/// GCC requires to use the same toolchain for the whole compilation when doing LTO. /// So, we need the same version/commit of the linker (gcc) and lto front-end binaries (lto1, /// lto-wrapper, liblto_plugin.so). // FIXME(antoyo): the executables compiled with LTO are bigger than those compiled without LTO. // Since it is the opposite for cg_llvm, check if this is normal. // // Maybe we embed the bitcode in the final binary? // It doesn't look like we try to generate fat objects for the final binary. // Check if the way we combine the object files make it keep the LTO sections on the final link. // Maybe that's because the combined object files contain the IR (true) and the final link // does not remove it? // // TODO(antoyo): for performance, check which optimizations the C++ frontend enables. // // Fix these warnings: // /usr/bin/ld: warning: type of symbol `_RNvNvNvNtCs5JWOrf9uCus_5rayon11thread_pool19WORKER_THREAD_STATE7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o // /usr/bin/ld: warning: type of symbol `_RNvNvNvNvNtNtNtCsAj5i4SGTR7_3std4sync4mpmc5waker17current_thread_id5DUMMY7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o // /usr/bin/ld: warning: incremental linking of LTO and non-LTO objects; using -flinker-output=nolto-rel which will bypass whole program optimization use std::ffi::{CStr, CString}; use std::fs::{self, File}; use std::path::{Path, PathBuf}; use std::sync::Arc; use gccjit::{Context, OutputKind}; use object::read::archive::ArchiveFile; use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule, ThinShared}; use rustc_codegen_ssa::back::symbol_export; use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput}; use rustc_codegen_ssa::traits::*; use rustc_codegen_ssa::{ModuleCodegen, ModuleKind, looks_like_rust_object_file}; use rustc_data_structures::memmap::Mmap; use rustc_errors::{DiagCtxtHandle, FatalError}; use rustc_hir::def_id::LOCAL_CRATE; use rustc_middle::bug; use rustc_middle::dep_graph::WorkProduct; use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel}; use rustc_session::config::{CrateType, Lto}; use tempfile::{TempDir, tempdir}; use crate::back::write::save_temp_bitcode; use crate::errors::{DynamicLinkingWithLTO, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib}; use crate::{GccCodegenBackend, GccContext, SyncContext, to_gcc_opt_level}; /// We keep track of the computed LTO cache keys from the previous /// session to determine which CGUs we can reuse. //pub const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin"; pub fn crate_type_allows_lto(crate_type: CrateType) -> bool { match crate_type { CrateType::Executable | CrateType::Dylib | CrateType::Staticlib | CrateType::Cdylib => true, CrateType::Rlib | CrateType::ProcMacro => false, } } struct LtoData { // TODO(antoyo): use symbols_below_threshold. //symbols_below_threshold: Vec, upstream_modules: Vec<(SerializedModule, CString)>, tmp_path: TempDir, } fn prepare_lto( cgcx: &CodegenContext, dcx: DiagCtxtHandle<'_>, ) -> Result { let export_threshold = match cgcx.lto { // We're just doing LTO for our one crate Lto::ThinLocal => SymbolExportLevel::Rust, // We're doing LTO for the entire crate graph Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types), Lto::No => panic!("didn't request LTO but we're doing LTO"), }; let tmp_path = match tempdir() { Ok(tmp_path) => tmp_path, Err(error) => { eprintln!("Cannot create temporary directory: {}", error); return Err(FatalError); } }; let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| { if info.level.is_below_threshold(export_threshold) || info.used { Some(CString::new(name.as_str()).unwrap()) } else { None } }; let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); let mut symbols_below_threshold = { let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold"); exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::>() }; info!