pub use self::FileMatch::*; use std::borrow::Cow; use std::env; use std::fs; use std::path::{Path, PathBuf}; use crate::search_paths::{PathKind, SearchPath, SearchPathFile}; use rustc_fs_util::fix_windows_verbatim_for_gcc; use tracing::debug; #[derive(Copy, Clone)] pub enum FileMatch { FileMatches, FileDoesntMatch, } // A module for searching for libraries #[derive(Clone)] pub struct FileSearch<'a> { sysroot: &'a Path, triple: &'a str, search_paths: &'a [SearchPath], tlib_path: &'a SearchPath, kind: PathKind, } impl<'a> FileSearch<'a> { pub fn search_paths(&self) -> impl Iterator { let kind = self.kind; self.search_paths .iter() .filter(move |sp| sp.kind.matches(kind)) .chain(std::iter::once(self.tlib_path)) } pub fn get_lib_path(&self) -> PathBuf { make_target_lib_path(self.sysroot, self.triple) } pub fn get_self_contained_lib_path(&self) -> PathBuf { self.get_lib_path().join("self-contained") } pub fn search(&self, mut pick: F) where F: FnMut(&SearchPathFile, PathKind) -> FileMatch, { for search_path in self.search_paths() { debug!("searching {}", search_path.dir.display()); fn is_rlib(spf: &SearchPathFile) -> bool { if let Some(f) = &spf.file_name_str { f.ends_with(".rlib") } else { false } } // Reading metadata out of rlibs is faster, and if we find both // an rlib and a dylib we only read one of the files of // metadata, so in the name of speed, bring all rlib files to // the front of the search list. let files1 = search_path.files.iter().filter(|spf| is_rlib(&spf)); let files2 = search_path.files.iter().filter(|spf| !is_rlib(&spf)); for spf in files1.chain(files2) { debug!("testing {}", spf.path.display()); let maybe_picked = pick(spf, search_path.kind); match maybe_picked { FileMatches => { debug!("picked {}", spf.path.display()); } FileDoesntMatch => { debug!("rejected {}", spf.path.display()); } } } } } pub fn new( sysroot: &'a Path, triple: &'a str, search_paths: &'a [SearchPath], tlib_path: &'a SearchPath, kind: PathKind, ) -> FileSearch<'a> { debug!("using sysroot = {}, triple = {}", sysroot.display(), triple); FileSearch { sysroot, triple, search_paths, tlib_path, kind } } // Returns just the directories within the search paths. pub fn search_path_dirs(&self) -> Vec { self.search_paths().map(|sp| sp.dir.to_path_buf()).collect() } // Returns a list of directories where target-specific tool binaries are located. pub fn get_tools_search_paths(&self, self_contained: bool) -> Vec { let mut p = PathBuf::from(self.sysroot); p.push(find_libdir(self.sysroot).as_ref()); p.push(RUST_LIB_DIR); p.push(&self.triple); p.push("bin"); if self_contained { vec![p.clone(), p.join("self-contained")] } else { vec![p] } } } pub fn relative_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf { let mut p = PathBuf::from(find_libdir(sysroot).as_ref()); assert!(p.is_relative()); p.push(RUST_LIB_DIR); p.push(target_triple); p.push("lib"); p } pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf { sysroot.join(&relative_target_lib_path(sysroot, target_triple)) } // This function checks if sysroot is found using env::args().next(), and if it // is not found, uses env::current_exe() to imply sysroot. pub fn get_or_default_sysroot() -> PathBuf { // Follow symlinks. If the resolved path is relative, make it absolute. fn canonicalize(path: PathBuf) -> PathBuf { let path = fs::canonicalize(&path).unwrap_or(path); // See comments on this target function, but the gist is that // gcc chokes on verbatim paths which fs::canonicalize generates // so we try to avoid those kinds of paths. fix_windows_verbatim_for_gcc(&path) } // Use env::current_exe() to get the path of the executable following // symlinks/canonicalizing components. fn from_current_exe() -> PathBuf { match env::current_exe() { Ok(exe) => { let mut p = canonicalize(exe); p.pop(); p.pop(); p } Err(e) => panic!("failed to get current_exe: {}", e), } } // Use env::args().next() to get the path of the executable without // following symlinks/canonicalizing any component. This makes the rustc // binary able to locate Rust libraries in systems using content-addressable // storage (CAS). fn from_env_args_next() -> Option { match env::args_os().next() { Some(first_arg) => { let mut p = PathBuf::from(first_arg); // Check if sysroot is found using env::args().next() only if the rustc in argv[0] // is a symlink (see #79253). We might want to change/remove it to conform with // https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the // future. if fs::read_link(&p).is_err() { // Path is not a symbolic link or does not exist. return None; } p.pop(); p.pop(); let mut libdir = PathBuf::from(&p); libdir.push(find_libdir(&p).as_ref()); if libdir.exists() { Some(p) } else { None } } None => None, } } // Check if sysroot is found using env::args().next(), and if is not found, // use env::current_exe() to imply sysroot. from_env_args_next().unwrap_or_else(from_current_exe) } // The name of the directory rustc expects libraries to be located. fn find_libdir(sysroot: &Path) -> Cow<'static, str> { // FIXME: This is a quick hack to make the rustc binary able to locate // Rust libraries in Linux environments where libraries might be installed // to lib64/lib32. This would be more foolproof by basing the sysroot off // of the directory where `librustc_driver` is located, rather than // where the rustc binary is. // If --libdir is set during configuration to the value other than // "lib" (i.e., non-default), this value is used (see issue #16552). #[cfg(target_pointer_width = "64")] const PRIMARY_LIB_DIR: &str = "lib64"; #[cfg(target_pointer_width = "32")] const PRIMARY_LIB_DIR: &str = "lib32"; const SECONDARY_LIB_DIR: &str = "lib"; match option_env!("CFG_LIBDIR_RELATIVE") { None | Some("lib") => { if sysroot.join(PRIMARY_LIB_DIR).join(RUST_LIB_DIR).exists() { PRIMARY_LIB_DIR.into() } else { SECONDARY_LIB_DIR.into() } } Some(libdir) => libdir.into(), } } // The name of rustc's own place to organize libraries. // Used to be "rustc", now the default is "rustlib" const RUST_LIB_DIR: &str = "rustlib";