// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use abi::{self, Abi}; use ast::{AngleBracketedParameterData, ParenthesizedParameterData, AttrStyle, BareFnTy}; use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier}; use ast::Unsafety; use ast::{Mod, Arg, Arm, Attribute, BindingMode, TraitItemKind}; use ast::Block; use ast::{BlockCheckMode, CaptureBy}; use ast::{Constness, Crate}; use ast::Defaultness; use ast::EnumDef; use ast::{Expr, ExprKind, RangeLimits}; use ast::{Field, FnDecl}; use ast::{ForeignItem, ForeignItemKind, FunctionRetTy}; use ast::{Ident, ImplItem, Item, ItemKind}; use ast::{Lifetime, LifetimeDef, Lit, LitKind, UintTy}; use ast::Local; use ast::MacStmtStyle; use ast::Mac_; use ast::{MutTy, Mutability}; use ast::{Pat, PatKind, PathSegment}; use ast::{PolyTraitRef, QSelf}; use ast::{Stmt, StmtKind}; use ast::{VariantData, StructField}; use ast::StrStyle; use ast::SelfKind; use ast::{TraitItem, TraitRef}; use ast::{Ty, TyKind, TypeBinding, TyParam, TyParamBounds}; use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple}; use ast::{Visibility, WhereClause}; use ast::{BinOpKind, UnOp}; use ast::RangeEnd; use {ast, attr}; use codemap::{self, CodeMap, Spanned, respan}; use syntax_pos::{self, Span, BytePos}; use errors::{self, DiagnosticBuilder}; use parse::{self, classify, token}; use parse::common::SeqSep; use parse::lexer::TokenAndSpan; use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use parse::obsolete::ObsoleteSyntax; use parse::{new_sub_parser_from_file, ParseSess, Directory, DirectoryOwnership}; use util::parser::{AssocOp, Fixity}; use print::pprust; use ptr::P; use parse::PResult; use tokenstream::{self, Delimited, ThinTokenStream, TokenTree, TokenStream}; use symbol::{Symbol, keywords}; use util::ThinVec; use std::cmp; use std::collections::HashSet; use std::mem; use std::path::{self, Path, PathBuf}; use std::slice; bitflags! { pub flags Restrictions: u8 { const RESTRICTION_STMT_EXPR = 1 << 0, const RESTRICTION_NO_STRUCT_LITERAL = 1 << 1, } } type ItemInfo = (Ident, ItemKind, Option >); /// How to parse a path. #[derive(Copy, Clone, PartialEq)] pub enum PathStyle { /// In some contexts, notably in expressions, paths with generic arguments are ambiguous /// with something else. For example, in expressions `segment < ....` can be interpreted /// as a comparison and `segment ( ....` can be interpreted as a function call. /// In all such contexts the non-path interpretation is preferred by default for practical /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g. /// `x` - comparisons, `x::` - unambiguously a path. Expr, /// In other contexts, notably in types, no ambiguity exists and paths can be written /// without the disambiguator, e.g. `x` - unambiguously a path. /// Paths with disambiguators are rejected for now, but may be allowed in the future. Type, /// A path with generic arguments disallowed, e.g. `foo::bar::Baz`, used in imports, /// visibilities or attributes. /// Technically, this variant is unnecessary and e.g. `Expr` can be used instead /// (paths in "mod" contexts have to be checked later for absence of generic arguments /// anyway, due to macros), but it is used to avoid weird suggestions about expected /// tokens when something goes wrong. Mod, } #[derive(Clone, Copy, Debug, PartialEq)] pub enum SemiColonMode { Break, Ignore, } #[derive(Clone, Copy, Debug, PartialEq)] pub enum BlockMode { Break, Ignore, } /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression /// dropped into the token stream, which happens while parsing the result of /// macro expansion). Placement of these is not as complex as I feared it would /// be. The important thing is to make sure that lookahead doesn't balk at /// `token::Interpolated` tokens. macro_rules! maybe_whole_expr { ($p:expr) => { if let token::Interpolated(nt) = $p.token.clone() { match nt.0 { token::NtExpr(ref e) => { $p.bump(); return Ok((*e).clone()); } token::NtPath(ref path) => { $p.bump(); let span = $p.span; let kind = ExprKind::Path(None, (*path).clone()); return Ok($p.mk_expr(span, kind, ThinVec::new())); } token::NtBlock(ref block) => { $p.bump(); let span = $p.span; let kind = ExprKind::Block((*block).clone()); return Ok($p.mk_expr(span, kind, ThinVec::new())); } _ => {}, }; } } } /// As maybe_whole_expr, but for things other than expressions macro_rules! maybe_whole { ($p:expr, $constructor:ident, |$x:ident| $e:expr) => { if let token::Interpolated(nt) = $p.token.clone() { if let token::$constructor($x) = nt.0.clone() { $p.bump(); return Ok($e); } } }; } fn maybe_append(mut lhs: Vec, rhs: Option>) -> Vec { if let Some(ref attrs) = rhs { lhs.extend(attrs.iter().cloned()) } lhs } #[derive(Debug, Clone, Copy, PartialEq)] enum PrevTokenKind { DocComment, Comma, Plus, Interpolated, Eof, Ident, Other, } /* ident is handled by common.rs */ #[derive(Clone)] pub struct Parser<'a> { pub sess: &'a ParseSess, /// the current token: pub token: token::Token, /// the span of the current token: pub span: Span, /// the span of the previous token: pub meta_var_span: Option, pub prev_span: Span, /// the previous token kind prev_token_kind: PrevTokenKind, pub restrictions: Restrictions, /// The set of seen errors about obsolete syntax. Used to suppress /// extra detail when the same error is seen twice pub obsolete_set: HashSet, /// Used to determine the path to externally loaded source files pub directory: Directory, /// Whether to parse sub-modules in other files. pub recurse_into_file_modules: bool, /// Name of the root module this parser originated from. If `None`, then the /// name is not known. This does not change while the parser is descending /// into modules, and sub-parsers have new values for this name. pub root_module_name: Option, pub expected_tokens: Vec, token_cursor: TokenCursor, pub desugar_doc_comments: bool, /// Whether we should configure out of line modules as we parse. pub cfg_mods: bool, } #[derive(Clone)] struct TokenCursor { frame: TokenCursorFrame, stack: Vec, } #[derive(Clone)] struct TokenCursorFrame { delim: token::DelimToken, span: Span, open_delim: bool, tree_cursor: tokenstream::Cursor, close_delim: bool, last_token: LastToken, } /// This is used in `TokenCursorFrame` above to track tokens that are consumed /// by the parser, and then that's transitively used to record the tokens that /// each parse AST item is created with. /// /// Right now this has two states, either collecting tokens or not collecting /// tokens. If we're collecting tokens we just save everything off into a local /// `Vec`. This should eventually though likely save tokens from the original /// token stream and just use slicing of token streams to avoid creation of a /// whole new vector. /// /// The second state is where we're passively not recording tokens, but the last /// token is still tracked for when we want to start recording tokens. This /// "last token" means that when we start recording tokens we'll want to ensure /// that this, the first token, is included in the output. /// /// You can find some more example usage of this in the `collect_tokens` method /// on the parser. #[derive(Clone)] enum LastToken { Collecting(Vec), Was(Option), } impl TokenCursorFrame { fn new(sp: Span, delimited: &Delimited) -> Self { TokenCursorFrame { delim: delimited.delim, span: sp, open_delim: delimited.delim == token::NoDelim, tree_cursor: delimited.stream().into_trees(), close_delim: delimited.delim == token::NoDelim, last_token: LastToken::Was(None), } } } impl TokenCursor { fn next(&mut self) -> TokenAndSpan { loop { let tree = if !self.frame.open_delim { self.frame.open_delim = true; Delimited { delim: self.frame.delim, tts: TokenStream::empty().into() } .open_tt(self.frame.span) } else if let Some(tree) = self.frame.tree_cursor.next() { tree } else if !self.frame.close_delim { self.frame.close_delim = true; Delimited { delim: self.frame.delim, tts: TokenStream::empty().into() } .close_tt(self.frame.span) } else if let Some(frame) = self.stack.pop() { self.frame = frame; continue } else { return TokenAndSpan { tok: token::Eof, sp: syntax_pos::DUMMY_SP } }; match self.frame.last_token { LastToken::Collecting(ref mut v) => v.push(tree.clone()), LastToken::Was(ref mut t) => *t = Some(tree.clone()), } match tree { TokenTree::Token(sp, tok) => return TokenAndSpan { tok: tok, sp: sp }, TokenTree::Delimited(sp, ref delimited) => { let frame = TokenCursorFrame::new(sp, delimited); self.stack.push(mem::replace(&mut self.frame, frame)); } } } } fn next_desugared(&mut self) -> TokenAndSpan { let (sp, name) = match self.next() { TokenAndSpan { sp, tok: token::DocComment(name) } => (sp, name), tok => return tok, }; let stripped = strip_doc_comment_decoration(&name.as_str()); // Searches for the occurrences of `"#*` and returns the minimum number of `#`s // required to wrap the text. let mut num_of_hashes = 0; let mut count = 0; for ch in stripped.chars() { count = match ch { '"' => 1, '#' if count > 0 => count + 1, _ => 0, }; num_of_hashes = cmp::max(num_of_hashes, count); } let body = TokenTree::Delimited(sp, Delimited { delim: token::Bracket, tts: [TokenTree::Token(sp, token::Ident(ast::Ident::from_str("doc"))), TokenTree::Token(sp, token::Eq), TokenTree::Token(sp, token::Literal( token::StrRaw(Symbol::intern(&stripped), num_of_hashes), None))] .iter().cloned().collect::().into(), }); self.stack.push(mem::replace(&mut self.frame, TokenCursorFrame::new(sp, &Delimited { delim: token::NoDelim, tts: if doc_comment_style(&name.as_str()) == AttrStyle::Inner { [TokenTree::Token(sp, token::Pound), TokenTree::Token(sp, token::Not), body] .iter().cloned().collect::().into() } else { [TokenTree::Token(sp, token::Pound), body] .iter().cloned().collect::().into() }, }))); self.next() } } #[derive(PartialEq, Eq, Clone)] pub enum TokenType { Token(token::Token), Keyword(keywords::Keyword), Operator, Lifetime, Ident, Path, Type, } impl TokenType { fn to_string(&self) -> String { match *self { TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)), TokenType::Keyword(kw) => format!("`{}`", kw.name()), TokenType::Operator => "an operator".to_string(), TokenType::Lifetime => "lifetime".to_string(), TokenType::Ident => "identifier".to_string(), TokenType::Path => "path".to_string(), TokenType::Type => "type".to_string(), } } } fn is_ident_or_underscore(t: &token::Token) -> bool { t.is_ident() || *t == token::Underscore } /// Information about the path to a module. pub struct ModulePath { pub name: String, pub path_exists: bool, pub result: Result, } pub struct ModulePathSuccess { pub path: PathBuf, pub directory_ownership: DirectoryOwnership, warn: bool, } pub struct ModulePathError { pub err_msg: String, pub help_msg: String, } pub enum Error { FileNotFoundForModule { mod_name: String, default_path: String, secondary_path: String, dir_path: String, }, DuplicatePaths { mod_name: String, default_path: String, secondary_path: String, }, UselessDocComment, InclusiveRangeWithNoEnd, } impl Error { pub fn span_err(self, sp: Span, handler: &errors::Handler) -> DiagnosticBuilder { match self { Error::FileNotFoundForModule { ref mod_name, ref default_path, ref secondary_path, ref dir_path } => { let mut err = struct_span_err!(handler, sp, E0583, "file not found for module `{}`", mod_name); err.help(&format!("name the file either {} or {} inside the directory {:?}", default_path, secondary_path, dir_path)); err } Error::DuplicatePaths { ref mod_name, ref default_path, ref secondary_path } => { let mut err = struct_span_err!(handler, sp, E0584, "file for module `{}` found at both {} and {}", mod_name, default_path, secondary_path); err.help("delete or rename one of them to remove the ambiguity"); err } Error::UselessDocComment => { let mut err = struct_span_err!(handler, sp, E0585, "found a documentation comment that doesn't document anything"); err.help("doc comments must come before what they document, maybe a comment was \ intended with `//`?"); err } Error::InclusiveRangeWithNoEnd => { let mut err = struct_span_err!(handler, sp, E0586, "inclusive range with no end"); err.help("inclusive ranges must be bounded at the end (`...b` or `a...b`)"); err } } } } #[derive(Debug)] pub enum LhsExpr { NotYetParsed, AttributesParsed(ThinVec), AlreadyParsed(P), } impl From>> for LhsExpr { fn from(o: Option>) -> Self { if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed } } } impl From> for LhsExpr { fn from(expr: P) -> Self { LhsExpr::AlreadyParsed(expr) } } /// Create a placeholder argument. fn dummy_arg(span: Span) -> Arg { let spanned = Spanned { span: span, node: keywords::Invalid.ident() }; let pat = P(Pat { id: ast::DUMMY_NODE_ID, node: PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), spanned, None), span: span }); let ty = Ty { node: TyKind::Err, span: span, id: ast::DUMMY_NODE_ID }; Arg { ty: P(ty), pat: pat, id: ast::DUMMY_NODE_ID } } impl<'a> Parser<'a> { pub fn new(sess: &'a ParseSess, tokens: TokenStream, directory: Option, recurse_into_file_modules: bool, desugar_doc_comments: bool) -> Self { let mut parser = Parser { sess: sess, token: token::Underscore, span: syntax_pos::DUMMY_SP, prev_span: syntax_pos::DUMMY_SP, meta_var_span: None, prev_token_kind: PrevTokenKind::Other, restrictions: Restrictions::empty(), obsolete_set: HashSet::new(), recurse_into_file_modules: recurse_into_file_modules, directory: Directory { path: PathBuf::new(), ownership: DirectoryOwnership::Owned }, root_module_name: None, expected_tokens: Vec::new(), token_cursor: TokenCursor { frame: TokenCursorFrame::new(syntax_pos::DUMMY_SP, &Delimited { delim: token::NoDelim, tts: tokens.into(), }), stack: Vec::new(), }, desugar_doc_comments: desugar_doc_comments, cfg_mods: true, }; let tok = parser.next_tok(); parser.token = tok.tok; parser.span = tok.sp; if let Some(directory) = directory { parser.directory = directory; } else if parser.span != syntax_pos::DUMMY_SP { parser.directory.path = PathBuf::from(sess.codemap().span_to_filename(parser.span)); parser.directory.path.pop(); } parser.process_potential_macro_variable(); parser } fn next_tok(&mut self) -> TokenAndSpan { let mut next = if self.desugar_doc_comments { self.token_cursor.next_desugared() } else { self.token_cursor.next() }; if next.sp == syntax_pos::DUMMY_SP { next.sp = self.prev_span; } next } /// Convert a token to a string using self's reader pub fn token_to_string(token: &token::Token) -> String { pprust::token_to_string(token) } /// Convert the current token to a string using self's reader pub fn this_token_to_string(&self) -> String { Parser::token_to_string(&self.token) } pub fn this_token_descr(&self) -> String { let prefix = match &self.token { t if t.is_special_ident() => "reserved identifier ", t if t.is_used_keyword() => "keyword ", t if t.is_unused_keyword() => "reserved keyword ", _ => "", }; format!("{}`{}`", prefix, self.this_token_to_string()) } pub fn unexpected_last(&self, t: &token::Token) -> PResult<'a, T> { let token_str = Parser::token_to_string(t); Err(self.span_fatal(self.prev_span, &format!("unexpected token: `{}`", token_str))) } pub fn unexpected(&mut self) -> PResult<'a, T> { match self.expect_one_of(&[], &[]) { Err(e) => Err(e), Ok(_) => unreachable!(), } } /// Expect and consume the token t. Signal an error if /// the next token is not t. pub fn expect(&mut self, t: &token::Token) -> PResult<'a, ()> { if self.expected_tokens.is_empty() { if self.token == *t { self.bump(); Ok(()) } else { let token_str = Parser::token_to_string(t); let this_token_str = self.this_token_to_string(); Err(self.fatal(&format!("expected `{}`, found `{}`", token_str, this_token_str))) } } else { self.expect_one_of(unsafe { slice::from_raw_parts(t, 1) }, &[]) } } /// Expect next token to be edible or inedible token. If edible, /// then consume it; if inedible, then return without consuming /// anything. Signal a fatal error if next token is unexpected. pub fn expect_one_of(&mut self, edible: &[token::Token], inedible: &[token::Token]) -> PResult<'a, ()>{ fn tokens_to_string(tokens: &[TokenType]) -> String { let mut i = tokens.iter(); // This might be a sign we need a connect method on Iterator. let b = i.next() .map_or("".to_string(), |t| t.to_string()); i.enumerate().fold(b, |mut b, (i, a)| { if tokens.len() > 2 && i == tokens.len() - 2 { b.push_str(", or "); } else if tokens.len() == 2 && i == tokens.len() - 2 { b.push_str(" or "); } else { b.push_str(", "); } b.push_str(&a.to_string()); b }) } if edible.contains(&self.token) { self.bump(); Ok(()) } else if inedible.contains(&self.token) { // leave it in the input Ok(()) } else { let mut expected = edible.iter() .map(|x| TokenType::Token(x.clone())) .chain(inedible.iter().map(|x| TokenType::Token(x.clone()))) .chain(self.expected_tokens.iter().cloned()) .collect::>(); expected.sort_by(|a, b| a.to_string().cmp(&b.to_string())); expected.dedup(); let expect = tokens_to_string(&expected[..]); let actual = self.this_token_to_string(); let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 { let short_expect = if expected.len() > 6 { format!("{} possible tokens", expected.len()) } else { expect.clone() }; (format!("expected one of {}, found `{}`", expect, actual), (self.prev_span.next_point(), format!("expected one of {} here", short_expect))) } else if expected.is_empty() { (format!("unexpected token: `{}`", actual), (self.prev_span, "unexpected token after this".to_string())) } else { (format!("expected {}, found `{}`", expect, actual), (self.prev_span.next_point(), format!