use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; use rustc_hir as hir; use rustc_infer::traits::util; use rustc_middle::ty::{ self, GenericArgs, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt, Upcast, shift_vars, }; use rustc_middle::{bug, span_bug}; use rustc_span::Span; use rustc_span::def_id::{DefId, LocalDefId}; use tracing::{debug, instrument}; use super::ItemCtxt; use super::predicates_of::assert_only_contains_predicates_from; use crate::hir_ty_lowering::{HirTyLowerer, PredicateFilter}; /// For associated types we include both bounds written on the type /// (`type X: Trait`) and predicates from the trait: `where Self::X: Trait`. /// /// Note that this filtering is done with the items identity args to /// simplify checking that these bounds are met in impls. This means that /// a bound such as `for<'b> >::U: Clone` can't be used, as in /// `hr-associated-type-bound-1.rs`. fn associated_type_bounds<'tcx>( tcx: TyCtxt<'tcx>, assoc_item_def_id: LocalDefId, hir_bounds: &'tcx [hir::GenericBound<'tcx>], span: Span, filter: PredicateFilter, ) -> &'tcx [(ty::Clause<'tcx>, Span)] { ty::print::with_reduced_queries!({ let item_ty = Ty::new_projection_from_args( tcx, assoc_item_def_id.to_def_id(), GenericArgs::identity_for_item(tcx, assoc_item_def_id), ); let icx = ItemCtxt::new(tcx, assoc_item_def_id); let mut bounds = Vec::new(); icx.lowerer().lower_bounds(item_ty, hir_bounds, &mut bounds, ty::List::empty(), filter); // Associated types are implicitly sized unless a `?Sized` bound is found match filter { PredicateFilter::All | PredicateFilter::SelfOnly | PredicateFilter::SelfTraitThatDefines(_) | PredicateFilter::SelfAndAssociatedTypeBounds => { icx.lowerer().add_sized_bound(&mut bounds, item_ty, hir_bounds, None, span); } // `ConstIfConst` is only interested in `~const` bounds. PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {} } let trait_def_id = tcx.local_parent(assoc_item_def_id); let trait_predicates = tcx.trait_explicit_predicates_and_bounds(trait_def_id); let item_trait_ref = ty::TraitRef::identity(tcx, tcx.parent(assoc_item_def_id.to_def_id())); let bounds_from_parent = trait_predicates.predicates.iter().copied().filter_map(|(clause, span)| { remap_gat_vars_and_recurse_into_nested_projections( tcx, filter, item_trait_ref, assoc_item_def_id, span, clause, ) }); let all_bounds = tcx.arena.alloc_from_iter(bounds.into_iter().chain(bounds_from_parent)); debug!( "associated_type_bounds({}) = {:?}", tcx.def_path_str(assoc_item_def_id.to_def_id()), all_bounds ); assert_only_contains_predicates_from(filter, all_bounds, item_ty); all_bounds }) } /// The code below is quite involved, so let me explain. /// /// We loop here, because we also want to collect vars for nested associated items as /// well. For example, given a clause like `Self::A::B`, we want to add that to the /// item bounds for `A`, so that we may use that bound in the case that `Self::A::B` is /// rigid. /// /// Secondly, regarding bound vars, when we see a where clause that mentions a GAT /// like `for<'a, ...> Self::Assoc<'a, ...>: Bound<'b, ...>`, we want to turn that into /// an item bound on the GAT, where all of the GAT args are substituted with the GAT's /// param regions, and then keep all of the other late-bound vars in the bound around. /// We need to "compress" the binder so that it doesn't mention any of those vars that /// were mapped to params. fn remap_gat_vars_and_recurse_into_nested_projections<'tcx>( tcx: TyCtxt<'tcx>, filter: PredicateFilter, item_trait_ref: ty::TraitRef<'tcx>, assoc_item_def_id: LocalDefId, span: Span, clause: ty::Clause<'tcx>, ) -> Option<(ty::Clause<'tcx>, Span)> { let mut clause_ty = match clause.kind().skip_binder() { ty::ClauseKind::Trait(tr) => tr.self_ty(), ty::ClauseKind::Projection(proj) => proj.projection_term.self_ty(), ty::ClauseKind::TypeOutlives(outlives) => outlives.0, _ => return None, }; let gat_vars = loop { if let ty::Alias(ty::Projection, alias_ty) = *clause_ty.kind() { if alias_ty.trait_ref(tcx) == item_trait_ref && alias_ty.def_id == assoc_item_def_id.to_def_id() { // We have found the GAT in question... // Return the vars, since we may need to remap them. break &alias_ty.args[item_trait_ref.args.len()..]; } else { // Only collect *self* type bounds if the filter is for self. match filter { PredicateFilter::All => {} PredicateFilter::SelfOnly => { return None; } PredicateFilter::SelfTraitThatDefines(_) | PredicateFilter::SelfConstIfConst | PredicateFilter::SelfAndAssociatedTypeBounds | PredicateFilter::ConstIfConst => { unreachable!