("{} symbols to preserve in this crate", symbols_below_threshold.len()); // If we're performing LTO for the entire crate graph, then for each of our // upstream dependencies, find the corresponding rlib and load the bitcode // from the archive. // // We save off all the bytecode and GCC module file path for later processing // with either fat or thin LTO let mut upstream_modules = Vec::new(); if cgcx.lto != Lto::ThinLocal { // Make sure we actually can run LTO for crate_type in cgcx.crate_types.iter() { if !crate_type_allows_lto(*crate_type) { dcx.emit_err(LtoDisallowed); return Err(FatalError); } if *crate_type == CrateType::Dylib && !cgcx.opts.unstable_opts.dylib_lto { dcx.emit_err(LtoDylib); return Err(FatalError); } } if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto { dcx.emit_err(DynamicLinkingWithLTO); return Err(FatalError); } for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() { let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); { let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold"); symbols_below_threshold .extend(exported_symbols[&cnum].iter().filter_map(symbol_filter)); } let archive_data = unsafe { Mmap::map(File::open(path).expect("couldn't open rlib")).expect("couldn't map rlib") }; let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib"); let obj_files = archive .members() .filter_map(|child| { child.ok().and_then(|c| { std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c)) }) }) .filter(|&(name, _)| looks_like_rust_object_file(name)); for (name, child) in obj_files { info!("adding bitcode from {}", name); let path = tmp_path.path().join(name); match save_as_file(child.data(&*archive_data).expect("corrupt rlib"), &path) { Ok(()) => { let buffer = ModuleBuffer::new(path); let module = SerializedModule::Local(buffer); upstream_modules.push((module, CString::new(name).unwrap())); } Err(e) => { dcx.emit_err(e); return Err(FatalError); } } } } } Ok(LtoData { //symbols_below_threshold, upstream_modules, tmp_path, }) } fn save_as_file(obj: &[u8], path: &Path) -> Result<(), LtoBitcodeFromRlib> { fs::write(path, obj).map_err(|error| LtoBitcodeFromRlib { gcc_err: format!("write object file to temp dir: {}", error), }) } /// Performs fat LTO by merging all modules into a single one and returning it /// for further optimization. pub(crate) fn run_fat( cgcx: &CodegenContext, modules: Vec>, cached_modules: Vec<(SerializedModule, WorkProduct)>, ) -> Result, FatalError> { let dcx = cgcx.create_dcx(); let dcx = dcx.handle(); let lto_data = prepare_lto(cgcx, dcx)?; /*let symbols_below_threshold = lto_data.symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::>();*/ fat_lto( cgcx, dcx, modules, cached_modules, lto_data.upstream_modules, lto_data.tmp_path, //&symbols_below_threshold, ) } fn fat_lto( cgcx: &CodegenContext, _dcx: DiagCtxtHandle<'_>, modules: Vec>, cached_modules: Vec<(SerializedModule, WorkProduct)>, mut serialized_modules: Vec<(SerializedModule, CString)>, tmp_path: TempDir, //symbols_below_threshold: &[*const libc::c_char], ) -> Result, FatalError> { let _timer = cgcx.prof.generic_activity("GCC_fat_lto_build_monolithic_module"); info!("going for a fat lto"); // Sort out all our lists of incoming modules into two lists. // // * `serialized_modules` (also and argument to this function) contains all // modules that are serialized in-memory. // * `in_memory` contains modules which are already parsed and in-memory, // such as from multi-CGU builds. // // All of `cached_modules` (cached from previous incremental builds) can // immediately go onto the `serialized_modules` modules list and then we can // split the `modules` array into these two lists. let mut in_memory = Vec::new(); serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| { info!("pushing cached module {:?}", wp.cgu_name); (buffer, CString::new(wp.cgu_name).unwrap()) })); for module in modules { match module { FatLtoInput::InMemory(m) => in_memory.push(m), FatLtoInput::Serialized { name, buffer } => { info!("pushing serialized module {:?}", name); let buffer = SerializedModule::Local(buffer); serialized_modules.push((buffer, CString::new(name).unwrap())); } } } // Find the "costliest" module and merge everything into that codegen unit. // All the other modules will be serialized and reparsed into the new // context, so this hopefully avoids serializing and parsing the largest // codegen unit. // // Additionally use a regular module as the base here to ensure that various // file copy operations in the backend work correctly. The only other kind // of module here should be an allocator one, and if your crate is smaller // than the allocator module then the size doesn't really matter anyway. let costliest_module = in_memory .iter() .enumerate() .filter(|&(_, module)| module.kind == ModuleKind::Regular) .map(|(i, _module)| { //let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) }; // TODO(antoyo): compute the cost of a module if GCC allows this. (0, i) }) .max(); // If we found a costliest module, we're good to go. Otherwise all our // inputs were serialized which could happen in the case, for example, that // all our inputs were incrementally reread from the cache and we're just // re-executing the LTO passes. If that's the case deserialize the first // module and create a linker with it. let mut module: ModuleCodegen = match costliest_module { Some((_cost, i)) => in_memory.remove(i), None => { unimplemented!("Incremental"); /*assert!(!serialized_modules.is_empty(), "must have at least one serialized module"); let (buffer, name) = serialized_modules.remove(0); info!("no in-memory regular modules to choose from, parsing {:?}", name); ModuleCodegen { module_llvm: GccContext::parse(cgcx, &name, buffer.data(), dcx)?, name: name.into_string().unwrap(), kind: ModuleKind::Regular, }*/ } }; { info!("using {:?} as a base module", module.name); // We cannot load and merge GCC contexts in memory like cg_llvm is doing. // Instead, we combine the object files into a single object file. for module in in_memory { let path = tmp_path.path().to_path_buf().join(&module.name); let path = path.to_str().expect("path"); let context = &module.module_llvm.context; let config = cgcx.config(module.kind); // NOTE: we need to set the optimization level here in order for LTO to do its job. context.set_optimization_level(to_gcc_opt_level(config.opt_level)); context.add_command_line_option("-flto=auto"); context.add_command_line_option("-flto-partition=one"); context.compile_to_file(OutputKind::ObjectFile, path); let buffer = ModuleBuffer::new(PathBuf::from(path)); let llmod_id = CString::new(&module.name[..]).unwrap(); serialized_modules.push((SerializedModule::Local(buffer), llmod_id)); } // Sort the modules to ensure we produce deterministic results. serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1)); // We add the object files and save in should_combine_object_files that we should combine // them into a single object file when compiling later. for (bc_decoded, name) in serialized_modules { let _timer = cgcx .prof .generic_activity_with_arg_recorder("GCC_fat_lto_link_module", |recorder| { recorder.record_arg(format!("{:?}", name)) }); info!("linking {:?}", name); match bc_decoded { SerializedModule::Local(ref module_buffer) => { module.module_llvm.should_combine_object_files = true; module .module_llvm .context .add_driver_option(module_buffer.0.to_str().expect("path")); } SerializedModule::FromRlib(_) => unimplemented!("from rlib"), SerializedModule::FromUncompressedFile(_) => { unimplemented!("from uncompressed file") } } } save_temp_bitcode(cgcx, &module, "lto.input"); // Internalize everything below threshold to help strip out more modules and such. /*unsafe { let ptr = symbols_below_threshold.as_ptr(); llvm::LLVMRustRunRestrictionPass( llmod, ptr as *const *const libc::c_char, symbols_below_threshold.len() as libc::size_t, );*/ save_temp_bitcode(cgcx, &module, "lto.after-restriction"); //} } // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead // of now. module.module_llvm.temp_dir = Some(tmp_path); Ok(LtoModuleCodegen::Fat(module)) } pub struct ModuleBuffer(PathBuf); impl ModuleBuffer { pub fn new(path: PathBuf) -> ModuleBuffer { ModuleBuffer(path) } } impl ModuleBufferMethods for ModuleBuffer { fn data(&self) -> &[u8] { &[] } } /// Performs thin LTO by performing necessary global analysis and returning two /// lists, one of the modules that need optimization and another for modules that /// can simply be copied over from the incr. comp. cache. pub(crate) fn run_thin( cgcx: &CodegenContext, modules: Vec<(String, ThinBuffer)>, cached_modules: Vec<(SerializedModule, WorkProduct)>, ) -> Result<(Vec>, Vec), FatalError> { let dcx = cgcx.create_dcx(); let dcx = dcx.handle(); let lto_data = prepare_lto(cgcx, dcx)?; /*let symbols_below_threshold = symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::>();*/ if cgcx.opts.cg.linker_plugin_lto.enabled() { unreachable!