("expected {} here", expect))) }; let mut err = self.fatal(&msg_exp); let sp = if self.token == token::Token::Eof { // This is EOF, don't want to point at the following char, but rather the last token self.prev_span } else { label_sp }; if self.span.contains(sp) { err.span_label(self.span, label_exp); } else { err.span_label(sp, label_exp); err.span_label(self.span, "unexpected token"); } Err(err) } } /// returns the span of expr, if it was not interpolated or the span of the interpolated token fn interpolated_or_expr_span(&self, expr: PResult<'a, P>) -> PResult<'a, (Span, P)> { expr.map(|e| { if self.prev_token_kind == PrevTokenKind::Interpolated { (self.prev_span, e) } else { (e.span, e) } }) } pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> { match self.token { token::Ident(i) => { if self.token.is_reserved_ident() { self.span_err(self.span, &format!("expected identifier, found {}", self.this_token_descr())); } self.bump(); Ok(i) } _ => { Err(if self.prev_token_kind == PrevTokenKind::DocComment { self.span_fatal_err(self.prev_span, Error::UselessDocComment) } else { let mut err = self.fatal(&format!("expected identifier, found `{}`", self.this_token_to_string())); if self.token == token::Underscore { err.note("`_` is a wildcard pattern, not an identifier"); } err }) } } } /// Check if the next token is `tok`, and return `true` if so. /// /// This method will automatically add `tok` to `expected_tokens` if `tok` is not /// encountered. pub fn check(&mut self, tok: &token::Token) -> bool { let is_present = self.token == *tok; if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); } is_present } /// Consume token 'tok' if it exists. Returns true if the given /// token was present, false otherwise. pub fn eat(&mut self, tok: &token::Token) -> bool { let is_present = self.check(tok); if is_present { self.bump() } is_present } pub fn check_keyword(&mut self, kw: keywords::Keyword) -> bool { self.expected_tokens.push(TokenType::Keyword(kw)); self.token.is_keyword(kw) } /// If the next token is the given keyword, eat it and return /// true. Otherwise, return false. pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool { if self.check_keyword(kw) { self.bump(); true } else { false } } pub fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> bool { if self.token.is_keyword(kw) { self.bump(); true } else { false } } /// If the given word is not a keyword, signal an error. /// If the next token is not the given word, signal an error. /// Otherwise, eat it. pub fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<'a, ()> { if !self.eat_keyword(kw) { self.unexpected() } else { Ok(()) } } fn check_ident(&mut self) -> bool { if self.token.is_ident() { true } else { self.expected_tokens.push(TokenType::Ident); false } } fn check_path(&mut self) -> bool { if self.token.is_path_start() { true } else { self.expected_tokens.push(TokenType::Path); false } } fn check_type(&mut self) -> bool { if self.token.can_begin_type() { true } else { self.expected_tokens.push(TokenType::Type); false } } /// Expect and consume an `&`. If `&&` is seen, replace it with a single /// `&` and continue. If an `&` is not seen, signal an error. fn expect_and(&mut self) -> PResult<'a, ()> { self.expected_tokens.push(TokenType::Token(token::BinOp(token::And))); match self.token { token::BinOp(token::And) => { self.bump(); Ok(()) } token::AndAnd => { let span = self.span; let lo = span.lo + BytePos(1); Ok(self.bump_with(token::BinOp(token::And), Span { lo: lo, ..span })) } _ => self.unexpected() } } pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option) { match suffix { None => {/* everything ok */} Some(suf) => { let text = suf.as_str(); if text.is_empty() { self.span_bug(sp, "found empty literal suffix in Some") } self.span_err(sp, &format!("{} with a suffix is invalid", kind)); } } } /// Attempt to consume a `<`. If `<<` is seen, replace it with a single /// `<` and continue. If a `<` is not seen, return false. /// /// This is meant to be used when parsing generics on a path to get the /// starting token. fn eat_lt(&mut self) -> bool { self.expected_tokens.push(TokenType::Token(token::Lt)); match self.token { token::Lt => { self.bump(); true } token::BinOp(token::Shl) => { let span = self.span; let lo = span.lo + BytePos(1); self.bump_with(token::Lt, Span { lo: lo, ..span }); true } _ => false, } } fn expect_lt(&mut self) -> PResult<'a, ()> { if !self.eat_lt() { self.unexpected() } else { Ok(()) } } /// Expect and consume a GT. if a >> is seen, replace it /// with a single > and continue. If a GT is not seen, /// signal an error. pub fn expect_gt(&mut self) -> PResult<'a, ()> { self.expected_tokens.push(TokenType::Token(token::Gt)); match self.token { token::Gt => { self.bump(); Ok(()) } token::BinOp(token::Shr) => { let span = self.span; let lo = span.lo + BytePos(1); Ok(self.bump_with(token::Gt, Span { lo: lo, ..span })) } token::BinOpEq(token::Shr) => { let span = self.span; let lo = span.lo + BytePos(1); Ok(self.bump_with(token::Ge, Span { lo: lo, ..span })) } token::Ge => { let span = self.span; let lo = span.lo + BytePos(1); Ok(self.bump_with(token::Eq, Span { lo: lo, ..span })) } _ => self.unexpected() } } pub fn parse_seq_to_before_gt_or_return(&mut self, sep: Option, mut f: F) -> PResult<'a, (Vec, bool)> where F: FnMut(&mut Parser<'a>) -> PResult<'a, Option>, { let mut v = Vec::new(); // This loop works by alternating back and forth between parsing types // and commas. For example, given a string `A, B,>`, the parser would // first parse `A`, then a comma, then `B`, then a comma. After that it // would encounter a `>` and stop. This lets the parser handle trailing // commas in generic parameters, because it can stop either after // parsing a type or after parsing a comma. for i in 0.. { if self.check(&token::Gt) || self.token == token::BinOp(token::Shr) || self.token == token::Ge || self.token == token::BinOpEq(token::Shr) { break; } if i % 2 == 0 { match f(self)? { Some(result) => v.push(result), None => return Ok((v, true)) } } else { if let Some(t) = sep.as_ref() { self.expect(t)?; } } } return Ok((v, false)); } /// Parse a sequence bracketed by '<' and '>', stopping /// before the '>'. pub fn parse_seq_to_before_gt(&mut self, sep: Option, mut f: F) -> PResult<'a, Vec> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { let (result, returned) = self.parse_seq_to_before_gt_or_return(sep, |p| Ok(Some(f(p)?)))?; assert!(!returned); return Ok(result); } pub fn parse_seq_to_gt(&mut self, sep: Option, f: F) -> PResult<'a, Vec> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { let v = self.parse_seq_to_before_gt(sep, f)?; self.expect_gt()?; return Ok(v); } pub fn parse_seq_to_gt_or_return(&mut self, sep: Option, f: F) -> PResult<'a, (Vec, bool)> where F: FnMut(&mut Parser<'a>) -> PResult<'a, Option>, { let (v, returned) = self.parse_seq_to_before_gt_or_return(sep, f)?; if !returned { self.expect_gt()?; } return Ok((v, returned)); } /// Eat and discard tokens until one of `kets` is encountered. Respects token trees, /// passes through any errors encountered. Used for error recovery. pub fn eat_to_tokens(&mut self, kets: &[&token::Token]) { let handler = self.diagnostic(); self.parse_seq_to_before_tokens(kets, SeqSep::none(), |p| Ok(p.parse_token_tree()), |mut e| handler.cancel(&mut e)); } /// Parse a sequence, including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_end(&mut self, ket: &token::Token, sep: SeqSep, f: F) -> PResult<'a, Vec> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { let val = self.parse_seq_to_before_end(ket, sep, f); self.bump(); Ok(val) } /// Parse a sequence, not including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_before_end(&mut self, ket: &token::Token, sep: SeqSep, f: F) -> Vec where F: FnMut(&mut Parser<'a>) -> PResult<'a, T> { self.parse_seq_to_before_tokens(&[ket], sep, f, |mut e| e.emit()) } // `fe` is an error handler. fn parse_seq_to_before_tokens(&mut self, kets: &[&token::Token], sep: SeqSep, mut f: F, mut fe: Fe) -> Vec where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, Fe: FnMut(DiagnosticBuilder) { let mut first: bool = true; let mut v = vec![]; while !kets.contains(&&self.token) { match self.token { token::CloseDelim(..) | token::Eof => break, _ => {} }; if let Some(ref t) = sep.sep { if first { first = false; } else { if let Err(e) = self.expect(t) { fe(e); break; } } } if sep.trailing_sep_allowed && kets.iter().any(|k| self.check(k)) { break; } match f(self) { Ok(t) => v.push(t), Err(e) => { fe(e); break; } } } v } /// Parse a sequence, including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_unspanned_seq(&mut self, bra: &token::Token, ket: &token::Token, sep: SeqSep, f: F) -> PResult<'a, Vec> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { self.expect(bra)?; let result = self.parse_seq_to_before_end(ket, sep, f); if self.token == *ket { self.bump(); } Ok(result) } // NB: Do not use this function unless you actually plan to place the // spanned list in the AST. pub fn parse_seq(&mut self, bra: &token::Token, ket: &token::Token, sep: SeqSep, f: F) -> PResult<'a, Spanned>> where F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, { let lo = self.span; self.expect(bra)?; let result = self.parse_seq_to_before_end(ket, sep, f); let hi = self.span; self.bump(); Ok(respan(lo.to(hi), result)) } /// Advance the parser by one token pub fn bump(&mut self) { if self.prev_token_kind == PrevTokenKind::Eof { // Bumping after EOF is a bad sign, usually an infinite loop. self.bug("attempted to bump the parser past EOF (may be stuck in a loop)"); } self.prev_span = self.meta_var_span.take().unwrap_or(self.span); // Record last token kind for possible error recovery. self.prev_token_kind = match self.token { token::DocComment(..) => PrevTokenKind::DocComment, token::Comma => PrevTokenKind::Comma, token::BinOp(token::Plus) => PrevTokenKind::Plus, token::Interpolated(..) => PrevTokenKind::Interpolated, token::Eof => PrevTokenKind::Eof, token::Ident(..) => PrevTokenKind::Ident, _ => PrevTokenKind::Other, }; let next = self.next_tok(); self.span = next.sp; self.token = next.tok; self.expected_tokens.clear(); // check after each token self.process_potential_macro_variable(); } /// Advance the parser using provided token as a next one. Use this when /// consuming a part of a token. For example a single `<` from `<<`. pub fn bump_with(&mut self, next: token::Token, span: Span) { self.prev_span = Span { hi: span.lo, ..self.span }; // It would be incorrect to record the kind of the current token, but // fortunately for tokens currently using `bump_with`, the // prev_token_kind will be of no use anyway. self.prev_token_kind = PrevTokenKind::Other; self.span = span; self.token = next; self.expected_tokens.clear(); } pub fn look_ahead(&self, dist: usize, f: F) -> R where F: FnOnce(&token::Token) -> R, { if dist == 0 { return f(&self.token) } f(&match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) { Some(tree) => match tree { TokenTree::Token(_, tok) => tok, TokenTree::Delimited(_, delimited) => token::OpenDelim(delimited.delim), }, None => token::CloseDelim(self.token_cursor.frame.delim), }) } fn look_ahead_span(&self, dist: usize) -> Span { if dist == 0 { return self.span } match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) { Some(TokenTree::Token(span, _)) | Some(TokenTree::Delimited(span, _)) => span, None => self.look_ahead_span(dist - 1), } } pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> { self.sess.span_diagnostic.struct_span_fatal(self.span, m) } pub fn span_fatal(&self, sp: Span, m: &str) -> DiagnosticBuilder<'a> { self.sess.span_diagnostic.struct_span_fatal(sp, m) } pub fn span_fatal_err(&self, sp: Span, err: Error) -> DiagnosticBuilder<'a> { err.span_err(sp, self.diagnostic()) } pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> DiagnosticBuilder<'a> { let mut err = self.sess.span_diagnostic.struct_span_fatal(sp, m); err.help(help); err } pub fn bug(&self, m: &str) -> ! { self.sess.span_diagnostic.span_bug(self.span, m) } pub fn warn(&self, m: &str) { self.sess.span_diagnostic.span_warn(self.span, m) } pub fn span_warn(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_warn(sp, m) } pub fn span_err(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_err(sp, m) } pub fn span_err_help(&self, sp: Span, m: &str, h: &str) { let mut err = self.sess.span_diagnostic.mut_span_err(sp, m); err.help(h); err.emit(); } pub fn span_bug(&self, sp: Span, m: &str) -> ! { self.sess.span_diagnostic.span_bug(sp, m) } pub fn abort_if_errors(&self) { self.sess.span_diagnostic.abort_if_errors(); } fn cancel(&self, err: &mut DiagnosticBuilder) { self.sess.span_diagnostic.cancel(err) } pub fn diagnostic(&self) -> &'a errors::Handler { &self.sess.span_diagnostic } /// Is the current token one of the keywords that signals a bare function /// type? pub fn token_is_bare_fn_keyword(&mut self) -> bool { self.check_keyword(keywords::Fn) || self.check_keyword(keywords::Unsafe) || self.check_keyword(keywords::Extern) } fn get_label(&mut self) -> ast::Ident { match self.token { token::Lifetime(ref ident) => *ident, _ => self.bug("not a lifetime"), } } /// parse a TyKind::BareFn type: pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec) -> PResult<'a, TyKind> { /* [unsafe] [extern "ABI"] fn (S) -> T ^~~~^ ^~~~^ ^~^ ^ | | | | | | | Return type | | Argument types | | | ABI Function Style */ let unsafety = self.parse_unsafety()?; let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi()?.unwrap_or(Abi::C) } else { Abi::Rust }; self.expect_keyword(keywords::Fn)?; let (inputs, variadic) = self.parse_fn_args(false, true)?; let ret_ty = self.parse_ret_ty()?; let decl = P(FnDecl { inputs: inputs, output: ret_ty, variadic: variadic }); Ok(TyKind::BareFn(P(BareFnTy { abi: abi, unsafety: unsafety, lifetimes: lifetime_defs, decl: decl }))) } pub fn parse_unsafety(&mut self) -> PResult<'a, Unsafety> { if self.eat_keyword(keywords::Unsafe) { return Ok(Unsafety::Unsafe); } else { return Ok(Unsafety::Normal); } } /// Parse the items in a trait declaration pub fn parse_trait_item(&mut self, at_end: &mut bool) -> PResult<'a, TraitItem> { maybe_whole!(self, NtTraitItem, |x| x); let attrs = self.parse_outer_attributes()?; let (mut item, tokens) = self.collect_tokens(|this| { this.parse_trait_item_(at_end, attrs) })?; // See `parse_item` for why this clause is here. if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { item.tokens = Some(tokens); } Ok(item) } fn parse_trait_item_(&mut self, at_end: &mut bool, mut attrs: Vec) -> PResult<'a, TraitItem> { let lo = self.span; let (name, node) = if self.eat_keyword(keywords::Type) { let TyParam {ident, bounds, default, ..} = self.parse_ty_param(vec![])?; self.expect(&token::Semi)?; (ident, TraitItemKind::Type(bounds, default)) } else if self.is_const_item() { self.expect_keyword(keywords::Const)?; let ident = self.parse_ident()?; self.expect(&token::Colon)?; let ty = self.parse_ty()?; let default = if self.check(&token::Eq) { self.bump(); let expr = self.parse_expr()?; self.expect(&token::Semi)?; Some(expr) } else { self.expect(&token::Semi)?; None }; (ident, TraitItemKind::Const(ty, default)) } else if self.token.is_path_start() { // trait item macro. // code copied from parse_macro_use_or_failure... abstraction! let prev_span = self.prev_span; let lo = self.span; let pth = self.parse_path(PathStyle::Mod)?; if pth.segments.len() == 1 { if !self.eat(&token::Not) { return Err(self.missing_assoc_item_kind_err("trait", prev_span)); } } else { self.expect(&token::Not)?; } // eat a matched-delimiter token tree: let (delim, tts) = self.expect_delimited_token_tree()?; if delim != token::Brace { self.expect(&token::Semi)? } let mac = respan(lo.to(self.prev_span), Mac_ { path: pth, tts: tts }); (keywords::Invalid.ident(), ast::TraitItemKind::Macro(mac)) } else { let (constness, unsafety, abi) = self.parse_fn_front_matter()?; let ident = self.parse_ident()?; let mut generics = self.parse_generics()?; let d = self.parse_fn_decl_with_self(|p: &mut Parser<'a>|{ // This is somewhat dubious; We don't want to allow // argument names to be left off if there is a // definition... p.parse_arg_general(false) })?; generics.where_clause = self.parse_where_clause()?; let sig = ast::MethodSig { unsafety: unsafety, constness: constness, decl: d, generics: generics, abi: abi, }; let body = match self.token { token::Semi => { self.bump(); *at_end = true; debug!("parse_trait_methods(): parsing required method"); None } token::OpenDelim(token::Brace) => { debug!("parse_trait_methods(): parsing provided method"); *at_end = true; let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; attrs.extend(inner_attrs.iter().cloned()); Some(body) } _ => { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected `;` or `{{`, found `{}`", token_str))); } }; (ident, ast::TraitItemKind::Method(sig, body)) }; Ok(TraitItem { id: ast::DUMMY_NODE_ID, ident: name, attrs: attrs, node: node, span: lo.to(self.prev_span), tokens: None, }) } /// Parse optional return type [ -> TY ] in function decl pub fn parse_ret_ty(&mut self) -> PResult<'a, FunctionRetTy> { if self.eat(&token::RArrow) { Ok(FunctionRetTy::Ty(self.parse_ty_no_plus()?)) } else { Ok(FunctionRetTy::Default(Span { hi: self.span.lo, ..self.span })) } } // Parse a type pub fn parse_ty(&mut self) -> PResult<'a, P> { self.parse_ty_common(true) } /// Parse a type in restricted contexts where `+` is not permitted. /// Example 1: `&'a TYPE` /// `+` is prohibited to maintain operator priority (P(+) < P(&)). /// Example 2: `value1 as TYPE + value2` /// `+` is prohibited to avoid interactions with expression grammar. fn parse_ty_no_plus(&mut self) -> PResult<'a, P> { self.parse_ty_common(false) } fn parse_ty_common(&mut self, allow_plus: bool) -> PResult<'a, P> { maybe_whole!(self, NtTy, |x| x); let lo = self.span; let node = if self.eat(&token::OpenDelim(token::Paren)) { // `(TYPE)` is a parenthesized type. // `(TYPE,)` is a tuple with a single field of type TYPE. let mut ts = vec![]; let mut last_comma = false; while self.token != token::CloseDelim(token::Paren) { ts.push(self.parse_ty()?); if self.eat(&token::Comma) { last_comma = true; } else { last_comma = false; break; } } let trailing_plus = self.prev_token_kind == PrevTokenKind::Plus; self.expect(&token::CloseDelim(token::Paren))?; if ts.len() == 1 && !last_comma { let ty = ts.into_iter().nth(0).unwrap().unwrap(); let maybe_bounds = allow_plus && self.token == token::BinOp(token::Plus); match ty.node { // `(TY_BOUND_NOPAREN) + BOUND + ...