( "invalid predicate filter for \ `remap_gat_vars_and_recurse_into_nested_projections`" ) } } clause_ty = alias_ty.self_ty(); continue; } } return None; }; // Special-case: No GAT vars, no mapping needed. if gat_vars.is_empty() { return Some((clause, span)); } // First, check that all of the GAT args are substituted with a unique late-bound arg. // If we find a duplicate, then it can't be mapped to the definition's params. let mut mapping = FxIndexMap::default(); let generics = tcx.generics_of(assoc_item_def_id); for (param, var) in std::iter::zip(&generics.own_params, gat_vars) { let existing = match var.unpack() { ty::GenericArgKind::Lifetime(re) => { if let ty::RegionKind::ReBound(ty::INNERMOST, bv) = re.kind() { mapping.insert(bv.var, tcx.mk_param_from_def(param)) } else { return None; } } ty::GenericArgKind::Type(ty) => { if let ty::Bound(ty::INNERMOST, bv) = *ty.kind() { mapping.insert(bv.var, tcx.mk_param_from_def(param)) } else { return None; } } ty::GenericArgKind::Const(ct) => { if let ty::ConstKind::Bound(ty::INNERMOST, bv) = ct.kind() { mapping.insert(bv, tcx.mk_param_from_def(param)) } else { return None; } } }; if existing.is_some() { return None; } } // Finally, map all of the args in the GAT to the params we expect, and compress // the remaining late-bound vars so that they count up from var 0. let mut folder = MapAndCompressBoundVars { tcx, binder: ty::INNERMOST, still_bound_vars: vec![], mapping }; let pred = clause.kind().skip_binder().fold_with(&mut folder); Some(( ty::Binder::bind_with_vars(pred, tcx.mk_bound_variable_kinds(&folder.still_bound_vars)) .upcast(tcx), span, )) } /// Given some where clause like `for<'b, 'c> >::Gat<'b>: Bound<'c>`, /// the mapping will map `'b` back to the GAT's `'b_identity`. Then we need to compress the /// remaining bound var `'c` to index 0. /// /// This folder gives us: `for<'c> >::Gat<'b_identity>: Bound<'c>`, /// which is sufficient for an item bound for `Gat`, since all of the GAT's args are identity. struct MapAndCompressBoundVars<'tcx> { tcx: TyCtxt<'tcx>, /// How deep are we? Makes sure we don't touch the vars of nested binders. binder: ty::DebruijnIndex, /// List of bound vars that remain unsubstituted because they were not /// mentioned in the GAT's args. still_bound_vars: Vec, /// Subtle invariant: If the `GenericArg` is bound, then it should be /// stored with the debruijn index of `INNERMOST` so it can be shifted /// correctly during substitution. mapping: FxIndexMap>, } impl<'tcx> TypeFolder> for MapAndCompressBoundVars<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.tcx } fn fold_binder(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T> where ty::Binder<'tcx, T>: TypeSuperFoldable>, { self.binder.shift_in(1); let out = t.super_fold_with(self); self.binder.shift_out(1); out } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { if !ty.has_bound_vars() { return ty; } if let ty::Bound(binder, old_bound) = *ty.kind() && self.binder == binder { let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) { mapped.expect_ty() } else { // If we didn't find a mapped generic, then make a new one. // Allocate a new var idx, and insert a new bound ty. let var = ty::BoundVar::from_usize(self.still_bound_vars.len()); self.still_bound_vars.push(ty::BoundVariableKind::Ty(old_bound.kind)); let mapped = Ty::new_bound( self.tcx, ty::INNERMOST, ty::BoundTy { var, kind: old_bound.kind }, ); self.mapping.insert(old_bound.var, mapped.into()); mapped }; shift_vars(self.tcx, mapped, self.binder.as_u32()) } else { ty.super_fold_with(self) } } fn fold_region(&mut self, re: ty::Region<'tcx>) -> ty::Region<'tcx> { if let ty::ReBound(binder, old_bound) = re.kind() && self.binder == binder { let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) { mapped.expect_region() } else { let var = ty::BoundVar::from_usize(self.still_bound_vars.len()); self.still_bound_vars.push(ty::BoundVariableKind::Region(old_bound.kind)); let mapped = ty::Region::new_bound( self.tcx, ty::INNERMOST, ty::BoundRegion { var, kind: old_bound.kind }, ); self.mapping.insert(old_bound.var, mapped.into()); mapped }; shift_vars(self.tcx, mapped, self.binder.as_u32()) } else { re } } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { if !ct.has_bound_vars() { return ct; } if let ty::ConstKind::Bound(binder, old_var) = ct.kind() && self.binder == binder { let mapped = if let Some(mapped) = self.mapping.get(&old_var) { mapped.expect_const() } else { let var = ty::BoundVar::from_usize(self.still_bound_vars.len()); self.still_bound_vars.push(ty::BoundVariableKind::Const); let mapped = ty::Const::new_bound(self.tcx, ty::INNERMOST, var); self.mapping.insert(old_var, mapped.into()); mapped }; shift_vars(self.tcx, mapped, self.binder.as_u32()) } else { ct.super_fold_with(self) } } fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { if !p.has_bound_vars() { p } else { p.super_fold_with(self) } } } /// Opaque types don't inherit bounds from their parent: for return position /// impl trait it isn't possible to write a suitable predicate on the /// containing function and for type-alias impl trait we don't have a backwards /// compatibility issue. #[instrument(level = "trace", skip(tcx, item_ty))] fn opaque_type_bounds<'tcx>( tcx: TyCtxt<'tcx>, opaque_def_id: LocalDefId, hir_bounds: &'tcx [hir::GenericBound<'tcx>], item_ty: Ty<'tcx>, span: Span, filter: PredicateFilter, ) -> &'tcx [(ty::Clause<'tcx>, Span)] { ty::print::with_reduced_queries!({ let icx = ItemCtxt::new(tcx, opaque_def_id); let mut bounds = Vec::new(); icx.lowerer().lower_bounds(item_ty, hir_bounds, &mut bounds, ty::List::empty(), filter); // Opaque types are implicitly sized unless a `?Sized` bound is found match filter { PredicateFilter::All | PredicateFilter::SelfOnly | PredicateFilter::SelfTraitThatDefines(_) | PredicateFilter::SelfAndAssociatedTypeBounds => { // Associated types are implicitly sized unless a `?Sized` bound is found icx.lowerer().add_sized_bound(&mut bounds, item_ty, hir_bounds, None, span); } //`ConstIfConst` is only interested in `~const` bounds. PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {} } debug!(?bounds); tcx.arena.alloc_slice(&bounds) }) } pub(super) fn explicit_item_bounds( tcx: TyCtxt<'_>, def_id: LocalDefId, ) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> { explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::All) } pub(super) fn explicit_item_self_bounds( tcx: TyCtxt<'_>, def_id: LocalDefId, ) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> { explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::SelfOnly) } pub(super) fn explicit_item_bounds_with_filter( tcx: TyCtxt<'_>, def_id: LocalDefId, filter: PredicateFilter, ) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> { match tcx.opt_rpitit_info(def_id.to_def_id()) { // RPITIT's bounds are the same as opaque type bounds, but with // a projection self type. Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => { let opaque_ty = tcx.hir_node_by_def_id(opaque_def_id.expect_local()).expect_opaque_ty(); let bounds = associated_type_bounds(tcx, def_id, opaque_ty.bounds, opaque_ty.span, filter); return ty::EarlyBinder::bind(bounds); } Some(ty::ImplTraitInTraitData::Impl { .. }) => { span_bug!