use rustc_middle::bug; use rustc_middle::ty::fold::{FallibleTypeFolder, TypeFolder, TypeSuperFoldable}; use rustc_middle::ty::visit::TypeVisitableExt; use rustc_middle::ty::{self, Const, InferConst, Ty, TyCtxt, TypeFoldable}; use rustc_type_ir::data_structures::DelayedMap; use super::{FixupError, FixupResult, InferCtxt}; /////////////////////////////////////////////////////////////////////////// // OPPORTUNISTIC VAR RESOLVER /// The opportunistic resolver can be used at any time. It simply replaces /// type/const variables that have been unified with the things they have /// been unified with (similar to `shallow_resolve`, but deep). This is /// useful for printing messages etc but also required at various /// points for correctness. pub struct OpportunisticVarResolver<'a, 'tcx> { infcx: &'a InferCtxt<'tcx>, /// We're able to use a cache here as the folder does /// not have any mutable state. cache: DelayedMap, Ty<'tcx>>, } impl<'a, 'tcx> OpportunisticVarResolver<'a, 'tcx> { #[inline] pub fn new(infcx: &'a InferCtxt<'tcx>) -> Self { OpportunisticVarResolver { infcx, cache: Default::default() } } } impl<'a, 'tcx> TypeFolder> for OpportunisticVarResolver<'a, 'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.infcx.tcx } #[inline] fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if !t.has_non_region_infer() { t // micro-optimize -- if there is nothing in this type that this fold affects... } else if let Some(&ty) = self.cache.get(&t) { return ty; } else { let shallow = self.infcx.shallow_resolve(t); let res = shallow.super_fold_with(self); assert!(self.cache.insert(t, res)); res } } fn fold_const(&mut self, ct: Const<'tcx>) -> Const<'tcx> { if !ct.has_non_region_infer() { ct // micro-optimize -- if there is nothing in this const that this fold affects... } else { let ct = self.infcx.shallow_resolve_const(ct); ct.super_fold_with(self) } } } /// The opportunistic region resolver opportunistically resolves regions /// variables to the variable with the least variable id. It is used when /// normalizing projections to avoid hitting the recursion limit by creating /// many versions of a predicate for types that in the end have to unify. /// /// If you want to resolve type and const variables as well, call /// [InferCtxt::resolve_vars_if_possible] first. pub struct OpportunisticRegionResolver<'a, 'tcx> { infcx: &'a InferCtxt<'tcx>, } impl<'a, 'tcx> OpportunisticRegionResolver<'a, 'tcx> { pub fn new(infcx: &'a InferCtxt<'tcx>) -> Self { OpportunisticRegionResolver { infcx } } } impl<'a, 'tcx> TypeFolder> for OpportunisticRegionResolver<'a, 'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.infcx.tcx } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if !t.has_infer_regions() { t // micro-optimize -- if there is nothing in this type that this fold affects... } else { t.super_fold_with(self) } } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { match *r { ty::ReVar(vid) => self .infcx .inner .borrow_mut() .unwrap_region_constraints() .opportunistic_resolve_var(TypeFolder::cx(self), vid), _ => r, } } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { if !ct.has_infer_regions() { ct // micro-optimize -- if there is nothing in this const that this fold affects... } else { ct.super_fold_with(self) } } } /////////////////////////////////////////////////////////////////////////// // FULL TYPE RESOLUTION /// Full type resolution replaces all type and region variables with /// their concrete results. If any variable cannot be replaced (never unified, etc) /// then an `Err` result is returned. pub fn fully_resolve<'tcx, T>(infcx: &InferCtxt<'tcx>, value: T) -> FixupResult where T: TypeFoldable>, { value.try_fold_with(&mut FullTypeResolver { infcx }) } // N.B. This type is not public because the protocol around checking the // `err` field is not enforceable otherwise. struct FullTypeResolver<'a, 'tcx> { infcx: &'a InferCtxt<'tcx>, } impl<'a, 'tcx> FallibleTypeFolder> for FullTypeResolver<'a, 'tcx> { type Error = FixupError; fn cx(&self) -> TyCtxt<'tcx> { self.infcx.tcx } fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result, Self::Error> { if !t.has_infer() { Ok(t) // micro-optimize -- if there is nothing in this type that this fold affects... } else { let t = self.infcx.shallow_resolve(t); match *t.kind() { ty::Infer(ty::TyVar(vid)) => Err(FixupError::UnresolvedTy(vid)), ty::Infer(ty::IntVar(vid)) => Err(FixupError::UnresolvedIntTy(vid)), ty::Infer(ty::FloatVar(vid)) => Err(FixupError::UnresolvedFloatTy(vid)), ty::Infer(_) => { bug!("Unexpected type in full type resolver: {:?}", t); } _ => t.try_super_fold_with(self), } } } fn try_fold_region(&mut self, r: ty::Region<'tcx>) -> Result, Self::Error> { match *r { ty::ReVar(_) => Ok(self .infcx .lexical_region_resolutions .borrow() .as_ref() .expect("region resolution not performed") .resolve_region(self.infcx.tcx, r)), _ => Ok(r), } } fn try_fold_const(&mut self, c: ty::Const<'tcx>) -> Result, Self::Error> { if !c.has_infer() { Ok(c) // micro-optimize -- if there is nothing in this const that this fold affects... } else { let c = self.infcx.shallow_resolve_const(c); match c.kind() { ty::ConstKind::Infer(InferConst::Var(vid)) => { return Err(FixupError::UnresolvedConst(vid)); } ty::ConstKind::Infer(InferConst::Fresh(_)) => { bug!("Unexpected const in full const resolver: {:?}", c); } ty::ConstKind::Infer(InferConst::EffectVar(evid)) => { return Err(FixupError::UnresolvedEffect(evid)); } _ => {} } c.try_super_fold_with(self) } } }