`. TyKind::Path(None, ref path) if maybe_bounds => { self.parse_remaining_bounds(Vec::new(), path.clone(), lo, true)? } TyKind::TraitObject(ref bounds) if maybe_bounds && bounds.len() == 1 && !trailing_plus => { let path = match bounds[0] { TraitTyParamBound(ref pt, ..) => pt.trait_ref.path.clone(), _ => self.bug("unexpected lifetime bound"), }; self.parse_remaining_bounds(Vec::new(), path, lo, true)? } // `(TYPE)` _ => TyKind::Paren(P(ty)) } } else { TyKind::Tup(ts) } } else if self.eat(&token::Not) { // Never type `!` TyKind::Never } else if self.eat(&token::BinOp(token::Star)) { // Raw pointer TyKind::Ptr(self.parse_ptr()?) } else if self.eat(&token::OpenDelim(token::Bracket)) { // Array or slice let t = self.parse_ty()?; // Parse optional `; EXPR` in `[TYPE; EXPR]` let t = match self.maybe_parse_fixed_length_of_vec()? { None => TyKind::Slice(t), Some(suffix) => TyKind::Array(t, suffix), }; self.expect(&token::CloseDelim(token::Bracket))?; t } else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) { // Reference self.expect_and()?; self.parse_borrowed_pointee()? } else if self.eat_keyword_noexpect(keywords::Typeof) { // `typeof(EXPR)` // In order to not be ambiguous, the type must be surrounded by parens. self.expect(&token::OpenDelim(token::Paren))?; let e = self.parse_expr()?; self.expect(&token::CloseDelim(token::Paren))?; TyKind::Typeof(e) } else if self.eat(&token::Underscore) { // A type to be inferred `_` TyKind::Infer } else if self.eat_lt() { // Qualified path let (qself, path) = self.parse_qpath(PathStyle::Type)?; TyKind::Path(Some(qself), path) } else if self.token.is_path_start() { // Simple path let path = self.parse_path(PathStyle::Type)?; if self.eat(&token::Not) { // Macro invocation in type position let (_, tts) = self.expect_delimited_token_tree()?; TyKind::Mac(respan(lo.to(self.span), Mac_ { path: path, tts: tts })) } else { // Just a type path or bound list (trait object type) starting with a trait. // `Type` // `Trait1 + Trait2 + 'a` if allow_plus && self.check(&token::BinOp(token::Plus)) { self.parse_remaining_bounds(Vec::new(), path, lo, true)? } else { TyKind::Path(None, path) } } } else if self.token_is_bare_fn_keyword() { // Function pointer type self.parse_ty_bare_fn(Vec::new())? } else if self.check_keyword(keywords::For) { // Function pointer type or bound list (trait object type) starting with a poly-trait. // `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T` // `for<'lt> Trait1<'lt> + Trait2 + 'a` let lo = self.span; let lifetime_defs = self.parse_late_bound_lifetime_defs()?; if self.token_is_bare_fn_keyword() { self.parse_ty_bare_fn(lifetime_defs)? } else { let path = self.parse_path(PathStyle::Type)?; let parse_plus = allow_plus && self.check(&token::BinOp(token::Plus)); self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)? } } else if self.eat_keyword(keywords::Impl) { // FIXME: figure out priority of `+` in `impl Trait1 + Trait2` (#34511). TyKind::ImplTrait(self.parse_ty_param_bounds()?) } else if self.check(&token::Question) || self.check_lifetime() && self.look_ahead(1, |t| t == &token::BinOp(token::Plus)){ // Bound list (trait object type) TyKind::TraitObject(self.parse_ty_param_bounds_common(allow_plus)?) } else { let msg = format!("expected type, found {}", self.this_token_descr()); return Err(self.fatal(&msg)); }; let span = lo.to(self.prev_span); let ty = Ty { node: node, span: span, id: ast::DUMMY_NODE_ID }; // Try to recover from use of `+` with incorrect priority. self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?; Ok(P(ty)) } fn parse_remaining_bounds(&mut self, lifetime_defs: Vec, path: ast::Path, lo: Span, parse_plus: bool) -> PResult<'a, TyKind> { let poly_trait_ref = PolyTraitRef::new(lifetime_defs, path, lo.to(self.prev_span)); let mut bounds = vec![TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)]; if parse_plus { self.bump(); // `+` bounds.append(&mut self.parse_ty_param_bounds()?); } Ok(TyKind::TraitObject(bounds)) } fn maybe_recover_from_bad_type_plus(&mut self, allow_plus: bool, ty: &Ty) -> PResult<'a, ()> { // Do not add `+` to expected tokens. if !allow_plus || self.token != token::BinOp(token::Plus) { return Ok(()) } self.bump(); // `+` let bounds = self.parse_ty_param_bounds()?; let sum_span = ty.span.to(self.prev_span); let mut err = struct_span_err!(self.sess.span_diagnostic, sum_span, E0178, "expected a path on the left-hand side of `+`, not `{}`", pprust::ty_to_string(ty)); match ty.node { TyKind::Rptr(ref lifetime, ref mut_ty) => { let sum_with_parens = pprust::to_string(|s| { use print::pprust::PrintState; s.s.word("&")?; s.print_opt_lifetime(lifetime)?; s.print_mutability(mut_ty.mutbl)?; s.popen()?; s.print_type(&mut_ty.ty)?; s.print_bounds(" +", &bounds)?; s.pclose() }); err.span_suggestion(sum_span, "try adding parentheses", sum_with_parens); } TyKind::Ptr(..) | TyKind::BareFn(..) => { err.span_label(sum_span, "perhaps you forgot parentheses?"); } _ => { err.span_label(sum_span, "expected a path"); }, } err.emit(); Ok(()) } fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> { let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None }; let mutbl = self.parse_mutability(); let ty = self.parse_ty_no_plus()?; return Ok(TyKind::Rptr(opt_lifetime, MutTy { ty: ty, mutbl: mutbl })); } pub fn parse_ptr(&mut self) -> PResult<'a, MutTy> { let mutbl = if self.eat_keyword(keywords::Mut) { Mutability::Mutable } else if self.eat_keyword(keywords::Const) { Mutability::Immutable } else { let span = self.prev_span; self.span_err(span, "expected mut or const in raw pointer type (use \ `*mut T` or `*const T` as appropriate)"); Mutability::Immutable }; let t = self.parse_ty_no_plus()?; Ok(MutTy { ty: t, mutbl: mutbl }) } pub fn is_named_argument(&mut self) -> bool { let offset = match self.token { token::BinOp(token::And) | token::AndAnd => 1, _ if self.token.is_keyword(keywords::Mut) => 1, _ => 0 }; debug!("parser is_named_argument offset:{}", offset); if offset == 0 { is_ident_or_underscore(&self.token) && self.look_ahead(1, |t| *t == token::Colon) } else { self.look_ahead(offset, |t| is_ident_or_underscore(t)) && self.look_ahead(offset + 1, |t| *t == token::Colon) } } /// This version of parse arg doesn't necessarily require /// identifier names. pub fn parse_arg_general(&mut self, require_name: bool) -> PResult<'a, Arg> { maybe_whole!(self, NtArg, |x| x); let pat = if require_name || self.is_named_argument() { debug!("parse_arg_general parse_pat (require_name:{})", require_name); let pat = self.parse_pat()?; self.expect(&token::Colon)?; pat } else { debug!("parse_arg_general ident_to_pat"); let sp = self.prev_span; let spanned = Spanned { span: sp, node: keywords::Invalid.ident() }; P(Pat { id: ast::DUMMY_NODE_ID, node: PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), spanned, None), span: sp }) }; let t = self.parse_ty()?; Ok(Arg { ty: t, pat: pat, id: ast::DUMMY_NODE_ID, }) } /// Parse a single function argument pub fn parse_arg(&mut self) -> PResult<'a, Arg> { self.parse_arg_general(true) } /// Parse an argument in a lambda header e.g. |arg, arg| pub fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> { let pat = self.parse_pat()?; let t = if self.eat(&token::Colon) { self.parse_ty()? } else { P(Ty { id: ast::DUMMY_NODE_ID, node: TyKind::Infer, span: self.span, }) }; Ok(Arg { ty: t, pat: pat, id: ast::DUMMY_NODE_ID }) } pub fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option>> { if self.eat(&token::Semi) { Ok(Some(self.parse_expr()?)) } else { Ok(None) } } /// Matches token_lit = LIT_INTEGER | ... pub fn parse_lit_token(&mut self) -> PResult<'a, LitKind> { let out = match self.token { token::Interpolated(ref nt) => match nt.0 { token::NtExpr(ref v) => match v.node { ExprKind::Lit(ref lit) => { lit.node.clone() } _ => { return self.unexpected_last(&self.token); } }, _ => { return self.unexpected_last(&self.token); } }, token::Literal(lit, suf) => { let diag = Some((self.span, &self.sess.span_diagnostic)); let (suffix_illegal, result) = parse::lit_token(lit, suf, diag); if suffix_illegal { let sp = self.span; self.expect_no_suffix(sp, &format!("{} literal", lit.short_name()), suf) } result.unwrap() } _ => { return self.unexpected_last(&self.token); } }; self.bump(); Ok(out) } /// Matches lit = true | false | token_lit pub fn parse_lit(&mut self) -> PResult<'a, Lit> { let lo = self.span; let lit = if self.eat_keyword(keywords::True) { LitKind::Bool(true) } else if self.eat_keyword(keywords::False) { LitKind::Bool(false) } else { let lit = self.parse_lit_token()?; lit }; Ok(codemap::Spanned { node: lit, span: lo.to(self.prev_span) }) } /// matches '-' lit | lit (cf. ast_validation::AstValidator::check_expr_within_pat) pub fn parse_pat_literal_maybe_minus(&mut self) -> PResult<'a, P> { maybe_whole_expr!(self); let minus_lo = self.span; let minus_present = self.eat(&token::BinOp(token::Minus)); let lo = self.span; let literal = P(self.parse_lit()?); let hi = self.prev_span; let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new()); if minus_present { let minus_hi = self.prev_span; let unary = self.mk_unary(UnOp::Neg, expr); Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new())) } else { Ok(expr) } } pub fn parse_path_segment_ident(&mut self) -> PResult<'a, ast::Ident> { match self.token { token::Ident(sid) if self.token.is_path_segment_keyword() => { self.bump(); Ok(sid) } _ => self.parse_ident(), } } /// Parses qualified path. /// Assumes that the leading `<` has been parsed already. /// /// `qualified_path = ::path` /// /// # Examples /// `::a` /// `::F::a` (without disambiguator) /// `::F::a::` (with disambiguator) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, ast::Path)> { let lo = self.prev_span; let ty = self.parse_ty()?; let mut path = if self.eat_keyword(keywords::As) { self.parse_path(PathStyle::Type)? } else { ast::Path { segments: Vec::new(), span: syntax_pos::DUMMY_SP } }; self.expect(&token::Gt)?; self.expect(&token::ModSep)?; let qself = QSelf { ty, position: path.segments.len() }; self.parse_path_segments(&mut path.segments, style)?; Ok((qself, ast::Path { segments: path.segments, span: lo.to(self.prev_span) })) } /// Parses simple paths. /// /// `path = [::] segment+` /// `segment = ident | ident[::] | ident[::](args) [-> type]` /// /// # Examples /// `a::b::C` (without disambiguator) /// `a::b::C::` (with disambiguator) /// `Fn(Args)` (without disambiguator) /// `Fn::(Args)` (with disambiguator) pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, ast::Path> { maybe_whole!(self, NtPath, |x| x); let lo = self.meta_var_span.unwrap_or(self.span); let mut segments = Vec::new(); if self.eat(&token::ModSep) { segments.push(PathSegment::crate_root(lo)); } self.parse_path_segments(&mut segments, style)?; Ok(ast::Path { segments, span: lo.to(self.prev_span) }) } /// Like `parse_path`, but also supports parsing `Word` meta items into paths for back-compat. /// This is used when parsing derive macro paths in `#[derive]` attributes. pub fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, ast::Path> { let meta_ident = match self.token { token::Interpolated(ref nt) => match nt.0 { token::NtMeta(ref meta) => match meta.node { ast::MetaItemKind::Word => Some(ast::Ident::with_empty_ctxt(meta.name)), _ => None, }, _ => None, }, _ => None, }; if let Some(ident) = meta_ident { self.bump(); return Ok(ast::Path::from_ident(self.prev_span, ident)); } self.parse_path(style) } fn parse_path_segments(&mut self, segments: &mut Vec, style: PathStyle) -> PResult<'a, ()> { loop { segments.push(self.parse_path_segment(style)?); if self.is_import_coupler() || !self.eat(&token::ModSep) { return Ok(()); } } } fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> { let ident_span = self.span; let ident = self.parse_path_segment_ident()?; let is_args_start = |token: &token::Token| match *token { token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren) => true, _ => false, }; let check_args_start = |this: &mut Self| { this.expected_tokens.extend_from_slice( &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))] ); is_args_start(&this.token) }; Ok(if style == PathStyle::Type && check_args_start(self) || style != PathStyle::Mod && self.check(&token::ModSep) && self.look_ahead(1, |t| is_args_start(t)) { // Generic arguments are found - `<`, `(`, `::<` or `::(`. let lo = self.span; if self.eat(&token::ModSep) { // These errors are not strictly necessary and may be removed in the future. if style == PathStyle::Type { let mut err = self.diagnostic().struct_span_err(self.prev_span, "unnecessary path disambiguator"); err.span_label(self.prev_span, "try removing `::`"); err.emit(); } else if self.token == token::OpenDelim(token::Paren) { self.diagnostic().span_err(self.prev_span, "`::` is not supported before parenthesized generic arguments") } } let parameters = if self.eat_lt() { // `<'a, T, A = U>` let (lifetimes, types, bindings) = self.parse_generic_args()?; self.expect_gt()?; let span = lo.to(self.prev_span); AngleBracketedParameterData { lifetimes, types, bindings, span }.into() } else { // `(T, U) -> R` self.bump(); // `(` let inputs = self.parse_seq_to_end(&token::CloseDelim(token::Paren), SeqSep::trailing_allowed(token::Comma), |p| p.parse_ty())?; let output = if self.eat(&token::RArrow) { Some(self.parse_ty_no_plus()?) } else { None }; let span = lo.to(self.prev_span); ParenthesizedParameterData { inputs, output, span }.into() }; PathSegment { identifier: ident, span: ident_span, parameters } } else { // Generic arguments are not found. PathSegment::from_ident(ident, ident_span) }) } fn check_lifetime(&mut self) -> bool { self.expected_tokens.push(TokenType::Lifetime); self.token.is_lifetime() } /// Parse single lifetime 'a or panic. fn expect_lifetime(&mut self) -> Lifetime { match self.token { token::Lifetime(ident) => { let ident_span = self.span; self.bump(); Lifetime { ident: ident, span: ident_span, id: ast::DUMMY_NODE_ID } } _ => self.span_bug(self.span, "not a lifetime") } } /// Parse mutability (`mut` or nothing). fn parse_mutability(&mut self) -> Mutability { if self.eat_keyword(keywords::Mut) { Mutability::Mutable } else { Mutability::Immutable } } pub fn parse_field_name(&mut self) -> PResult<'a, Ident> { if let token::Literal(token::Integer(name), None) = self.token { self.bump(); Ok(Ident::with_empty_ctxt(name)) } else { self.parse_ident() } } /// Parse ident (COLON expr)? pub fn parse_field(&mut self) -> PResult<'a, Field> { let attrs = self.parse_outer_attributes()?; let lo = self.span; let hi; // Check if a colon exists one ahead. This means we're parsing a fieldname. let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) { let fieldname = self.parse_field_name()?; self.bump(); hi = self.prev_span; (fieldname, self.parse_expr()?, false) } else { let fieldname = self.parse_ident()?; hi = self.prev_span; // Mimic `x: x` for the `x` field shorthand. let path = ast::Path::from_ident(lo.to(hi), fieldname); (fieldname, self.mk_expr(lo.to(hi), ExprKind::Path(None, path), ThinVec::new()), true) }; Ok(ast::Field { ident: respan(lo.to(hi), fieldname), span: lo.to(expr.span), expr: expr, is_shorthand: is_shorthand, attrs: attrs.into(), }) } pub fn mk_expr(&mut self, span: Span, node: ExprKind, attrs: ThinVec) -> P { P(Expr { id: ast::DUMMY_NODE_ID, node: node, span: span, attrs: attrs.into(), }) } pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P) -> ast::ExprKind { ExprKind::Unary(unop, expr) } pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P, rhs: P) -> ast::ExprKind { ExprKind::Binary(binop, lhs, rhs) } pub fn mk_call(&mut self, f: P, args: Vec>) -> ast::ExprKind { ExprKind::Call(f, args) } pub fn mk_index(&mut self, expr: P, idx: P) -> ast::ExprKind { ExprKind::Index(expr, idx) } pub fn mk_range(&mut self, start: Option>, end: Option>, limits: RangeLimits) -> PResult<'a, ast::ExprKind> { if end.is_none() && limits == RangeLimits::Closed { Err(self.span_fatal_err(self.span, Error::InclusiveRangeWithNoEnd)) } else { Ok(ExprKind::Range(start, end, limits)) } } pub fn mk_tup_field(&mut self, expr: P, idx: codemap::Spanned) -> ast::ExprKind { ExprKind::TupField(expr, idx) } pub fn mk_assign_op(&mut self, binop: ast::BinOp, lhs: P, rhs: P) -> ast::ExprKind { ExprKind::AssignOp(binop, lhs, rhs) } pub fn mk_mac_expr(&mut self, span: Span, m: Mac_, attrs: ThinVec) -> P { P(Expr { id: ast::DUMMY_NODE_ID, node: ExprKind::Mac(codemap::Spanned {node: m, span: span}), span: span, attrs: attrs, }) } pub fn mk_lit_u32(&mut self, i: u32, attrs: ThinVec) -> P { let span = &self.span; let lv_lit = P(codemap::Spanned { node: LitKind::Int(i as u128, ast::LitIntType::Unsigned(UintTy::U32)), span: *span }); P(Expr { id: ast::DUMMY_NODE_ID, node: ExprKind::Lit(lv_lit), span: *span, attrs: attrs, }) } fn expect_delimited_token_tree(&mut self) -> PResult<'a, (token::DelimToken, ThinTokenStream)> { match self.token { token::OpenDelim(delim) => match self.parse_token_tree() { TokenTree::Delimited(_, delimited) => Ok((delim, delimited.stream().into())), _ => unreachable!(), }, _ => Err(self.fatal("expected open delimiter")), } } /// At the bottom (top?) of the precedence hierarchy, /// parse things like parenthesized exprs, /// macros, return, etc. /// /// NB: This does not parse outer attributes, /// and is private because it only works /// correctly if called from parse_dot_or_call_expr(). fn parse_bottom_expr(&mut self) -> PResult<'a, P> { maybe_whole_expr!