( "We should never reach this case if the LTO step \ is deferred to the linker" ); } thin_lto( cgcx, dcx, modules, lto_data.upstream_modules, lto_data.tmp_path, cached_modules, /*, &symbols_below_threshold*/ ) } pub(crate) fn prepare_thin( module: ModuleCodegen, _emit_summary: bool, ) -> (String, ThinBuffer) { let name = module.name; //let buffer = ThinBuffer::new(module.module_llvm.context, true, emit_summary); let buffer = ThinBuffer::new(&module.module_llvm.context); (name, buffer) } /// Prepare "thin" LTO to get run on these modules. /// /// The general structure of ThinLTO is quite different from the structure of /// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into /// one giant LLVM module, and then we run more optimization passes over this /// big module after internalizing most symbols. Thin LTO, on the other hand, /// avoid this large bottleneck through more targeted optimization. /// /// At a high level Thin LTO looks like: /// /// 1. Prepare a "summary" of each LLVM module in question which describes /// the values inside, cost of the values, etc. /// 2. Merge the summaries of all modules in question into one "index" /// 3. Perform some global analysis on this index /// 4. For each module, use the index and analysis calculated previously to /// perform local transformations on the module, for example inlining /// small functions from other modules. /// 5. Run thin-specific optimization passes over each module, and then code /// generate everything at the end. /// /// The summary for each module is intended to be quite cheap, and the global /// index is relatively quite cheap to create as well. As a result, the goal of /// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more /// situations. For example one cheap optimization is that we can parallelize /// all codegen modules, easily making use of all the cores on a machine. /// /// With all that in mind, the function here is designed at specifically just /// calculating the *index* for ThinLTO. This index will then be shared amongst /// all of the `LtoModuleCodegen` units returned below and destroyed once /// they all go out of scope. fn thin_lto( cgcx: &CodegenContext, _dcx: DiagCtxtHandle<'_>, modules: Vec<(String, ThinBuffer)>, serialized_modules: Vec<(SerializedModule, CString)>, tmp_path: TempDir, cached_modules: Vec<(SerializedModule, WorkProduct)>, //symbols_below_threshold: &[*const libc::c_char], ) -> Result<(Vec>, Vec), FatalError> { let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis"); info!("going for that thin, thin LTO"); /*let green_modules: FxHashMap<_, _> = cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect();*/ let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len(); let mut thin_buffers = Vec::with_capacity(modules.len()); let mut module_names = Vec::with_capacity(full_scope_len); //let mut thin_modules = Vec::with_capacity(full_scope_len); for (i, (name, buffer)) in modules.into_iter().enumerate() { info!("local module: {} - {}", i, name); let cname = CString::new(name.as_bytes()).unwrap(); /*thin_modules.push(llvm::ThinLTOModule { identifier: cname.as_ptr(), data: buffer.data().as_ptr(), len: buffer.data().len(), });*/ thin_buffers.push(buffer); module_names.push(cname); } // FIXME: All upstream crates are deserialized internally in the // function below to extract their summary and modules. Note that // unlike the loop above we *must* decode and/or read something // here as these are all just serialized files on disk. An // improvement, however, to make here would be to store the // module summary separately from the actual module itself. Right // now this is store in one large bitcode file, and the entire // file is deflate-compressed. We could try to bypass some of the // decompression by storing the index uncompressed and only // lazily decompressing the bytecode if necessary. // // Note that truly taking advantage of this optimization will // likely be further down the road. We'd have to implement // incremental ThinLTO first where we could actually avoid // looking at upstream modules entirely sometimes (the contents, // we must always unconditionally look at the index). let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len()); let cached_modules = cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap())); for (module, name) in serialized_modules.into_iter().chain(cached_modules) { info!