(tcx.def_span(def_id), "RPITIT in impl should not have item bounds") } None => {} } let bounds = match tcx.hir_node_by_def_id(def_id) { hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Type(bounds, _), span, .. }) => associated_type_bounds(tcx, def_id, bounds, *span, filter), hir::Node::OpaqueTy(hir::OpaqueTy { bounds, origin, span, .. }) => match origin { // Since RPITITs are lowered as projections in `::lower_ty`, // when we're asking for the item bounds of the *opaques* in a trait's default // method signature, we need to map these projections back to opaques. rustc_hir::OpaqueTyOrigin::FnReturn { parent, in_trait_or_impl: Some(hir::RpitContext::Trait), } | rustc_hir::OpaqueTyOrigin::AsyncFn { parent, in_trait_or_impl: Some(hir::RpitContext::Trait), } => { let args = GenericArgs::identity_for_item(tcx, def_id); let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args); let bounds = &*tcx.arena.alloc_slice( &opaque_type_bounds(tcx, def_id, bounds, item_ty, *span, filter) .to_vec() .fold_with(&mut AssocTyToOpaque { tcx, fn_def_id: parent.to_def_id() }), ); assert_only_contains_predicates_from(filter, bounds, item_ty); bounds } rustc_hir::OpaqueTyOrigin::FnReturn { parent: _, in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl), } | rustc_hir::OpaqueTyOrigin::AsyncFn { parent: _, in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl), } | rustc_hir::OpaqueTyOrigin::TyAlias { parent: _, .. } => { let args = GenericArgs::identity_for_item(tcx, def_id); let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args); let bounds = opaque_type_bounds(tcx, def_id, bounds, item_ty, *span, filter); assert_only_contains_predicates_from(filter, bounds, item_ty); bounds } }, hir::Node::Item(hir::Item { kind: hir::ItemKind::TyAlias(..), .. }) => &[], node => bug!("item_bounds called on {def_id:?} => {node:?}"), }; ty::EarlyBinder::bind(bounds) } pub(super) fn item_bounds(tcx: TyCtxt<'_>, def_id: DefId) -> ty::EarlyBinder<'_, ty::Clauses<'_>> { tcx.explicit_item_bounds(def_id).map_bound(|bounds| { tcx.mk_clauses_from_iter(util::elaborate(tcx, bounds.iter().map(|&(bound, _span)| bound))) }) } pub(super) fn item_self_bounds( tcx: TyCtxt<'_>, def_id: DefId, ) -> ty::EarlyBinder<'_, ty::Clauses<'_>> { tcx.explicit_item_self_bounds(def_id).map_bound(|bounds| { tcx.mk_clauses_from_iter( util::elaborate(tcx, bounds.iter().map(|&(bound, _span)| bound)).filter_only_self(), ) }) } /// This exists as an optimization to compute only the item bounds of the item /// that are not `Self` bounds. pub(super) fn item_non_self_bounds( tcx: TyCtxt<'_>, def_id: DefId, ) -> ty::EarlyBinder<'_, ty::Clauses<'_>> { let all_bounds: FxIndexSet<_> = tcx.item_bounds(def_id).skip_binder().iter().collect(); let own_bounds: FxIndexSet<_> = tcx.item_self_bounds(def_id).skip_binder().iter().collect(); if all_bounds.len() == own_bounds.len() { ty::EarlyBinder::bind(ty::ListWithCachedTypeInfo::empty()) } else { ty::EarlyBinder::bind(tcx.mk_clauses_from_iter(all_bounds.difference(&own_bounds).copied())) } } /// This exists as an optimization to compute only the supertraits of this impl's /// trait that are outlives bounds. pub(super) fn impl_super_outlives( tcx: TyCtxt<'_>, def_id: DefId, ) -> ty::EarlyBinder<'_, ty::Clauses<'_>> { tcx.impl_trait_header(def_id).expect("expected an impl of trait").trait_ref.map_bound( |trait_ref| { let clause: ty::Clause<'_> = trait_ref.upcast(tcx); tcx.mk_clauses_from_iter(util::elaborate(tcx, [clause]).filter(|clause| { matches!( clause.kind().skip_binder(), ty::ClauseKind::TypeOutlives(_) | ty::ClauseKind::RegionOutlives(_) ) })) }, ) } struct AssocTyToOpaque<'tcx> { tcx: TyCtxt<'tcx>, fn_def_id: DefId, } impl<'tcx> TypeFolder> for AssocTyToOpaque<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { if let ty::Alias(ty::Projection, projection_ty) = ty.kind() && let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) = self.tcx.opt_rpitit_info(projection_ty.def_id) && fn_def_id == self.fn_def_id { self.tcx.type_of(projection_ty.def_id).instantiate(self.tcx, projection_ty.args) } else { ty.super_fold_with(self) } } }