(self); // Outer attributes are already parsed and will be // added to the return value after the fact. // // Therefore, prevent sub-parser from parsing // attributes by giving them a empty "already parsed" list. let mut attrs = ThinVec::new(); let lo = self.span; let mut hi = self.span; let ex: ExprKind; // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr(). match self.token { token::OpenDelim(token::Paren) => { self.bump(); attrs.extend(self.parse_inner_attributes()?); // (e) is parenthesized e // (e,) is a tuple with only one field, e let mut es = vec![]; let mut trailing_comma = false; while self.token != token::CloseDelim(token::Paren) { es.push(self.parse_expr()?); self.expect_one_of(&[], &[token::Comma, token::CloseDelim(token::Paren)])?; if self.check(&token::Comma) { trailing_comma = true; self.bump(); } else { trailing_comma = false; break; } } self.bump(); hi = self.prev_span; let span = lo.to(hi); return if es.len() == 1 && !trailing_comma { Ok(self.mk_expr(span, ExprKind::Paren(es.into_iter().nth(0).unwrap()), attrs)) } else { Ok(self.mk_expr(span, ExprKind::Tup(es), attrs)) } } token::OpenDelim(token::Brace) => { return self.parse_block_expr(lo, BlockCheckMode::Default, attrs); } token::BinOp(token::Or) | token::OrOr => { let lo = self.span; return self.parse_lambda_expr(lo, CaptureBy::Ref, attrs); } token::OpenDelim(token::Bracket) => { self.bump(); attrs.extend(self.parse_inner_attributes()?); if self.check(&token::CloseDelim(token::Bracket)) { // Empty vector. self.bump(); ex = ExprKind::Array(Vec::new()); } else { // Nonempty vector. let first_expr = self.parse_expr()?; if self.check(&token::Semi) { // Repeating array syntax: [ 0; 512 ] self.bump(); let count = self.parse_expr()?; self.expect(&token::CloseDelim(token::Bracket))?; ex = ExprKind::Repeat(first_expr, count); } else if self.check(&token::Comma) { // Vector with two or more elements. self.bump(); let remaining_exprs = self.parse_seq_to_end( &token::CloseDelim(token::Bracket), SeqSep::trailing_allowed(token::Comma), |p| Ok(p.parse_expr()?) )?; let mut exprs = vec![first_expr]; exprs.extend(remaining_exprs); ex = ExprKind::Array(exprs); } else { // Vector with one element. self.expect(&token::CloseDelim(token::Bracket))?; ex = ExprKind::Array(vec![first_expr]); } } hi = self.prev_span; } _ => { if self.eat_lt() { let (qself, path) = self.parse_qpath(PathStyle::Expr)?; hi = path.span; return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs)); } if self.eat_keyword(keywords::Move) { let lo = self.prev_span; return self.parse_lambda_expr(lo, CaptureBy::Value, attrs); } if self.eat_keyword(keywords::If) { return self.parse_if_expr(attrs); } if self.eat_keyword(keywords::For) { let lo = self.prev_span; return self.parse_for_expr(None, lo, attrs); } if self.eat_keyword(keywords::While) { let lo = self.prev_span; return self.parse_while_expr(None, lo, attrs); } if self.token.is_lifetime() { let label = Spanned { node: self.get_label(), span: self.span }; let lo = self.span; self.bump(); self.expect(&token::Colon)?; if self.eat_keyword(keywords::While) { return self.parse_while_expr(Some(label), lo, attrs) } if self.eat_keyword(keywords::For) { return self.parse_for_expr(Some(label), lo, attrs) } if self.eat_keyword(keywords::Loop) { return self.parse_loop_expr(Some(label), lo, attrs) } return Err(self.fatal("expected `while`, `for`, or `loop` after a label")) } if self.eat_keyword(keywords::Loop) { let lo = self.prev_span; return self.parse_loop_expr(None, lo, attrs); } if self.eat_keyword(keywords::Continue) { let ex = if self.token.is_lifetime() { let ex = ExprKind::Continue(Some(Spanned{ node: self.get_label(), span: self.span })); self.bump(); ex } else { ExprKind::Continue(None) }; let hi = self.prev_span; return Ok(self.mk_expr(lo.to(hi), ex, attrs)); } if self.eat_keyword(keywords::Match) { return self.parse_match_expr(attrs); } if self.eat_keyword(keywords::Unsafe) { return self.parse_block_expr( lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs); } if self.is_catch_expr() { let lo = self.span; assert!(self.eat_keyword(keywords::Do)); assert!(self.eat_keyword(keywords::Catch)); return self.parse_catch_expr(lo, attrs); } if self.eat_keyword(keywords::Return) { if self.token.can_begin_expr() { let e = self.parse_expr()?; hi = e.span; ex = ExprKind::Ret(Some(e)); } else { ex = ExprKind::Ret(None); } } else if self.eat_keyword(keywords::Break) { let lt = if self.token.is_lifetime() { let spanned_lt = Spanned { node: self.get_label(), span: self.span }; self.bump(); Some(spanned_lt) } else { None }; let e = if self.token.can_begin_expr() && !(self.token == token::OpenDelim(token::Brace) && self.restrictions.contains( RESTRICTION_NO_STRUCT_LITERAL)) { Some(self.parse_expr()?) } else { None }; ex = ExprKind::Break(lt, e); hi = self.prev_span; } else if self.token.is_keyword(keywords::Let) { // Catch this syntax error here, instead of in `parse_ident`, so // that we can explicitly mention that let is not to be used as an expression let mut db = self.fatal("expected expression, found statement (`let`)"); db.note("variable declaration using `let` is a statement"); return Err(db); } else if self.token.is_path_start() { let pth = self.parse_path(PathStyle::Expr)?; // `!`, as an operator, is prefix, so we know this isn't that if self.eat(&token::Not) { // MACRO INVOCATION expression let (_, tts) = self.expect_delimited_token_tree()?; let hi = self.prev_span; return Ok(self.mk_mac_expr(lo.to(hi), Mac_ { path: pth, tts: tts }, attrs)); } if self.check(&token::OpenDelim(token::Brace)) { // This is a struct literal, unless we're prohibited // from parsing struct literals here. let prohibited = self.restrictions.contains( RESTRICTION_NO_STRUCT_LITERAL ); if !prohibited { return self.parse_struct_expr(lo, pth, attrs); } } hi = pth.span; ex = ExprKind::Path(None, pth); } else { match self.parse_lit() { Ok(lit) => { hi = lit.span; ex = ExprKind::Lit(P(lit)); } Err(mut err) => { self.cancel(&mut err); let msg = format!("expected expression, found {}", self.this_token_descr()); return Err(self.fatal(&msg)); } } } } } return Ok(self.mk_expr(lo.to(hi), ex, attrs)); } fn parse_struct_expr(&mut self, lo: Span, pth: ast::Path, mut attrs: ThinVec) -> PResult<'a, P> { self.bump(); let mut fields = Vec::new(); let mut base = None; attrs.extend(self.parse_inner_attributes()?); while self.token != token::CloseDelim(token::Brace) { if self.eat(&token::DotDot) { match self.parse_expr() { Ok(e) => { base = Some(e); } Err(mut e) => { e.emit(); self.recover_stmt(); } } break; } match self.parse_field() { Ok(f) => fields.push(f), Err(mut e) => { e.emit(); self.recover_stmt(); break; } } match self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]) { Ok(()) => {} Err(mut e) => { e.emit(); self.recover_stmt(); break; } } } let span = lo.to(self.span); self.expect(&token::CloseDelim(token::Brace))?; return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs)); } fn parse_or_use_outer_attributes(&mut self, already_parsed_attrs: Option>) -> PResult<'a, ThinVec> { if let Some(attrs) = already_parsed_attrs { Ok(attrs) } else { self.parse_outer_attributes().map(|a| a.into()) } } /// Parse a block or unsafe block pub fn parse_block_expr(&mut self, lo: Span, blk_mode: BlockCheckMode, outer_attrs: ThinVec) -> PResult<'a, P> { self.expect(&token::OpenDelim(token::Brace))?; let mut attrs = outer_attrs; attrs.extend(self.parse_inner_attributes()?); let blk = self.parse_block_tail(lo, blk_mode)?; return Ok(self.mk_expr(blk.span, ExprKind::Block(blk), attrs)); } /// parse a.b or a(13) or a[4] or just a pub fn parse_dot_or_call_expr(&mut self, already_parsed_attrs: Option>) -> PResult<'a, P> { let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; let b = self.parse_bottom_expr(); let (span, b) = self.interpolated_or_expr_span(b)?; self.parse_dot_or_call_expr_with(b, span, attrs) } pub fn parse_dot_or_call_expr_with(&mut self, e0: P, lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { // Stitch the list of outer attributes onto the return value. // A little bit ugly, but the best way given the current code // structure self.parse_dot_or_call_expr_with_(e0, lo) .map(|expr| expr.map(|mut expr| { attrs.extend::>(expr.attrs.into()); expr.attrs = attrs; match expr.node { ExprKind::If(..) | ExprKind::IfLet(..) => { if !expr.attrs.is_empty() { // Just point to the first attribute in there... let span = expr.attrs[0].span; self.span_err(span, "attributes are not yet allowed on `if` \ expressions"); } } _ => {} } expr }) ) } // Assuming we have just parsed `.`, continue parsing into an expression. fn parse_dot_suffix(&mut self, self_arg: P, lo: Span) -> PResult<'a, P> { let segment = self.parse_path_segment(PathStyle::Expr)?; Ok(match self.token { token::OpenDelim(token::Paren) => { // Method call `expr.f()` let mut args = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), SeqSep::trailing_allowed(token::Comma), |p| Ok(p.parse_expr()?) )?; args.insert(0, self_arg); let span = lo.to(self.prev_span); self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new()) } _ => { // Field access `expr.f` if let Some(parameters) = segment.parameters { self.span_err(parameters.span(), "field expressions may not have generic arguments"); } let span = lo.to(self.prev_span); let ident = respan(segment.span, segment.identifier); self.mk_expr(span, ExprKind::Field(self_arg, ident), ThinVec::new()) } }) } fn parse_dot_or_call_expr_with_(&mut self, e0: P, lo: Span) -> PResult<'a, P> { let mut e = e0; let mut hi; loop { // expr? while self.eat(&token::Question) { let hi = self.prev_span; e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new()); } // expr.f if self.eat(&token::Dot) { match self.token { token::Ident(..) => { e = self.parse_dot_suffix(e, lo)?; } token::Literal(token::Integer(n), suf) => { let sp = self.span; // A tuple index may not have a suffix self.expect_no_suffix(sp, "tuple index", suf); let dot_span = self.prev_span; hi = self.span; self.bump(); let index = n.as_str().parse::().ok(); match index { Some(n) => { let id = respan(dot_span.to(hi), n); let field = self.mk_tup_field(e, id); e = self.mk_expr(lo.to(hi), field, ThinVec::new()); } None => { let prev_span = self.prev_span; self.span_err(prev_span, "invalid tuple or tuple struct index"); } } } token::Literal(token::Float(n), _suf) => { self.bump(); let fstr = n.as_str(); let mut err = self.diagnostic().struct_span_err(self.prev_span, &format!("unexpected token: `{}`", n)); err.span_label(self.prev_span, "unexpected token"); if fstr.chars().all(|x| "0123456789.".contains(x)) { let float = match fstr.parse::().ok() { Some(f) => f, None => continue, }; let sugg = pprust::to_string(|s| { use print::pprust::PrintState; s.popen()?; s.print_expr(&e)?; s.s.word( ".")?; s.print_usize(float.trunc() as usize)?; s.pclose()?; s.s.word(".")?; s.s.word(fstr.splitn(2, ".").last().unwrap()) }); err.span_suggestion( lo.to(self.prev_span), "try parenthesizing the first index", sugg); } return Err(err); } _ => { // FIXME Could factor this out into non_fatal_unexpected or something. let actual = self.this_token_to_string(); self.span_err(self.span, &format!("unexpected token: `{}`", actual)); } } continue; } if self.expr_is_complete(&e) { break; } match self.token { // expr(...) token::OpenDelim(token::Paren) => { let es = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), SeqSep::trailing_allowed(token::Comma), |p| Ok(p.parse_expr()?) )?; hi = self.prev_span; let nd = self.mk_call(e, es); e = self.mk_expr(lo.to(hi), nd, ThinVec::new()); } // expr[...] // Could be either an index expression or a slicing expression. token::OpenDelim(token::Bracket) => { self.bump(); let ix = self.parse_expr()?; hi = self.span; self.expect(&token::CloseDelim(token::Bracket))?; let index = self.mk_index(e, ix); e = self.mk_expr(lo.to(hi), index, ThinVec::new()) } _ => return Ok(e) } } return Ok(e); } pub fn process_potential_macro_variable(&mut self) { let ident = match self.token { token::Dollar if self.span.ctxt != syntax_pos::hygiene::SyntaxContext::empty() && self.look_ahead(1, |t| t.is_ident()) => { self.bump(); let name = match self.token { token::Ident(ident) => ident, _ => unreachable!() }; self.fatal(&format!("unknown macro variable `{}`", name)).emit(); return } token::Interpolated(ref nt) => { self.meta_var_span = Some(self.span); match nt.0 { token::NtIdent(ident) => ident, _ => return, } } _ => return, }; self.token = token::Ident(ident.node); self.span = ident.span; } /// parse a single token tree from the input. pub fn parse_token_tree(&mut self) -> TokenTree { match self.token { token::OpenDelim(..) => { let frame = mem::replace(&mut self.token_cursor.frame, self.token_cursor.stack.pop().unwrap()); self.span = frame.span; self.bump(); TokenTree::Delimited(frame.span, Delimited { delim: frame.delim, tts: frame.tree_cursor.original_stream().into(), }) }, token::CloseDelim(_) | token::Eof => unreachable!(), _ => { let (token, span) = (mem::replace(&mut self.token, token::Underscore), self.span); self.bump(); TokenTree::Token(span, token) } } } // parse a stream of tokens into a list of TokenTree's, // up to EOF. pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec> { let mut tts = Vec::new(); while self.token != token::Eof { tts.push(self.parse_token_tree()); } Ok(tts) } pub fn parse_tokens(&mut self) -> TokenStream { let mut result = Vec::new(); loop { match self.token { token::Eof | token::CloseDelim(..) => break, _ => result.push(self.parse_token_tree().into()), } } TokenStream::concat(result) } /// Parse a prefix-unary-operator expr pub fn parse_prefix_expr(&mut self, already_parsed_attrs: Option>) -> PResult<'a, P> { let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; let lo = self.span; // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr() let (hi, ex) = match self.token { token::Not => { self.bump(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; (span, self.mk_unary(UnOp::Not, e)) } // Suggest `!` for bitwise negation when encountering a `~` token::Tilde => { self.bump(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; let span_of_tilde = lo; let mut err = self.diagnostic().struct_span_err(span_of_tilde, "`~` can not be used as a unary operator"); err.span_label(span_of_tilde, "did you mean `!`?"); err.help("use `!` instead of `~` if you meant to perform bitwise negation"); err.emit(); (span, self.mk_unary(UnOp::Not, e)) } token::BinOp(token::Minus) => { self.bump(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; (span, self.mk_unary(UnOp::Neg, e)) } token::BinOp(token::Star) => { self.bump(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; (span, self.mk_unary(UnOp::Deref, e)) } token::BinOp(token::And) | token::AndAnd => { self.expect_and()?; let m = self.parse_mutability(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; (span, ExprKind::AddrOf(m, e)) } token::Ident(..) if self.token.is_keyword(keywords::In) => { self.bump(); let place = self.parse_expr_res( RESTRICTION_NO_STRUCT_LITERAL, None, )?; let blk = self.parse_block()?; let span = blk.span; let blk_expr = self.mk_expr(span, ExprKind::Block(blk), ThinVec::new()); (span, ExprKind::InPlace(place, blk_expr)) } token::Ident(..) if self.token.is_keyword(keywords::Box) => { self.bump(); let e = self.parse_prefix_expr(None); let (span, e) = self.interpolated_or_expr_span(e)?; (span, ExprKind::Box(e)) } _ => return self.parse_dot_or_call_expr(Some(attrs)) }; return Ok(self.mk_expr(lo.to(hi), ex, attrs)); } /// Parse an associative expression /// /// This parses an expression accounting for associativity and precedence of the operators in /// the expression. pub fn parse_assoc_expr(&mut self, already_parsed_attrs: Option>) -> PResult<'a, P> { self.parse_assoc_expr_with(0, already_parsed_attrs.into()) } /// Parse an associative expression with operators of at least `min_prec` precedence pub fn parse_assoc_expr_with(&mut self, min_prec: usize, lhs: LhsExpr) -> PResult<'a, P> { let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs { expr } else { let attrs = match lhs { LhsExpr::AttributesParsed(attrs) => Some(attrs), _ => None, }; if self.token == token::DotDot || self.token == token::DotDotDot { return self.parse_prefix_range_expr(attrs); } else { self.parse_prefix_expr(attrs)? } }; if self.expr_is_complete(&lhs) { // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071 return Ok(lhs); } self.expected_tokens.push(TokenType::Operator); while let Some(op) = AssocOp::from_token(&self.token) { // Adjust the span for interpolated LHS to point to the `$lhs` token and not to what // it refers to. Interpolated identifiers are unwrapped early and never show up here // as `PrevTokenKind::Interpolated` so if LHS is a single identifier we always process // it as "interpolated", it doesn't change the answer for non-interpolated idents. let lhs_span = match (self.prev_token_kind, &lhs.node) { (PrevTokenKind::Interpolated, _) => self.prev_span, (PrevTokenKind::Ident, &ExprKind::Path(None, ref path)) if path.segments.len() == 1 => self.prev_span, _ => lhs.span, }; let cur_op_span = self.span; let restrictions = if op.is_assign_like() { self.restrictions & RESTRICTION_NO_STRUCT_LITERAL } else { self.restrictions }; if op.precedence() < min_prec { break; } self.bump(); if op.is_comparison() { self.check_no_chained_comparison(&lhs, &op); } // Special cases: if op == AssocOp::As { lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?; continue } else if op == AssocOp::Colon { lhs = match self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type) { Ok(lhs) => lhs, Err(mut err) => { err.span_label(self.span, "expecting a type here because of type ascription"); let cm = self.sess.codemap(); let cur_pos = cm.lookup_char_pos(self.span.lo); let op_pos = cm.lookup_char_pos(cur_op_span.hi); if cur_pos.line != op_pos.line { err.span_suggestion_short(cur_op_span, "did you mean to use `;` here?", ";".to_string()); } return Err(err); } }; continue } else if op == AssocOp::DotDot || op == AssocOp::DotDotDot { // If we didn’t have to handle `x..