExpnInfo { ExpnInfo { call_site, kind, def_site: DUMMY_SP, default_transparency: Transparency::SemiTransparent, allow_internal_unstable: None, allow_internal_unsafe: false, local_inner_macros: false, edition, } } pub fn allow_unstable(kind: ExpnKind, call_site: Span, edition: Edition, allow_internal_unstable: Lrc<[Symbol]>) -> ExpnInfo { ExpnInfo { allow_internal_unstable: Some(allow_internal_unstable), ..ExpnInfo::default(kind, call_site, edition) } } } /// Expansion kind. #[derive(Clone, Debug, RustcEncodable, RustcDecodable)] pub enum ExpnKind { /// No expansion, aka root expansion. Only `ExpnId::root()` has this kind. Root, /// Expansion produced by a macro. /// FIXME: Some code injected by the compiler before HIR lowering also gets this kind. Macro(MacroKind, Symbol), /// Desugaring done by the compiler during HIR lowering. Desugaring(DesugaringKind) } impl ExpnKind { pub fn descr(&self) -> Symbol { match *self { ExpnKind::Root => kw::PathRoot, ExpnKind::Macro(_, descr) => descr, ExpnKind::Desugaring(kind) => Symbol::intern(kind.descr()), } } } /// The kind of macro invocation or definition. #[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub enum MacroKind { /// A bang macro `foo!()`. Bang, /// An attribute macro `#[foo]`. Attr, /// A derive macro `#[derive(Foo)]` Derive, } impl MacroKind { pub fn descr(self) -> &'static str { match self { MacroKind::Bang => "macro", MacroKind::Attr => "attribute macro", MacroKind::Derive => "derive macro", } } pub fn article(self) -> &'static str { match self { MacroKind::Attr => "an", _ => "a", } } } /// The kind of compiler desugaring. #[derive(Clone, Copy, PartialEq, Debug, RustcEncodable, RustcDecodable)] pub enum DesugaringKind { /// We desugar `if c { i } else { e }` to `match $ExprKind::Use(c) { true => i, _ => e }`. /// However, we do not want to blame `c` for unreachability but rather say that `i` /// is unreachable. This desugaring kind allows us to avoid blaming `c`. /// This also applies to `while` loops. CondTemporary, QuestionMark, TryBlock, /// Desugaring of an `impl Trait` in return type position /// to an `existential type Foo: Trait;` and replacing the /// `impl Trait` with `Foo`. ExistentialType, Async, Await, ForLoop, } impl DesugaringKind { /// The description wording should combine well with "desugaring of {}". fn descr(self) -> &'static str { match self { DesugaringKind::CondTemporary => "`if` or `while` condition", DesugaringKind::Async => "`async` block or function", DesugaringKind::Await => "`await` expression", DesugaringKind::QuestionMark => "operator `?`", DesugaringKind::TryBlock => "`try` block", DesugaringKind::ExistentialType => "`existential type`", DesugaringKind::ForLoop => "`for` loop", } } } impl Encodable for SyntaxContext { fn encode(&self, _: &mut E) -> Result<(), E::Error> { Ok(()) // FIXME(jseyfried) intercrate hygiene } } impl Decodable for SyntaxContext { fn decode(_: &mut D) -> Result { Ok(SyntaxContext::empty()) // FIXME(jseyfried) intercrate hygiene } }