("upstream or cached module {:?}", name); /*thin_modules.push(llvm::ThinLTOModule { identifier: name.as_ptr(), data: module.data().as_ptr(), len: module.data().len(), });*/ match module { SerializedModule::Local(_) => { //let path = module_buffer.0.to_str().expect("path"); //let my_path = PathBuf::from(path); //let exists = my_path.exists(); /*module.module_llvm.should_combine_object_files = true; module .module_llvm .context .add_driver_option(module_buffer.0.to_str().expect("path"));*/ } SerializedModule::FromRlib(_) => unimplemented!("from rlib"), SerializedModule::FromUncompressedFile(_) => { unimplemented!("from uncompressed file") } } serialized.push(module); module_names.push(name); } // Sanity check //assert_eq!(thin_modules.len(), module_names.len()); // Delegate to the C++ bindings to create some data here. Once this is a // tried-and-true interface we may wish to try to upstream some of this // to LLVM itself, right now we reimplement a lot of what they do // upstream... /*let data = llvm::LLVMRustCreateThinLTOData( thin_modules.as_ptr(), thin_modules.len() as u32, symbols_below_threshold.as_ptr(), symbols_below_threshold.len() as u32, ) .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?; */ let data = ThinData; //(Arc::new(tmp_path))/*(data)*/; info!("thin LTO data created"); /*let (key_map_path, prev_key_map, curr_key_map) = if let Some(ref incr_comp_session_dir) = cgcx.incr_comp_session_dir { let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME); // If the previous file was deleted, or we get an IO error // reading the file, then we'll just use `None` as the // prev_key_map, which will force the code to be recompiled. let prev = if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None }; let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names); (Some(path), prev, curr) } else { // If we don't compile incrementally, we don't need to load the // import data from LLVM. assert!(green_modules.is_empty()); let curr = ThinLTOKeysMap::default(); (None, None, curr) }; info!("thin LTO cache key map loaded"); info!("prev_key_map: {:#?}", prev_key_map); info!("curr_key_map: {:#?}", curr_key_map);*/ // Throw our data in an `Arc` as we'll be sharing it across threads. We // also put all memory referenced by the C++ data (buffers, ids, etc) // into the arc as well. After this we'll create a thin module // codegen per module in this data. let shared = Arc::new(ThinShared { data, thin_buffers, serialized_modules: serialized, module_names }); let copy_jobs = vec![]; let mut opt_jobs = vec![]; info!("checking which modules can be-reused and which have to be re-optimized."); for (module_index, module_name) in shared.module_names.iter().enumerate() { let module_name = module_name_to_str(module_name); /*if let (Some(prev_key_map), true) = (prev_key_map.as_ref(), green_modules.contains_key(module_name)) { assert!(cgcx.incr_comp_session_dir.is_some()); // If a module exists in both the current and the previous session, // and has the same LTO cache key in both sessions, then we can re-use it if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) { let work_product = green_modules[module_name].clone(); copy_jobs.push(work_product); info!(" - {}: re-used", module_name); assert!(cgcx.incr_comp_session_dir.is_some()); continue; } }*/ info!(" - {}: re-compiled", module_name); opt_jobs .push(LtoModuleCodegen::Thin(ThinModule { shared: shared.clone(), idx: module_index })); } // Save the current ThinLTO import information for the next compilation // session, overwriting the previous serialized data (if any). /*if let Some(path) = key_map_path { if let Err(err) = curr_key_map.save_to_file(&path) { return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err })); } }*/ // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead // of now. //module.module_llvm.temp_dir = Some(tmp_path); // TODO: save the directory so that it gets deleted later. std::mem::forget(tmp_path); Ok((opt_jobs, copy_jobs)) } pub unsafe fn optimize_thin_module( thin_module: ThinModule, _cgcx: &CodegenContext, ) -> Result, FatalError> { //let dcx = cgcx.create_dcx(); //let module_name = &thin_module.shared.module_names[thin_module.idx]; /*let tm_factory_config = TargetMachineFactoryConfig::new(cgcx, module_name.to_str().unwrap()); let tm = (cgcx.tm_factory)(tm_factory_config).map_err(|e| write::llvm_err(&dcx, e))?;*/ // Right now the implementation we've got only works over serialized // modules, so we create a fresh new LLVM context and parse the module // into that context. One day, however, we may do this for upstream // crates but for locally codegened modules we may be able to reuse // that LLVM Context and Module. //let llcx = llvm::LLVMRustContextCreate(cgcx.fewer_names); //let llmod_raw = parse_module(llcx, module_name, thin_module.data(), &dcx)? as *const _; let mut should_combine_object_files = false; let context = match thin_module.shared.thin_buffers.get(thin_module.idx) { Some(thin_buffer) => Arc::clone(&thin_buffer.context), None => { let context = Context::default(); let len = thin_module.shared.thin_buffers.len(); let module = &thin_module.shared.serialized_modules[thin_module.idx - len]; match *module { SerializedModule::Local(ref module_buffer) => { let path = module_buffer.0.to_str().expect("path"); context.add_driver_option(path); should_combine_object_files = true; /*module.module_llvm.should_combine_object_files = true; module .module_llvm .context .add_driver_option(module_buffer.0.to_str().expect("path"));*/ } SerializedModule::FromRlib(_) => unimplemented!("from rlib"), SerializedModule::FromUncompressedFile(_) => { unimplemented!("from uncompressed file") } } Arc::new(SyncContext::new(context)) } }; let module = ModuleCodegen { module_llvm: GccContext { context, should_combine_object_files, temp_dir: None }, name: thin_module.name().to_string(), kind: ModuleKind::Regular, }; /*{ let target = &*module.module_llvm.tm; let llmod = module.module_llvm.llmod(); save_temp_bitcode(cgcx, &module, "thin-lto-input"); // Up next comes the per-module local analyses that we do for Thin LTO. // Each of these functions is basically copied from the LLVM // implementation and then tailored to suit this implementation. Ideally // each of these would be supported by upstream LLVM but that's perhaps // a patch for another day! // // You can find some more comments about these functions in the LLVM // bindings we've got (currently `PassWrapper.cpp`) { let _timer = cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name()); if !llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target) { return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); } save_temp_bitcode(cgcx, &module, "thin-lto-after-rename"); } { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name()); if !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) { return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); } save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve"); } { let _timer = cgcx .prof .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name()); if !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) { return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); } save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize"); } { let _timer = cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name()); if !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target) { return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); } save_temp_bitcode(cgcx, &module, "thin-lto-after-import"); } // Alright now that we've done everything related to the ThinLTO // analysis it's time to run some optimizations! Here we use the same // `run_pass_manager` as the "fat" LTO above except that we tell it to // populate a thin-specific pass manager, which presumably LLVM treats a // little differently. { info!("running thin lto passes over {}", module.name); run_pass_manager(cgcx, &dcx, &mut module, true)?; save_temp_bitcode(cgcx, &module, "thin-lto-after-pm"); } }*/ Ok(module) } pub struct ThinBuffer { context: Arc, } // TODO: check if this makes sense to make ThinBuffer Send and Sync. unsafe impl Send for ThinBuffer {} unsafe impl Sync for ThinBuffer {} impl ThinBuffer { pub(crate) fn new(context: &Arc) -> Self { Self { context: Arc::clone(context) } } } impl ThinBufferMethods for ThinBuffer { fn data(&self) -> &[u8] { &[] } fn thin_link_data(&self) -> &[u8] { unimplemented!(); } } pub struct ThinData; //(Arc); fn module_name_to_str(c_str: &CStr) -> &str { c_str.to_str().unwrap_or_else(|e| { bug!("Encountered non-utf8 GCC module name `{}`: {}", c_str.to_string_lossy(), e) }) }