`/`x...`, it would be pretty easy to // generalise it to the Fixity::None code. // // We have 2 alternatives here: `x..y`/`x...y` and `x..`/`x...` The other // two variants are handled with `parse_prefix_range_expr` call above. let rhs = if self.is_at_start_of_range_notation_rhs() { Some(self.parse_assoc_expr_with(op.precedence() + 1, LhsExpr::NotYetParsed)?) } else { None }; let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs { x.span } else { cur_op_span }); let limits = if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed }; let r = try!(self.mk_range(Some(lhs), rhs, limits)); lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new()); break } let rhs = match op.fixity() { Fixity::Right => self.with_res( restrictions - RESTRICTION_STMT_EXPR, |this| { this.parse_assoc_expr_with(op.precedence(), LhsExpr::NotYetParsed) }), Fixity::Left => self.with_res( restrictions - RESTRICTION_STMT_EXPR, |this| { this.parse_assoc_expr_with(op.precedence() + 1, LhsExpr::NotYetParsed) }), // We currently have no non-associative operators that are not handled above by // the special cases. The code is here only for future convenience. Fixity::None => self.with_res( restrictions - RESTRICTION_STMT_EXPR, |this| { this.parse_assoc_expr_with(op.precedence() + 1, LhsExpr::NotYetParsed) }), }?; let span = lhs_span.to(rhs.span); lhs = match op { AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide | AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor | AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight | AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual | AssocOp::Greater | AssocOp::GreaterEqual => { let ast_op = op.to_ast_binop().unwrap(); let binary = self.mk_binary(codemap::respan(cur_op_span, ast_op), lhs, rhs); self.mk_expr(span, binary, ThinVec::new()) } AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()), AssocOp::Inplace => self.mk_expr(span, ExprKind::InPlace(lhs, rhs), ThinVec::new()), AssocOp::AssignOp(k) => { let aop = match k { token::Plus => BinOpKind::Add, token::Minus => BinOpKind::Sub, token::Star => BinOpKind::Mul, token::Slash => BinOpKind::Div, token::Percent => BinOpKind::Rem, token::Caret => BinOpKind::BitXor, token::And => BinOpKind::BitAnd, token::Or => BinOpKind::BitOr, token::Shl => BinOpKind::Shl, token::Shr => BinOpKind::Shr, }; let aopexpr = self.mk_assign_op(codemap::respan(cur_op_span, aop), lhs, rhs); self.mk_expr(span, aopexpr, ThinVec::new()) } AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotDot => { self.bug("As, Colon, DotDot or DotDotDot branch reached") } }; if op.fixity() == Fixity::None { break } } Ok(lhs) } fn parse_assoc_op_cast(&mut self, lhs: P, lhs_span: Span, expr_kind: fn(P, P) -> ExprKind) -> PResult<'a, P> { let mk_expr = |this: &mut Self, rhs: P| { this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new()) }; // Save the state of the parser before parsing type normally, in case there is a // LessThan comparison after this cast. let parser_snapshot_before_type = self.clone(); match self.parse_ty_no_plus() { Ok(rhs) => { Ok(mk_expr(self, rhs)) } Err(mut type_err) => { // Rewind to before attempting to parse the type with generics, to recover // from situations like `x as usize < y` in which we first tried to parse // `usize < y` as a type with generic arguments. let parser_snapshot_after_type = self.clone(); mem::replace(self, parser_snapshot_before_type); match self.parse_path(PathStyle::Expr) { Ok(path) => { // Successfully parsed the type path leaving a `<` yet to parse. type_err.cancel(); // Report non-fatal diagnostics, keep `x as usize` as an expression // in AST and continue parsing. let msg = format!("`<` is interpreted as a start of generic \ arguments for `{}`, not a comparison", path); let mut err = self.sess.span_diagnostic.struct_span_err(self.span, &msg); err.span_label(self.look_ahead_span(1).to(parser_snapshot_after_type.span), "interpreted as generic arguments"); err.span_label(self.span, "not interpreted as comparison"); let expr = mk_expr(self, P(Ty { span: path.span, node: TyKind::Path(None, path), id: ast::DUMMY_NODE_ID })); let expr_str = self.sess.codemap().span_to_snippet(expr.span) .unwrap_or(pprust::expr_to_string(&expr)); err.span_suggestion(expr.span, "try comparing the casted value", format!("({})", expr_str)); err.emit(); Ok(expr) } Err(mut path_err) => { // Couldn't parse as a path, return original error and parser state. path_err.cancel(); mem::replace(self, parser_snapshot_after_type); Err(type_err) } } } } } /// Produce an error if comparison operators are chained (RFC #558). /// We only need to check lhs, not rhs, because all comparison ops /// have same precedence and are left-associative fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: &AssocOp) { debug_assert!(outer_op.is_comparison(), "check_no_chained_comparison: {:?} is not comparison", outer_op); match lhs.node { ExprKind::Binary(op, _, _) if op.node.is_comparison() => { // respan to include both operators let op_span = op.span.to(self.span); let mut err = self.diagnostic().struct_span_err(op_span, "chained comparison operators require parentheses"); if op.node == BinOpKind::Lt && *outer_op == AssocOp::Less || // Include `<` to provide this recommendation *outer_op == AssocOp::Greater // even in a case like the following: { // Foo>> err.help( "use `::<...>` instead of `<...>` if you meant to specify type arguments"); } err.emit(); } _ => {} } } /// Parse prefix-forms of range notation: `..expr`, `..`, `...expr` fn parse_prefix_range_expr(&mut self, already_parsed_attrs: Option>) -> PResult<'a, P> { debug_assert!(self.token == token::DotDot || self.token == token::DotDotDot, "parse_prefix_range_expr: token {:?} is not DotDot or DotDotDot", self.token); let tok = self.token.clone(); let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; let lo = self.span; let mut hi = self.span; self.bump(); let opt_end = if self.is_at_start_of_range_notation_rhs() { // RHS must be parsed with more associativity than the dots. let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1; Some(self.parse_assoc_expr_with(next_prec, LhsExpr::NotYetParsed) .map(|x|{ hi = x.span; x })?) } else { None }; let limits = if tok == token::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed }; let r = try!(self.mk_range(None, opt_end, limits)); Ok(self.mk_expr(lo.to(hi), r, attrs)) } fn is_at_start_of_range_notation_rhs(&self) -> bool { if self.token.can_begin_expr() { // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`. if self.token == token::OpenDelim(token::Brace) { return !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL); } true } else { false } } /// Parse an 'if' or 'if let' expression ('if' token already eaten) pub fn parse_if_expr(&mut self, attrs: ThinVec) -> PResult<'a, P> { if self.check_keyword(keywords::Let) { return self.parse_if_let_expr(attrs); } let lo = self.prev_span; let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; if self.eat_keyword(keywords::Else) { let sp = lo.next_point(); let mut err = self.diagnostic() .struct_span_err(sp, "missing condition for `if` statemement"); err.span_label(sp, "expected if condition here"); return Err(err) } let thn = self.parse_block()?; let mut els: Option> = None; let mut hi = thn.span; if self.eat_keyword(keywords::Else) { let elexpr = self.parse_else_expr()?; hi = elexpr.span; els = Some(elexpr); } Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs)) } /// Parse an 'if let' expression ('if' token already eaten) pub fn parse_if_let_expr(&mut self, attrs: ThinVec) -> PResult<'a, P> { let lo = self.prev_span; self.expect_keyword(keywords::Let)?; let pat = self.parse_pat()?; self.expect(&token::Eq)?; let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; let thn = self.parse_block()?; let (hi, els) = if self.eat_keyword(keywords::Else) { let expr = self.parse_else_expr()?; (expr.span, Some(expr)) } else { (thn.span, None) }; Ok(self.mk_expr(lo.to(hi), ExprKind::IfLet(pat, expr, thn, els), attrs)) } // `move |args| expr` pub fn parse_lambda_expr(&mut self, lo: Span, capture_clause: CaptureBy, attrs: ThinVec) -> PResult<'a, P> { let decl = self.parse_fn_block_decl()?; let decl_hi = self.prev_span; let body = match decl.output { FunctionRetTy::Default(_) => self.parse_expr()?, _ => { // If an explicit return type is given, require a // block to appear (RFC 968). let body_lo = self.span; self.parse_block_expr(body_lo, BlockCheckMode::Default, ThinVec::new())? } }; Ok(self.mk_expr( lo.to(body.span), ExprKind::Closure(capture_clause, decl, body, lo.to(decl_hi)), attrs)) } // `else` token already eaten pub fn parse_else_expr(&mut self) -> PResult<'a, P> { if self.eat_keyword(keywords::If) { return self.parse_if_expr(ThinVec::new()); } else { let blk = self.parse_block()?; return Ok(self.mk_expr(blk.span, ExprKind::Block(blk), ThinVec::new())); } } /// Parse a 'for' .. 'in' expression ('for' token already eaten) pub fn parse_for_expr(&mut self, opt_ident: Option, span_lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { // Parse: `for in ` let pat = self.parse_pat()?; self.expect_keyword(keywords::In)?; let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?; attrs.extend(iattrs); let hi = self.prev_span; Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_ident), attrs)) } /// Parse a 'while' or 'while let' expression ('while' token already eaten) pub fn parse_while_expr(&mut self, opt_ident: Option, span_lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { if self.token.is_keyword(keywords::Let) { return self.parse_while_let_expr(opt_ident, span_lo, attrs); } let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; let (iattrs, body) = self.parse_inner_attrs_and_block()?; attrs.extend(iattrs); let span = span_lo.to(body.span); return Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_ident), attrs)); } /// Parse a 'while let' expression ('while' token already eaten) pub fn parse_while_let_expr(&mut self, opt_ident: Option, span_lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { self.expect_keyword(keywords::Let)?; let pat = self.parse_pat()?; self.expect(&token::Eq)?; let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; let (iattrs, body) = self.parse_inner_attrs_and_block()?; attrs.extend(iattrs); let span = span_lo.to(body.span); return Ok(self.mk_expr(span, ExprKind::WhileLet(pat, expr, body, opt_ident), attrs)); } // parse `loop {...}`, `loop` token already eaten pub fn parse_loop_expr(&mut self, opt_ident: Option, span_lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { let (iattrs, body) = self.parse_inner_attrs_and_block()?; attrs.extend(iattrs); let span = span_lo.to(body.span); Ok(self.mk_expr(span, ExprKind::Loop(body, opt_ident), attrs)) } /// Parse a `do catch {...}` expression (`do catch` token already eaten) pub fn parse_catch_expr(&mut self, span_lo: Span, mut attrs: ThinVec) -> PResult<'a, P> { let (iattrs, body) = self.parse_inner_attrs_and_block()?; attrs.extend(iattrs); Ok(self.mk_expr(span_lo.to(body.span), ExprKind::Catch(body), attrs)) } // `match` token already eaten fn parse_match_expr(&mut self, mut attrs: ThinVec) -> PResult<'a, P> { let match_span = self.prev_span; let lo = self.prev_span; let discriminant = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL, None)?; if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) { if self.token == token::Token::Semi { e.span_note(match_span, "did you mean to remove this `match` keyword?"); } return Err(e) } attrs.extend(self.parse_inner_attributes()?); let mut arms: Vec = Vec::new(); while self.token != token::CloseDelim(token::Brace) { match self.parse_arm() { Ok(arm) => arms.push(arm), Err(mut e) => { // Recover by skipping to the end of the block. e.emit(); self.recover_stmt(); let span = lo.to(self.span); if self.token == token::CloseDelim(token::Brace) { self.bump(); } return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs)); } } } let hi = self.span; self.bump(); return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs)); } pub fn parse_arm(&mut self) -> PResult<'a, Arm> { maybe_whole!(self, NtArm, |x| x); let attrs = self.parse_outer_attributes()?; let pats = self.parse_pats()?; let guard = if self.eat_keyword(keywords::If) { Some(self.parse_expr()?) } else { None }; self.expect(&token::FatArrow)?; let expr = self.parse_expr_res(RESTRICTION_STMT_EXPR, None)?; let require_comma = classify::expr_requires_semi_to_be_stmt(&expr) && self.token != token::CloseDelim(token::Brace); if require_comma { self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)])?; } else { self.eat(&token::Comma); } Ok(ast::Arm { attrs: attrs, pats: pats, guard: guard, body: expr, }) } /// Parse an expression pub fn parse_expr(&mut self) -> PResult<'a, P> { self.parse_expr_res(Restrictions::empty(), None) } /// Evaluate the closure with restrictions in place. /// /// After the closure is evaluated, restrictions are reset. pub fn with_res(&mut self, r: Restrictions, f: F) -> T where F: FnOnce(&mut Self) -> T { let old = self.restrictions; self.restrictions = r; let r = f(self); self.restrictions = old; return r; } /// Parse an expression, subject to the given restrictions pub fn parse_expr_res(&mut self, r: Restrictions, already_parsed_attrs: Option>) -> PResult<'a, P> { self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs)) } /// Parse the RHS of a local variable declaration (e.g. '= 14;') fn parse_initializer(&mut self) -> PResult<'a, Option>> { if self.check(&token::Eq) { self.bump(); Ok(Some(self.parse_expr()?)) } else { Ok(None) } } /// Parse patterns, separated by '|' s fn parse_pats(&mut self) -> PResult<'a, Vec>> { let mut pats = Vec::new(); loop { pats.push(self.parse_pat()?); if self.check(&token::BinOp(token::Or)) { self.bump();} else { return Ok(pats); } }; } fn parse_pat_tuple_elements(&mut self, unary_needs_comma: bool) -> PResult<'a, (Vec>, Option)> { let mut fields = vec![]; let mut ddpos = None; while !self.check(&token::CloseDelim(token::Paren)) { if ddpos.is_none() && self.eat(&token::DotDot) { ddpos = Some(fields.len()); if self.eat(&token::Comma) { // `..` needs to be followed by `)` or `, pat`, `..,)` is disallowed. fields.push(self.parse_pat()?); } } else if ddpos.is_some() && self.eat(&token::DotDot) { // Emit a friendly error, ignore `..` and continue parsing self.span_err(self.prev_span, "`..` can only be used once per \ tuple or tuple struct pattern"); } else { fields.push(self.parse_pat()?); } if !self.check(&token::CloseDelim(token::Paren)) || (unary_needs_comma && fields.len() == 1 && ddpos.is_none()) { self.expect(&token::Comma)?; } } Ok((fields, ddpos)) } fn parse_pat_vec_elements( &mut self, ) -> PResult<'a, (Vec>, Option>, Vec>)> { let mut before = Vec::new(); let mut slice = None; let mut after = Vec::new(); let mut first = true; let mut before_slice = true; while self.token != token::CloseDelim(token::Bracket) { if first { first = false; } else { self.expect(&token::Comma)?; if self.token == token::CloseDelim(token::Bracket) && (before_slice || !after.is_empty()) { break } } if before_slice { if self.eat(&token::DotDot) { if self.check(&token::Comma) || self.check(&token::CloseDelim(token::Bracket)) { slice = Some(P(ast::Pat { id: ast::DUMMY_NODE_ID, node: PatKind::Wild, span: self.span, })); before_slice = false; } continue } } let subpat = self.parse_pat()?; if before_slice && self.eat(&token::DotDot) { slice = Some(subpat); before_slice = false; } else if before_slice { before.push(subpat); } else { after.push(subpat); } } Ok((before, slice, after)) } /// Parse the fields of a struct-like pattern fn parse_pat_fields(&mut self) -> PResult<'a, (Vec>, bool)> { let mut fields = Vec::new(); let mut etc = false; let mut first = true; while self.token != token::CloseDelim(token::Brace) { if first { first = false; } else { self.expect(&token::Comma)?; // accept trailing commas if self.check(&token::CloseDelim(token::Brace)) { break } } let attrs = self.parse_outer_attributes()?; let lo = self.span; let hi; if self.check(&token::DotDot) { self.bump(); if self.token != token::CloseDelim(token::Brace) { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected `{}`, found `{}`", "}", token_str))) } etc = true; break; } // Check if a colon exists one ahead. This means we're parsing a fieldname. let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) { // Parsing a pattern of the form "fieldname: pat" let fieldname = self.parse_field_name()?; self.bump(); let pat = self.parse_pat()?; hi = pat.span; (pat, fieldname, false) } else { // Parsing a pattern of the form "(box) (ref) (mut) fieldname" let is_box = self.eat_keyword(keywords::Box); let boxed_span = self.span; let is_ref = self.eat_keyword(keywords::Ref); let is_mut = self.eat_keyword(keywords::Mut); let fieldname = self.parse_ident()?; hi = self.prev_span; let bind_type = match (is_ref, is_mut) { (true, true) => BindingMode::ByRef(Mutability::Mutable), (true, false) => BindingMode::ByRef(Mutability::Immutable), (false, true) => BindingMode::ByValue(Mutability::Mutable), (false, false) => BindingMode::ByValue(Mutability::Immutable), }; let fieldpath = codemap::Spanned{span:self.prev_span, node:fieldname}; let fieldpat = P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatKind::Ident(bind_type, fieldpath, None), span: boxed_span.to(hi), }); let subpat = if is_box { P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatKind::Box(fieldpat), span: lo.to(hi), }) } else { fieldpat }; (subpat, fieldname, true) }; fields.push(codemap::Spanned { span: lo.to(hi), node: ast::FieldPat { ident: fieldname, pat: subpat, is_shorthand: is_shorthand, attrs: attrs.into(), } }); } return Ok((fields, etc)); } fn parse_pat_range_end(&mut self) -> PResult<'a, P> { if self.token.is_path_start() { let lo = self.span; let (qself, path) = if self.eat_lt() { // Parse a qualified path let (qself, path) = self.parse_qpath(PathStyle::Expr)?; (Some(qself), path) } else { // Parse an unqualified path (None, self.parse_path(PathStyle::Expr)?) }; let hi = self.prev_span; Ok(self.mk_expr(lo.to(hi), ExprKind::Path(qself, path), ThinVec::new())) } else { self.parse_pat_literal_maybe_minus() } } // helper function to decide whether to parse as ident binding or to try to do // something more complex like range patterns fn parse_as_ident(&mut self) -> bool { self.look_ahead(1, |t| match *t { token::OpenDelim(token::Paren) | token::OpenDelim(token::Brace) | token::DotDotDot | token::ModSep | token::Not => Some(false), // ensure slice patterns [a, b.., c] and [a, b, c..] don't go into the // range pattern branch token::DotDot => None, _ => Some(true), }).unwrap_or_else(|| self.look_ahead(2, |t| match *t { token::Comma | token::CloseDelim(token::Bracket) => true, _ => false, })) } /// Parse a pattern. pub fn parse_pat(&mut self) -> PResult<'a, P> { maybe_whole!(self, NtPat, |x| x); let lo = self.span; let pat; match self.token { token::Underscore => { // Parse _ self.bump(); pat = PatKind::Wild; } token::BinOp(token::And) | token::AndAnd => { // Parse &pat / &mut pat self.expect_and()?; let mutbl = self.parse_mutability(); if let token::Lifetime(ident) = self.token { return Err(self.fatal(&format!("unexpected lifetime `{}` in pattern", ident))); } let subpat = self.parse_pat()?; pat = PatKind::Ref(subpat, mutbl); } token::OpenDelim(token::Paren) => { // Parse (pat,pat,pat,...) as tuple pattern self.bump(); let (fields, ddpos) = self.parse_pat_tuple_elements(true)?; self.expect(&token::CloseDelim(token::Paren))?; pat = PatKind::Tuple(fields, ddpos); } token::OpenDelim(token::Bracket) => { // Parse [pat,pat,...] as slice pattern self.bump(); let (before, slice, after) = self.parse_pat_vec_elements()?; self.expect(&token::CloseDelim(token::Bracket))?; pat = PatKind::Slice(before, slice, after); } // At this point, token != _, &, &&, (, [ _ => if self.eat_keyword(keywords::Mut) { // Parse mut ident @ pat / mut ref ident @ pat let mutref_span = self.prev_span.to(self.span); let binding_mode = if self.eat_keyword(keywords::Ref) { self.diagnostic() .struct_span_err(mutref_span, "the order of `mut` and `ref` is incorrect") .span_suggestion(mutref_span, "try switching the order", "ref mut".into()) .emit(); BindingMode::ByRef(Mutability::Mutable) } else { BindingMode::ByValue(Mutability::Mutable) }; pat = self.parse_pat_ident(binding_mode)?; } else if self.eat_keyword(keywords::Ref) { // Parse ref ident @ pat / ref mut ident @ pat let mutbl = self.parse_mutability(); pat = self.parse_pat_ident(BindingMode::ByRef(mutbl))?; } else if self.eat_keyword(keywords::Box) { // Parse box pat let subpat = self.parse_pat()?; pat = PatKind::Box(subpat); } else if self.token.is_ident() && !self.token.is_reserved_ident() && self.parse_as_ident() { // Parse ident @ pat // This can give false positives and parse nullary enums, // they are dealt with later in resolve let binding_mode = BindingMode::ByValue(Mutability::Immutable); pat = self.parse_pat_ident(binding_mode)?; } else if self.token.is_path_start() { // Parse pattern starting with a path let (qself, path) = if self.eat_lt() { // Parse a qualified path let (qself, path) = self.parse_qpath(PathStyle::Expr)?; (Some(qself), path) } else { // Parse an unqualified path (None, self.parse_path(PathStyle::Expr)?) }; match self.token { token::Not if qself.is_none() => { // Parse macro invocation self.bump(); let (_, tts) = self.expect_delimited_token_tree()?; let mac = respan(lo.to(self.prev_span), Mac_ { path: path, tts: tts }); pat = PatKind::Mac(mac); } token::DotDotDot | token::DotDot => { let end_kind = match self.token { token::DotDot => RangeEnd::Excluded, token::DotDotDot => RangeEnd::Included, _ => panic!("can only parse `..` or `...` for ranges (checked above)"), }; // Parse range let span = lo.to(self.prev_span); let begin = self.mk_expr(span, ExprKind::Path(qself, path), ThinVec::new()); self.bump(); let end = self.parse_pat_range_end()?; pat = PatKind::Range(begin, end, end_kind); } token::OpenDelim(token::Brace) => { if qself.is_some() { return Err(self.fatal("unexpected `{` after qualified path")); } // Parse struct pattern self.bump(); let (fields, etc) = self.parse_pat_fields().unwrap_or_else(|mut e| { e.emit(); self.recover_stmt(); (vec![], false) }); self.bump(); pat = PatKind::Struct(path, fields, etc); } token::OpenDelim(token::Paren) => { if qself.is_some() { return Err(self.fatal("unexpected `(` after qualified path")); } // Parse tuple struct or enum pattern self.bump(); let (fields, ddpos) = self.parse_pat_tuple_elements(false)?; self.expect(&token::CloseDelim(token::Paren))?; pat = PatKind::TupleStruct(path, fields, ddpos) } _ => pat = PatKind::Path(qself, path), } } else { // Try to parse everything else as literal with optional minus match self.parse_pat_literal_maybe_minus() { Ok(begin) => { if self.eat(&token::DotDotDot) { let end = self.parse_pat_range_end()?; pat = PatKind::Range(begin, end, RangeEnd::Included); } else if self.eat(&token::DotDot) { let end = self.parse_pat_range_end()?; pat = PatKind::Range(begin, end, RangeEnd::Excluded); } else { pat = PatKind::Lit(begin); } } Err(mut err) => { self.cancel(&mut err); let msg = format!("expected pattern, found {}", self.this_token_descr()); return Err(self.fatal(&msg)); } } } } Ok(P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: lo.to(self.prev_span), })) } /// Parse ident or ident @ pat /// used by the copy foo and ref foo patterns to give a good /// error message when parsing mistakes like ref foo(a,b) fn parse_pat_ident(&mut self, binding_mode: ast::BindingMode) -> PResult<'a, PatKind> { let ident_span = self.span; let ident = self.parse_ident()?; let name = codemap::Spanned{span: ident_span, node: ident}; let sub = if self.eat(&token::At) { Some(self.parse_pat()?) } else { None }; // just to be friendly, if they write something like // ref Some(i) // we end up here with ( as the current token. This shortly // leads to a parse error. Note that if there is no explicit // binding mode then we do not end up here, because the lookahead // will direct us over to parse_enum_variant() if self.token == token::OpenDelim(token::Paren) { return Err(self.span_fatal( self.prev_span, "expected identifier, found enum pattern")) } Ok(PatKind::Ident(binding_mode, name, sub)) } /// Parse a local variable declaration fn parse_local(&mut self, attrs: ThinVec) -> PResult<'a, P> { let lo = self.prev_span; let pat = self.parse_pat()?; let ty = if self.eat(&token::Colon) { Some(self.parse_ty()?) } else { None }; let init = self.parse_initializer()?; Ok(P(ast::Local { ty: ty, pat: pat, init: init, id: ast::DUMMY_NODE_ID, span: lo.to(self.prev_span), attrs: attrs, })) } /// Parse a structure field fn parse_name_and_ty(&mut self, lo: Span, vis: Visibility, attrs: Vec) -> PResult<'a, StructField> { let name = self.parse_ident()?; self.expect(&token::Colon)?; let ty = self.parse_ty()?; Ok(StructField { span: lo.to(self.prev_span), ident: Some(name), vis: vis, id: ast::DUMMY_NODE_ID, ty: ty, attrs: attrs, }) } /// Emit an expected item after attributes error. fn expected_item_err(&self, attrs: &[Attribute]) { let message = match attrs.last() { Some(&Attribute { is_sugared_doc: true, .. }) => "expected item after doc comment", _ => "expected item after attributes", }; self.span_err(self.prev_span, message); } /// Parse a statement. This stops just before trailing semicolons on everything but items. /// e.g. a `StmtKind::Semi` parses to a `StmtKind::Expr`, leaving the trailing `;` unconsumed. pub fn parse_stmt(&mut self) -> PResult<'a, Option> { Ok(self.parse_stmt_(true)) } // Eat tokens until we can be relatively sure we reached the end of the // statement. This is something of a best-effort heuristic. // // We terminate when we find an unmatched `}` (without consuming it). fn recover_stmt(&mut self) { self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore) } // If `break_on_semi` is `Break`, then we will stop consuming tokens after // finding (and consuming) a `;` outside of `{}` or `[]` (note that this is // approximate - it can mean we break too early due to macros, but that // shoud only lead to sub-optimal recovery, not inaccurate parsing). // // If `break_on_block` is `Break`, then we will stop consuming tokens // after finding (and consuming) a brace-delimited block. fn recover_stmt_(&mut self, break_on_semi: SemiColonMode, break_on_block: BlockMode) { let mut brace_depth = 0; let mut bracket_depth = 0; let mut in_block = false; debug!("recover_stmt_ enter loop (semi={:?}, block={:?})", break_on_semi, break_on_block); loop { debug!("recover_stmt_ loop {:?}", self.token); match self.token { token::OpenDelim(token::DelimToken::Brace) => { brace_depth += 1; self.bump(); if break_on_block == BlockMode::Break && brace_depth == 1 && bracket_depth == 0 { in_block = true; } } token::OpenDelim(token::DelimToken::Bracket) => { bracket_depth += 1; self.bump(); } token::CloseDelim(token::DelimToken::Brace) => { if brace_depth == 0 { debug!("recover_stmt_ return - close delim {:?}", self.token); return; } brace_depth -= 1; self.bump(); if in_block && bracket_depth == 0 && brace_depth == 0 { debug!("recover_stmt_ return - block end {:?}", self.token); return; } } token::CloseDelim(token::DelimToken::Bracket) => { bracket_depth -= 1; if bracket_depth < 0 { bracket_depth = 0; } self.bump(); } token::Eof => { debug!("recover_stmt_ return - Eof"); return; } token::Semi => { self.bump(); if break_on_semi == SemiColonMode::Break && brace_depth == 0 && bracket_depth == 0 { debug!("recover_stmt_ return - Semi"); return; } } _ => { self.bump() } } } } fn parse_stmt_(&mut self, macro_legacy_warnings: bool) -> Option { self.parse_stmt_without_recovery(macro_legacy_warnings).unwrap_or_else(|mut e| { e.emit(); self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); None }) } fn is_catch_expr(&mut self) -> bool { self.token.is_keyword(keywords::Do) && self.look_ahead(1, |t| t.is_keyword(keywords::Catch)) && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) && // prevent `while catch {} {}`, `if catch {} {} else {}`, etc. !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) } fn is_union_item(&self) -> bool { self.token.is_keyword(keywords::Union) && self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident()) } fn is_defaultness(&self) -> bool { // `pub` is included for better error messages self.token.is_keyword(keywords::Default) && self.look_ahead(1, |t| t.is_keyword(keywords::Impl) || t.is_keyword(keywords::Const) || t.is_keyword(keywords::Fn) || t.is_keyword(keywords::Unsafe) || t.is_keyword(keywords::Extern) || t.is_keyword(keywords::Type) || t.is_keyword(keywords::Pub)) } fn eat_defaultness(&mut self) -> bool { let is_defaultness = self.is_defaultness(); if is_defaultness { self.bump() } else { self.expected_tokens.push(TokenType::Keyword(keywords::Default)); } is_defaultness } fn eat_macro_def(&mut self, attrs: &[Attribute], vis: &Visibility) -> PResult<'a, Option>> { let lo = self.span; let (ident, def) = match self.token { token::Ident(ident) if ident.name == keywords::Macro.name() => { self.bump(); let ident = self.parse_ident()?; let tokens = if self.check(&token::OpenDelim(token::Brace)) { match self.parse_token_tree() { TokenTree::Delimited(_, ref delimited) => delimited.stream(), _ => unreachable!(), } } else if self.check(&token::OpenDelim(token::Paren)) { let args = self.parse_token_tree(); let body = if self.check(&token::OpenDelim(token::Brace)) { self.parse_token_tree() } else { self.unexpected()?; unreachable!() }; TokenStream::concat(vec![ args.into(), TokenTree::Token(lo.to(self.prev_span), token::FatArrow).into(), body.into(), ]) } else { self.unexpected()?; unreachable!() }; (ident, ast::MacroDef { tokens: tokens.into(), legacy: false }) } token::Ident(ident) if ident.name == "macro_rules" && self.look_ahead(1, |t| *t == token::Not) => { let prev_span = self.prev_span; self.complain_if_pub_macro(vis, prev_span); self.bump(); self.bump(); let ident = self.parse_ident()?; let (delim, tokens) = self.expect_delimited_token_tree()?; if delim != token::Brace { if !self.eat(&token::Semi) { let msg = "macros that expand to items must either \ be surrounded with braces or followed by a semicolon"; self.span_err(self.prev_span, msg); } } (ident, ast::MacroDef { tokens: tokens, legacy: true }) } _ => return Ok(None), }; let span = lo.to(self.prev_span); Ok(Some(self.mk_item(span, ident, ItemKind::MacroDef(def), vis.clone(), attrs.to_vec()))) } fn parse_stmt_without_recovery(&mut self, macro_legacy_warnings: bool) -> PResult<'a, Option> { maybe_whole!(self, NtStmt, |x| Some(x)); let attrs = self.parse_outer_attributes()?; let lo = self.span; Ok(Some(if self.eat_keyword(keywords::Let) { Stmt { id: ast::DUMMY_NODE_ID, node: StmtKind::Local(self.parse_local(attrs.into())?), span: lo.to(self.prev_span), } } else if let Some(macro_def) = self.eat_macro_def(&attrs, &Visibility::Inherited)? { Stmt { id: ast::DUMMY_NODE_ID, node: StmtKind::Item(macro_def), span: lo.to(self.prev_span), } // Starts like a simple path, but not a union item. } else if self.token.is_path_start() && !self.token.is_qpath_start() && !self.is_union_item() { let pth = self.parse_path(PathStyle::Expr)?; if !self.eat(&token::Not) { let expr = if self.check(&token::OpenDelim(token::Brace)) { self.parse_struct_expr(lo, pth, ThinVec::new())? } else { let hi = self.prev_span; self.mk_expr(lo.to(hi), ExprKind::Path(None, pth), ThinVec::new()) }; let expr = self.with_res(RESTRICTION_STMT_EXPR, |this| { let expr = this.parse_dot_or_call_expr_with(expr, lo, attrs.into())?; this.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(expr)) })?; return Ok(Some(Stmt { id: ast::DUMMY_NODE_ID, node: StmtKind::Expr(expr), span: lo.to(self.prev_span), })); } // it's a macro invocation let id = match self.token { token::OpenDelim(_) => keywords::Invalid.ident(), // no special identifier _ => self.parse_ident()?, }; // check that we're pointing at delimiters (need to check // again after the `if`, because of `parse_ident` // consuming more tokens). let delim = match self.token { token::OpenDelim(delim) => delim, _ => { // we only expect an ident if we didn't parse one // above. let ident_str = if id.name == keywords::Invalid.name() { "identifier, " } else { "" }; let tok_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected {}`(` or `{{`, found `{}`", ident_str, tok_str))) }, }; let (_, tts) = self.expect_delimited_token_tree()?; let hi = self.prev_span; let style = if delim == token::Brace { MacStmtStyle::Braces } else { MacStmtStyle::NoBraces }; if id.name == keywords::Invalid.name() { let mac = respan(lo.to(hi), Mac_ { path: pth, tts: tts }); let node = if delim == token::Brace || self.token == token::Semi || self.token == token::Eof { StmtKind::Mac(P((mac, style, attrs.into()))) } // We used to incorrectly stop parsing macro-expanded statements here. // If the next token will be an error anyway but could have parsed with the // earlier behavior, stop parsing here and emit a warning to avoid breakage. else if macro_legacy_warnings && self.token.can_begin_expr() && match self.token { // These can continue an expression, so we can't stop parsing and warn. token::OpenDelim(token::Paren) | token::OpenDelim(token::Bracket) | token::BinOp(token::Minus) | token::BinOp(token::Star) | token::BinOp(token::And) | token::BinOp(token::Or) | token::AndAnd | token::OrOr | token::DotDot | token::DotDotDot => false, _ => true, } { self.warn_missing_semicolon(); StmtKind::Mac(P((mac, style, attrs.into()))) } else { let e = self.mk_mac_expr(lo.to(hi), mac.node, ThinVec::new()); let e = self.parse_dot_or_call_expr_with(e, lo, attrs.into())?; let e = self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e))?; StmtKind::Expr(e) }; Stmt { id: ast::DUMMY_NODE_ID, span: lo.to(hi), node: node, } } else { // if it has a special ident, it's definitely an item // // Require a semicolon or braces. if style != MacStmtStyle::Braces { if !self.eat(&token::Semi) { self.span_err(self.prev_span, "macros that expand to items must \ either be surrounded with braces or \ followed by a semicolon"); } } let span = lo.to(hi); Stmt { id: ast::DUMMY_NODE_ID, span: span, node: StmtKind::Item({ self.mk_item( span, id /*id is good here*/, ItemKind::Mac(respan(span, Mac_ { path: pth, tts: tts })), Visibility::Inherited, attrs) }), } } } else { // FIXME: Bad copy of attrs let old_directory_ownership = mem::replace(&mut self.directory.ownership, DirectoryOwnership::UnownedViaBlock); let item = self.parse_item_(attrs.clone(), false, true)?; self.directory.ownership = old_directory_ownership; match item { Some(i) => Stmt { id: ast::DUMMY_NODE_ID, span: lo.to(i.span), node: StmtKind::Item(i), }, None => { let unused_attrs = |attrs: &[_], s: &mut Self| { if !attrs.is_empty() { if s.prev_token_kind == PrevTokenKind::DocComment { s.span_fatal_err(s.prev_span, Error::UselessDocComment).emit(); } else { s.span_err(s.span, "expected statement after outer attribute"); } } }; // Do not attempt to parse an expression if we're done here. if self.token == token::Semi { unused_attrs(&attrs, self); self.bump(); return Ok(None); } if self.token == token::CloseDelim(token::Brace) { unused_attrs(&attrs, self); return Ok(None); } // Remainder are line-expr stmts. let e = self.parse_expr_res( RESTRICTION_STMT_EXPR, Some(attrs.into()))?; Stmt { id: ast::DUMMY_NODE_ID, span: lo.to(e.span), node: StmtKind::Expr(e), } } } })) } /// Is this expression a successfully-parsed statement? fn expr_is_complete(&mut self, e: &Expr) -> bool { self.restrictions.contains(RESTRICTION_STMT_EXPR) && !classify::expr_requires_semi_to_be_stmt(e) } /// Parse a block. No inner attrs are allowed. pub fn parse_block(&mut self) -> PResult<'a, P> { maybe_whole!(self, NtBlock, |x| x); let lo = self.span; if !self.eat(&token::OpenDelim(token::Brace)) { let sp = self.span; let tok = self.this_token_to_string(); let mut e = self.span_fatal(sp, &format!("expected `{{`, found `{}`", tok)); // Check to see if the user has written something like // // if (cond) // bar; // // Which is valid in other languages, but not Rust. match self.parse_stmt_without_recovery(false) { Ok(Some(stmt)) => { let mut stmt_span = stmt.span; // expand the span to include the semicolon, if it exists if self.eat(&token::Semi) { stmt_span.hi = self.prev_span.hi; } let sugg = pprust::to_string(|s| { use print::pprust::{PrintState, INDENT_UNIT}; s.ibox(INDENT_UNIT)?; s.bopen()?; s.print_stmt(&stmt)?; s.bclose_maybe_open(stmt.span, INDENT_UNIT, false) }); e.span_suggestion(stmt_span, "try placing this code inside a block", sugg); } Err(mut e) => { self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); self.cancel(&mut e); } _ => () } return Err(e); } self.parse_block_tail(lo, BlockCheckMode::Default) } /// Parse a block. Inner attrs are allowed. fn parse_inner_attrs_and_block(&mut self) -> PResult<'a, (Vec, P)> { maybe_whole!(self, NtBlock, |x| (Vec::new(), x)); let lo = self.span; self.expect(&token::OpenDelim(token::Brace))?; Ok((self.parse_inner_attributes()?, self.parse_block_tail(lo, BlockCheckMode::Default)?)) } /// Parse the rest of a block expression or function body /// Precondition: already parsed the '{'. fn parse_block_tail(&mut self, lo: Span, s: BlockCheckMode) -> PResult<'a, P> { let mut stmts = vec![]; while !self.eat(&token::CloseDelim(token::Brace)) { if let Some(stmt) = self.parse_full_stmt(false)? { stmts.push(stmt); } else if self.token == token::Eof { break; } else { // Found only `;` or `}`. continue; }; } Ok(P(ast::Block { stmts: stmts, id: ast::DUMMY_NODE_ID, rules: s, span: lo.to(self.prev_span), })) } /// Parse a statement, including the trailing semicolon. pub fn parse_full_stmt(&mut self, macro_legacy_warnings: bool) -> PResult<'a, Option> { let mut stmt = match self.parse_stmt_(macro_legacy_warnings) { Some(stmt) => stmt, None => return Ok(None), }; match stmt.node { StmtKind::Expr(ref expr) if self.token != token::Eof => { // expression without semicolon if classify::expr_requires_semi_to_be_stmt(expr) { // Just check for errors and recover; do not eat semicolon yet. if let Err(mut e) = self.expect_one_of(&[], &[token::Semi, token::CloseDelim(token::Brace)]) { e.emit(); self.recover_stmt(); } } } StmtKind::Local(..) => { // We used to incorrectly allow a macro-expanded let statement to lack a semicolon. if macro_legacy_warnings && self.token != token::Semi { self.warn_missing_semicolon(); } else { self.expect_one_of(&[token::Semi], &[])?; } } _ => {} } if self.eat(&token::Semi) { stmt = stmt.add_trailing_semicolon(); } stmt.span.hi = self.prev_span.hi; Ok(Some(stmt)) } fn warn_missing_semicolon(&self) { self.diagnostic().struct_span_warn(self.span, { &format!("expected `;`, found `{}`", self.this_token_to_string()) }).note({ "This was erroneously allowed and will become a hard error in a future release" }).emit(); } // Parse bounds of a type parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`. // BOUND = TY_BOUND | LT_BOUND // LT_BOUND = LIFETIME (e.g. `'a`) // TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN) // TY_BOUND_NOPAREN = [?] [for] SIMPLE_PATH (e.g. `?for<'a: 'b> m::Trait<'a>`) fn parse_ty_param_bounds_common(&mut self, allow_plus: bool) -> PResult<'a, TyParamBounds> { let mut bounds = Vec::new(); loop { let is_bound_start = self.check_path() || self.check_lifetime() || self.check(&token::Question) || self.check_keyword(keywords::For) || self.check(&token::OpenDelim(token::Paren)); if is_bound_start { let has_parens = self.eat(&token::OpenDelim(token::Paren)); let question = if self.eat(&token::Question) { Some(self.prev_span) } else { None }; if self.token.is_lifetime() { if let Some(question_span) = question { self.span_err(question_span, "`?` may only modify trait bounds, not lifetime bounds"); } bounds.push(RegionTyParamBound(self.expect_lifetime())); } else { let lo = self.span; let lifetime_defs = self.parse_late_bound_lifetime_defs()?; let path = self.parse_path(PathStyle::Type)?; let poly_trait = PolyTraitRef::new(lifetime_defs, path, lo.to(self.prev_span)); let modifier = if question.is_some() { TraitBoundModifier::Maybe } else { TraitBoundModifier::None }; bounds.push(TraitTyParamBound(poly_trait, modifier)); } if has_parens { self.expect(&token::CloseDelim(token::Paren))?; if let Some(&RegionTyParamBound(..)) = bounds.last() { self.span_err(self.prev_span, "parenthesized lifetime bounds are not supported"); } } } else { break } if !allow_plus || !self.eat(&token::BinOp(token::Plus)) { break } } return Ok(bounds); } fn parse_ty_param_bounds(&mut self) -> PResult<'a, TyParamBounds> { self.parse_ty_param_bounds_common(true) } // Parse bounds of a lifetime parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`. // BOUND = LT_BOUND (e.g. `'a`) fn parse_lt_param_bounds(&mut self) -> Vec { let mut lifetimes = Vec::new(); while self.check_lifetime() { lifetimes.push(self.expect_lifetime()); if !self.eat(&token::BinOp(token::Plus)) { break } } lifetimes } /// Matches typaram = IDENT (`?` unbound)? optbounds ( EQ ty )? fn parse_ty_param(&mut self, preceding_attrs: Vec) -> PResult<'a, TyParam> { let span = self.span; let ident = self.parse_ident()?; // Parse optional colon and param bounds. let bounds = if self.eat(&token::Colon) { self.parse_ty_param_bounds()? } else { Vec::new() }; let default = if self.eat(&token::Eq) { Some(self.parse_ty()?) } else { None }; Ok(TyParam { attrs: preceding_attrs.into(), ident: ident, id: ast::DUMMY_NODE_ID, bounds: bounds, default: default, span: span, }) } /// Parses (possibly empty) list of lifetime and type parameters, possibly including /// trailing comma and erroneous trailing attributes. pub fn parse_generic_params(&mut self) -> PResult<'a, (Vec, Vec)> { let mut lifetime_defs = Vec::new(); let mut ty_params = Vec::new(); let mut seen_ty_param = false; loop { let attrs = self.parse_outer_attributes()?; if self.check_lifetime() { let lifetime = self.expect_lifetime(); // Parse lifetime parameter. let bounds = if self.eat(&token::Colon) { self.parse_lt_param_bounds() } else { Vec::new() }; lifetime_defs.push(LifetimeDef { attrs: attrs.into(), lifetime: lifetime, bounds: bounds, }); if seen_ty_param { self.span_err(self.prev_span, "lifetime parameters must be declared prior to type parameters"); } } else if self.check_ident() { // Parse type parameter. ty_params.push(self.parse_ty_param(attrs)?); seen_ty_param = true; } else { // Check for trailing attributes and stop parsing. if !attrs.is_empty() { let param_kind = if seen_ty_param { "type" } else { "lifetime" }; self.span_err(attrs[0].span, &format!("trailing attribute after {} parameters", param_kind)); } break } if !self.eat(&token::Comma) { break } } Ok((lifetime_defs, ty_params)) } /// Parse a set of optional generic type parameter declarations. Where /// clauses are not parsed here, and must be added later via /// `parse_where_clause()`. /// /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > ) /// | ( < lifetimes , typaramseq ( , )? > ) /// where typaramseq = ( typaram ) | ( typaram , typaramseq ) pub fn parse_generics(&mut self) -> PResult<'a, ast::Generics> { maybe_whole!(self, NtGenerics, |x| x); let span_lo = self.span; if self.eat_lt() { let (lifetime_defs, ty_params) = self.parse_generic_params()?; self.expect_gt()?; Ok(ast::Generics { lifetimes: lifetime_defs, ty_params: ty_params, where_clause: WhereClause { id: ast::DUMMY_NODE_ID, predicates: Vec::new(), span: syntax_pos::DUMMY_SP, }, span: span_lo.to(self.prev_span), }) } else { Ok(ast::Generics::default()) } } /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings, /// possibly including trailing comma. fn parse_generic_args(&mut self) -> PResult<'a, (Vec, Vec>, Vec)> { let mut lifetimes = Vec::new(); let mut types = Vec::new(); let mut bindings = Vec::new(); let mut seen_type = false; let mut seen_binding = false; loop { if self.check_lifetime() && self.look_ahead(1, |t| t != &token::BinOp(token::Plus)) { // Parse lifetime argument. lifetimes.push(self.expect_lifetime()); if seen_type || seen_binding { self.span_err(self.prev_span, "lifetime parameters must be declared prior to type parameters"); } } else if self.check_ident() && self.look_ahead(1, |t| t == &token::Eq) { // Parse associated type binding. let lo = self.span; let ident = self.parse_ident()?; self.bump(); let ty = self.parse_ty()?; bindings.push(TypeBinding { id: ast::DUMMY_NODE_ID, ident: ident, ty: ty, span: lo.to(self.prev_span), }); seen_binding = true; } else if self.check_type() { // Parse type argument. types.push(self.parse_ty()?); if seen_binding { self.span_err(types[types.len() - 1].span, "type parameters must be declared prior to associated type bindings"); } seen_type = true; } else { break } if !self.eat(&token::Comma) { break } } Ok((lifetimes, types, bindings)) } /// Parses an optional `where` clause and places it in `generics`. /// /// ```ignore (only-for-syntax-highlight) /// where T : Trait + 'b, 'a : 'b /// ``` pub fn parse_where_clause(&mut self) -> PResult<'a, WhereClause> { maybe_whole!(self, NtWhereClause, |x| x); let mut where_clause = WhereClause { id: ast::DUMMY_NODE_ID, predicates: Vec::new(), span: syntax_pos::DUMMY_SP, }; if !self.eat_keyword(keywords::Where) { return Ok(where_clause); } let lo = self.prev_span; // This is a temporary future proofing. // // We are considering adding generics to the `where` keyword as an alternative higher-rank // parameter syntax (as in `where<'a>` or `where`. To avoid that being a breaking // change, for now we refuse to parse `where < (ident | lifetime) (> | , | :)`. if token::Lt == self.token { let ident_or_lifetime = self.look_ahead(1, |t| t.is_ident() || t.is_lifetime()); if ident_or_lifetime { let gt_comma_or_colon = self.look_ahead(2, |t| { *t == token::Gt || *t == token::Comma || *t == token::Colon }); if gt_comma_or_colon { self.span_err(self.span, "syntax `where` is reserved for future use"); } } } loop { let lo = self.span; if self.check_lifetime() && self.look_ahead(1, |t| t != &token::BinOp(token::Plus)) { let lifetime = self.expect_lifetime(); // Bounds starting with a colon are mandatory, but possibly empty. self.expect(&token::Colon)?; let bounds = self.parse_lt_param_bounds(); where_clause.predicates.push(ast::WherePredicate::RegionPredicate( ast::WhereRegionPredicate { span: lo.to(self.prev_span), lifetime: lifetime, bounds: bounds, } )); } else if self.check_type() { // Parse optional `for<'a, 'b>`. // This `for` is parsed greedily and applies to the whole predicate, // the bounded type can have its own `for` applying only to it. // Example 1: for<'a> Trait1<'a>: Trait2<'a /*ok*/> // Example 2: (for<'a> Trait1<'a>): Trait2<'a /*not ok*/> // Example 3: for<'a> for<'b> Trait1<'a, 'b>: Trait2<'a /*ok*/, 'b /*not ok*/> let lifetime_defs = self.parse_late_bound_lifetime_defs()?; // Parse type with mandatory colon and (possibly empty) bounds, // or with mandatory equality sign and the second type. let ty = self.parse_ty()?; if self.eat(&token::Colon) { let bounds = self.parse_ty_param_bounds()?; where_clause.predicates.push(ast::WherePredicate::BoundPredicate( ast::WhereBoundPredicate { span: lo.to(self.prev_span), bound_lifetimes: lifetime_defs, bounded_ty: ty, bounds: bounds, } )); // FIXME: Decide what should be used here, `=` or `==`. } else if self.eat(&token::Eq) || self.eat(&token::EqEq) { let rhs_ty = self.parse_ty()?; where_clause.predicates.push(ast::WherePredicate::EqPredicate( ast::WhereEqPredicate { span: lo.to(self.prev_span), lhs_ty: ty, rhs_ty: rhs_ty, id: ast::DUMMY_NODE_ID, } )); } else { return self.unexpected(); } } else { break } if !self.eat(&token::Comma) { break } } where_clause.span = lo.to(self.prev_span); Ok(where_clause) } fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool) -> PResult<'a, (Vec , bool)> { let sp = self.span; let mut variadic = false; let args: Vec> = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), SeqSep::trailing_allowed(token::Comma), |p| { if p.token == token::DotDotDot { p.bump(); if allow_variadic { if p.token != token::CloseDelim(token::Paren) { let span = p.span; p.span_err(span, "`...` must be last in argument list for variadic function"); } } else { let span = p.span; p.span_err(span, "only foreign functions are allowed to be variadic"); } variadic = true; Ok(None) } else { match p.parse_arg_general(named_args) { Ok(arg) => Ok(Some(arg)), Err(mut e) => { e.emit(); let lo = p.prev_span; // Skip every token until next possible arg or end. p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(token::Paren)]); // Create a placeholder argument for proper arg count (#34264). let span = lo.to(p.prev_span); Ok(Some(dummy_arg(span))) } } } } )?; let args: Vec<_> = args.into_iter().filter_map(|x| x).collect(); if variadic && args.is_empty() { self.span_err(sp, "variadic function must be declared with at least one named argument"); } Ok((args, variadic)) } /// Parse the argument list and result type of a function declaration pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<'a, P> { let (args, variadic) = self.parse_fn_args(true, allow_variadic)?; let ret_ty = self.parse_ret_ty()?; Ok(P(FnDecl { inputs: args, output: ret_ty, variadic: variadic })) } /// Returns the parsed optional self argument and whether a self shortcut was used. fn parse_self_arg(&mut self) -> PResult<'a, Option> { let expect_ident = |this: &mut Self| match this.token { // Preserve hygienic context. token::Ident(ident) => { let sp = this.span; this.bump(); codemap::respan(sp, ident) } _ => unreachable!() }; let isolated_self = |this: &mut Self, n| { this.look_ahead(n, |t| t.is_keyword(keywords::SelfValue)) && this.look_ahead(n + 1, |t| t != &token::ModSep) }; // Parse optional self parameter of a method. // Only a limited set of initial token sequences is considered self parameters, anything // else is parsed as a normal function parameter list, so some lookahead is required. let eself_lo = self.span; let (eself, eself_ident) = match self.token { token::BinOp(token::And) => { // &self // &mut self // &'lt self // &'lt mut self // ¬_self if isolated_self(self, 1) { self.bump(); (SelfKind::Region(None, Mutability::Immutable), expect_ident(self)) } else if self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) && isolated_self(self, 2) { self.bump(); self.bump(); (SelfKind::Region(None, Mutability::Mutable), expect_ident(self)) } else if self.look_ahead(1, |t| t.is_lifetime()) && isolated_self(self, 2) { self.bump(); let lt = self.expect_lifetime(); (SelfKind::Region(Some(lt), Mutability::Immutable), expect_ident(self)) } else if self.look_ahead(1, |t| t.is_lifetime()) && self.look_ahead(2, |t| t.is_keyword(keywords::Mut)) && isolated_self(self, 3) { self.bump(); let lt = self.expect_lifetime(); self.bump(); (SelfKind::Region(Some(lt), Mutability::Mutable), expect_ident(self)) } else { return Ok(None); } } token::BinOp(token::Star) => { // *self // *const self // *mut self // *not_self // Emit special error for `self` cases. if isolated_self(self, 1) { self.bump(); self.span_err(self.span, "cannot pass `self` by raw pointer"); (SelfKind::Value(Mutability::Immutable), expect_ident(self)) } else if self.look_ahead(1, |t| t.is_mutability()) && isolated_self(self, 2) { self.bump(); self.bump(); self.span_err(self.span, "cannot pass `self` by raw pointer"); (SelfKind::Value(Mutability::Immutable), expect_ident(self)) } else { return Ok(None); } } token::Ident(..) => { if isolated_self(self, 0) { // self // self: TYPE let eself_ident = expect_ident(self); if self.eat(&token::Colon) { let ty = self.parse_ty()?; (SelfKind::Explicit(ty, Mutability::Immutable), eself_ident) } else { (SelfKind::Value(Mutability::Immutable), eself_ident) } } else if self.token.is_keyword(keywords::Mut) && isolated_self(self, 1) { // mut self // mut self: TYPE self.bump(); let eself_ident = expect_ident(self); if self.eat(&token::Colon) { let ty = self.parse_ty()?; (SelfKind::Explicit(ty, Mutability::Mutable), eself_ident) } else { (SelfKind::Value(Mutability::Mutable), eself_ident) } } else { return Ok(None); } } _ => return Ok(None), }; let eself = codemap::respan(eself_lo.to(self.prev_span), eself); Ok(Some(Arg::from_self(eself, eself_ident))) } /// Parse the parameter list and result type of a function that may have a `self` parameter. fn parse_fn_decl_with_self(&mut self, parse_arg_fn: F) -> PResult<'a, P> where F: FnMut(&mut Parser<'a>) -> PResult<'a, Arg>, { self.expect(&token::OpenDelim(token::Paren))?; // Parse optional self argument let self_arg = self.parse_self_arg()?; // Parse the rest of the function parameter list. let sep = SeqSep::trailing_allowed(token::Comma); let fn_inputs = if let Some(self_arg) = self_arg { if self.check(&token::CloseDelim(token::Paren)) { vec![self_arg] } else if self.eat(&token::Comma) { let mut fn_inputs = vec![self_arg]; fn_inputs.append(&mut self.parse_seq_to_before_end( &token::CloseDelim(token::Paren), sep, parse_arg_fn) ); fn_inputs } else { return self.unexpected(); } } else { self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn) }; // Parse closing paren and return type. self.expect(&token::CloseDelim(token::Paren))?; Ok(P(FnDecl { inputs: fn_inputs, output: self.parse_ret_ty()?, variadic: false })) } // parse the |arg, arg| header on a lambda fn parse_fn_block_decl(&mut self) -> PResult<'a, P> { let inputs_captures = { if self.eat(&token::OrOr) { Vec::new() } else { self.expect(&token::BinOp(token::Or))?; let args = self.parse_seq_to_before_end( &token::BinOp(token::Or), SeqSep::trailing_allowed(token::Comma), |p| p.parse_fn_block_arg() ); self.bump(); args } }; let output = self.parse_ret_ty()?; Ok(P(FnDecl { inputs: inputs_captures, output: output, variadic: false })) } /// Parse the name and optional generic types of a function header. fn parse_fn_header(&mut self) -> PResult<'a, (Ident, ast::Generics)> { let id = self.parse_ident()?; let generics = self.parse_generics()?; Ok((id, generics)) } fn mk_item(&mut self, span: Span, ident: Ident, node: ItemKind, vis: Visibility, attrs: Vec) -> P { P(Item { ident: ident, attrs: attrs, id: ast::DUMMY_NODE_ID, node: node, vis: vis, span: span, tokens: None, }) } /// Parse an item-position function declaration. fn parse_item_fn(&mut self, unsafety: Unsafety, constness: Spanned, abi: abi::Abi) -> PResult<'a, ItemInfo> { let (ident, mut generics) = self.parse_fn_header()?; let decl = self.parse_fn_decl(false)?; generics.where_clause = self.parse_where_clause()?; let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; Ok((ident, ItemKind::Fn(decl, unsafety, constness, abi, generics, body), Some(inner_attrs))) } /// true if we are looking at `const ID`, false for things like `const fn` etc pub fn is_const_item(&mut self) -> bool { self.token.is_keyword(keywords::Const) && !self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) && !self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe)) } /// parses all the "front matter" for a `fn` declaration, up to /// and including the `fn` keyword: /// /// - `const fn` /// - `unsafe fn` /// - `const unsafe fn` /// - `extern fn` /// - etc pub fn parse_fn_front_matter(&mut self) -> PResult<'a, (Spanned, ast::Unsafety, abi::Abi)> { let is_const_fn = self.eat_keyword(keywords::Const); let const_span = self.prev_span; let unsafety = self.parse_unsafety()?; let (constness, unsafety, abi) = if is_const_fn { (respan(const_span, Constness::Const), unsafety, Abi::Rust) } else { let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi()?.unwrap_or(Abi::C) } else { Abi::Rust }; (respan(self.prev_span, Constness::NotConst), unsafety, abi) }; self.expect_keyword(keywords::Fn)?; Ok((constness, unsafety, abi)) } /// Parse an impl item. pub fn parse_impl_item(&mut self, at_end: &mut bool) -> PResult<'a, ImplItem> { maybe_whole!(self, NtImplItem, |x| x); let attrs = self.parse_outer_attributes()?; let (mut item, tokens) = self.collect_tokens(|this| { this.parse_impl_item_(at_end, attrs) })?; // See `parse_item` for why this clause is here. if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { item.tokens = Some(tokens); } Ok(item) } fn parse_impl_item_(&mut self, at_end: &mut bool, mut attrs: Vec) -> PResult<'a, ImplItem> { let lo = self.span; let vis = self.parse_visibility(false)?; let defaultness = self.parse_defaultness()?; let (name, node) = if self.eat_keyword(keywords::Type) { let name = self.parse_ident()?; self.expect(&token::Eq)?; let typ = self.parse_ty()?; self.expect(&token::Semi)?; (name, ast::ImplItemKind::Type(typ)) } else if self.is_const_item() { self.expect_keyword(keywords::Const)?; let name = self.parse_ident()?; self.expect(&token::Colon)?; let typ = self.parse_ty()?; self.expect(&token::Eq)?; let expr = self.parse_expr()?; self.expect(&token::Semi)?; (name, ast::ImplItemKind::Const(typ, expr)) } else { let (name, inner_attrs, node) = self.parse_impl_method(&vis, at_end)?; attrs.extend(inner_attrs); (name, node) }; Ok(ImplItem { id: ast::DUMMY_NODE_ID, span: lo.to(self.prev_span), ident: name, vis: vis, defaultness: defaultness, attrs: attrs, node: node, tokens: None, }) } fn complain_if_pub_macro(&mut self, vis: &Visibility, sp: Span) { if let Err(mut err) = self.complain_if_pub_macro_diag(vis, sp) { err.emit(); } } fn complain_if_pub_macro_diag(&mut self, vis: &Visibility, sp: Span) -> PResult<'a, ()> { match *vis { Visibility::Inherited => Ok(()), _ => { let is_macro_rules: bool = match self.token { token::Ident(sid) => sid.name == Symbol::intern("macro_rules"), _ => false, }; if is_macro_rules { let mut err = self.diagnostic() .struct_span_err(sp, "can't qualify macro_rules invocation with `pub`"); err.help("did you mean #[macro_export]?"); Err(err) } else { let mut err = self.diagnostic() .struct_span_err(sp, "can't qualify macro invocation with `pub`"); err.help("try adjusting the macro to put `pub` inside the invocation"); Err(err) } } } } fn missing_assoc_item_kind_err(&mut self, item_type: &str, prev_span: Span) -> DiagnosticBuilder<'a> { // Given this code `path(`, it seems like this is not // setting the visibility of a macro invocation, but rather // a mistyped method declaration. // Create a diagnostic pointing out that `fn` is missing. // // x | pub path(&self) { // | ^ missing `fn`, `type`, or `const` // pub path( // ^^ `sp` below will point to this let sp = prev_span.between(self.prev_span); let mut err = self.diagnostic().struct_span_err( sp, &format!("missing `fn`, `type`, or `const` for {}-item declaration", item_type)); err.span_label(sp, "missing `fn`, `type`, or `const`"); err } /// Parse a method or a macro invocation in a trait impl. fn parse_impl_method(&mut self, vis: &Visibility, at_end: &mut bool) -> PResult<'a, (Ident, Vec, ast::ImplItemKind)> { // code copied from parse_macro_use_or_failure... abstraction! if self.token.is_path_start() { // Method macro. let prev_span = self.prev_span; let lo = self.span; let pth = self.parse_path(PathStyle::Mod)?; if pth.segments.len() == 1 { if !self.eat(&token::Not) { return Err(self.missing_assoc_item_kind_err("impl", prev_span)); } } else { self.expect(&token::Not)?; } self.complain_if_pub_macro(vis, prev_span); // eat a matched-delimiter token tree: *at_end = true; let (delim, tts) = self.expect_delimited_token_tree()?; if delim != token::Brace { self.expect(&token::Semi)? } let mac = respan(lo.to(self.prev_span), Mac_ { path: pth, tts: tts }); Ok((keywords::Invalid.ident(), vec![], ast::ImplItemKind::Macro(mac))) } else { let (constness, unsafety, abi) = self.parse_fn_front_matter()?; let ident = self.parse_ident()?; let mut generics = self.parse_generics()?; let decl = self.parse_fn_decl_with_self(|p| p.parse_arg())?; generics.where_clause = self.parse_where_clause()?; *at_end = true; let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; Ok((ident, inner_attrs, ast::ImplItemKind::Method(ast::MethodSig { generics: generics, abi: abi, unsafety: unsafety, constness: constness, decl: decl }, body))) } } /// Parse trait Foo { ... } fn parse_item_trait(&mut self, unsafety: Unsafety) -> PResult<'a, ItemInfo> { let ident = self.parse_ident()?; let mut tps = self.parse_generics()?; // Parse optional colon and supertrait bounds. let bounds = if self.eat(&token::Colon) { self.parse_ty_param_bounds()? } else { Vec::new() }; tps.where_clause = self.parse_where_clause()?; self.expect(&token::OpenDelim(token::Brace))?; let mut trait_items = vec![]; while !self.eat(&token::CloseDelim(token::Brace)) { let mut at_end = false; match self.parse_trait_item(&mut at_end) { Ok(item) => trait_items.push(item), Err(mut e) => { e.emit(); if !at_end { self.recover_stmt_(SemiColonMode::Break, BlockMode::Break); } } } } Ok((ident, ItemKind::Trait(unsafety, tps, bounds, trait_items), None)) } /// Parses items implementations variants /// impl Foo { ... } /// impl ToString for &'static T { ... } /// impl Send for .. {} fn parse_item_impl(&mut self, unsafety: ast::Unsafety, defaultness: Defaultness) -> PResult<'a, ItemInfo> { let impl_span = self.span; // First, parse type parameters if necessary. let mut generics = self.parse_generics()?; // Special case: if the next identifier that follows is '(', don't // allow this to be parsed as a trait. let could_be_trait = self.token != token::OpenDelim(token::Paren); let neg_span = self.span; let polarity = if self.eat(&token::Not) { ast::ImplPolarity::Negative } else { ast::ImplPolarity::Positive }; // Parse the trait. let mut ty = self.parse_ty()?; // Parse traits, if necessary. let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) { // New-style trait. Reinterpret the type as a trait. match ty.node { TyKind::Path(None, ref path) => { Some(TraitRef { path: (*path).clone(), ref_id: ty.id, }) } _ => { self.span_err(ty.span, "not a trait"); None } } } else { if polarity == ast::ImplPolarity::Negative { // This is a negated type implementation // `impl !MyType {}`, which is not allowed. self.span_err(neg_span, "inherent implementation can't be negated"); } None }; if opt_trait.is_some() && self.eat(&token::DotDot) { if generics.is_parameterized() { self.span_err(impl_span, "default trait implementations are not \ allowed to have generics"); } if let ast::Defaultness::Default = defaultness { self.span_err(impl_span, "`default impl` is not allowed for \ default trait implementations"); } self.expect(&token::OpenDelim(token::Brace))?; self.expect(&token::CloseDelim(token::Brace))?; Ok((keywords::Invalid.ident(), ItemKind::DefaultImpl(unsafety, opt_trait.unwrap()), None)) } else { if opt_trait.is_some() { ty = self.parse_ty()?; } generics.where_clause = self.parse_where_clause()?; self.expect(&token::OpenDelim(token::Brace))?; let attrs = self.parse_inner_attributes()?; let mut impl_items = vec![]; while !self.eat(&token::CloseDelim(token::Brace)) { let mut at_end = false; match self.parse_impl_item(&mut at_end) { Ok(item) => impl_items.push(item), Err(mut e) => { e.emit(); if !at_end { self.recover_stmt_(SemiColonMode::Break, BlockMode::Break); } } } } Ok((keywords::Invalid.ident(), ItemKind::Impl(unsafety, polarity, defaultness, generics, opt_trait, ty, impl_items), Some(attrs))) } } fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec> { if self.eat_keyword(keywords::For) { self.expect_lt()?; let (lifetime_defs, ty_params) = self.parse_generic_params()?; self.expect_gt()?; if !ty_params.is_empty() { self.span_err(ty_params[0].span, "only lifetime parameters can be used in this context"); } Ok(lifetime_defs) } else { Ok(Vec::new()) } } /// Parse struct Foo { ... } fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> { let class_name = self.parse_ident()?; let mut generics = self.parse_generics()?; // There is a special case worth noting here, as reported in issue #17904. // If we are parsing a tuple struct it is the case that the where clause // should follow the field list. Like so: // // struct Foo(T) where T: Copy; // // If we are parsing a normal record-style struct it is the case // that the where clause comes before the body, and after the generics. // So if we look ahead and see a brace or a where-clause we begin // parsing a record style struct. // // Otherwise if we look ahead and see a paren we parse a tuple-style // struct. let vdata = if self.token.is_keyword(keywords::Where) { generics.where_clause = self.parse_where_clause()?; if self.eat(&token::Semi) { // If we see a: `struct Foo where T: Copy;` style decl. VariantData::Unit(ast::DUMMY_NODE_ID) } else { // If we see: `struct Foo where T: Copy { ... }` VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) } // No `where` so: `struct Foo;` } else if self.eat(&token::Semi) { VariantData::Unit(ast::DUMMY_NODE_ID) // Record-style struct definition } else if self.token == token::OpenDelim(token::Brace) { VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) // Tuple-style struct definition with optional where-clause. } else if self.token == token::OpenDelim(token::Paren) { let body = VariantData::Tuple(self.parse_tuple_struct_body()?, ast::DUMMY_NODE_ID); generics.where_clause = self.parse_where_clause()?; self.expect(&token::Semi)?; body } else { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected `where`, `{{`, `(`, or `;` after struct \ name, found `{}`", token_str))) }; Ok((class_name, ItemKind::Struct(vdata, generics), None)) } /// Parse union Foo { ... } fn parse_item_union(&mut self) -> PResult<'a, ItemInfo> { let class_name = self.parse_ident()?; let mut generics = self.parse_generics()?; let vdata = if self.token.is_keyword(keywords::Where) { generics.where_clause = self.parse_where_clause()?; VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) } else if self.token == token::OpenDelim(token::Brace) { VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) } else { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected `where` or `{{` after union \ name, found `{}`", token_str))) }; Ok((class_name, ItemKind::Union(vdata, generics), None)) } pub fn parse_record_struct_body(&mut self) -> PResult<'a, Vec> { let mut fields = Vec::new(); if self.eat(&token::OpenDelim(token::Brace)) { while self.token != token::CloseDelim(token::Brace) { fields.push(self.parse_struct_decl_field().map_err(|e| { self.recover_stmt(); self.eat(&token::CloseDelim(token::Brace)); e })?); } self.bump(); } else { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected `where`, or `{{` after struct \ name, found `{}`", token_str))); } Ok(fields) } pub fn parse_tuple_struct_body(&mut self) -> PResult<'a, Vec> { // This is the case where we find `struct Foo(T) where T: Copy;` // Unit like structs are handled in parse_item_struct function let fields = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), SeqSep::trailing_allowed(token::Comma), |p| { let attrs = p.parse_outer_attributes()?; let lo = p.span; let vis = p.parse_visibility(true)?; let ty = p.parse_ty()?; Ok(StructField { span: lo.to(p.span), vis: vis, ident: None, id: ast::DUMMY_NODE_ID, ty: ty, attrs: attrs, }) })?; Ok(fields) } /// Parse a structure field declaration pub fn parse_single_struct_field(&mut self, lo: Span, vis: Visibility, attrs: Vec ) -> PResult<'a, StructField> { let a_var = self.parse_name_and_ty(lo, vis, attrs)?; match self.token { token::Comma => { self.bump(); } token::CloseDelim(token::Brace) => {} token::DocComment(_) => return Err(self.span_fatal_err(self.span, Error::UselessDocComment)), _ => return Err(self.span_fatal_help(self.span, &format!("expected `,`, or `}}`, found `{}`", self.this_token_to_string()), "struct fields should be separated by commas")), } Ok(a_var) } /// Parse an element of a struct definition fn parse_struct_decl_field(&mut self) -> PResult<'a, StructField> { let attrs = self.parse_outer_attributes()?; let lo = self.span; let vis = self.parse_visibility(false)?; self.parse_single_struct_field(lo, vis, attrs) } /// Parse `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `pub(self)` for `pub(in self)` /// and `pub(super)` for `pub(in super)`. If the following element can't be a tuple (i.e. it's /// a function definition, it's not a tuple struct field) and the contents within the parens /// isn't valid, emit a proper diagnostic. pub fn parse_visibility(&mut self, can_take_tuple: bool) -> PResult<'a, Visibility> { maybe_whole!(self, NtVis, |x| x); if !self.eat_keyword(keywords::Pub) { return Ok(Visibility::Inherited) } if self.check(&token::OpenDelim(token::Paren)) { // We don't `self.bump()` the `(` yet because this might be a struct definition where // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`. // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so // by the following tokens. if self.look_ahead(1, |t| t.is_keyword(keywords::Crate)) { // `pub(crate)` self.bump(); // `(` self.bump(); // `crate` let vis = Visibility::Crate(self.prev_span); self.expect(&token::CloseDelim(token::Paren))?; // `)` return Ok(vis) } else if self.look_ahead(1, |t| t.is_keyword(keywords::In)) { // `pub(in path)` self.bump(); // `(` self.bump(); // `in` let path = self.parse_path(PathStyle::Mod)?.default_to_global(); // `path` let vis = Visibility::Restricted { path: P(path), id: ast::DUMMY_NODE_ID }; self.expect(&token::CloseDelim(token::Paren))?; // `)` return Ok(vis) } else if self.look_ahead(2, |t| t == &token::CloseDelim(token::Paren)) && self.look_ahead(1, |t| t.is_keyword(keywords::Super) || t.is_keyword(keywords::SelfValue)) { // `pub(self)` or `pub(super)` self.bump(); // `(` let path = self.parse_path(PathStyle::Mod)?.default_to_global(); // `super`/`self` let vis = Visibility::Restricted { path: P(path), id: ast::DUMMY_NODE_ID }; self.expect(&token::CloseDelim(token::Paren))?; // `)` return Ok(vis) } else if !can_take_tuple { // Provide this diagnostic if this is not a tuple struct // `pub(something) fn ...` or `struct X { pub(something) y: Z }` self.bump(); // `(` let msg = "incorrect visibility restriction"; let suggestion = r##"some possible visibility restrictions are: `pub(crate)`: visible only on the current crate `pub(super)`: visible only in the current module's parent `pub(in path::to::module)`: visible only on the specified path"##; let path = self.parse_path(PathStyle::Mod)?; let path_span = self.prev_span; let help_msg = format!("make this visible only to module `{}` with `in`", path); self.expect(&token::CloseDelim(token::Paren))?; // `)` let mut err = self.span_fatal_help(path_span, msg, suggestion); err.span_suggestion(path_span, &help_msg, format!("in {}", path)); err.emit(); // emit diagnostic, but continue with public visibility } } Ok(Visibility::Public) } /// Parse defaultness: DEFAULT or nothing fn parse_defaultness(&mut self) -> PResult<'a, Defaultness> { if self.eat_defaultness() { Ok(Defaultness::Default) } else { Ok(Defaultness::Final) } } /// Given a termination token, parse all of the items in a module fn parse_mod_items(&mut self, term: &token::Token, inner_lo: Span) -> PResult<'a, Mod> { let mut items = vec![]; while let Some(item) = self.parse_item()? { items.push(item); } if !self.eat(term) { let token_str = self.this_token_to_string(); return Err(self.fatal(&format!("expected item, found `{}`", token_str))); } let hi = if self.span == syntax_pos::DUMMY_SP { inner_lo } else { self.prev_span }; Ok(ast::Mod { inner: inner_lo.to(hi), items: items }) } fn parse_item_const(&mut self, m: Option) -> PResult<'a, ItemInfo> { let id = self.parse_ident()?; self.expect(&token::Colon)?; let ty = self.parse_ty()?; self.expect(&token::Eq)?; let e = self.parse_expr()?; self.expect(&token::Semi)?; let item = match m { Some(m) => ItemKind::Static(ty, m, e), None => ItemKind::Const(ty, e), }; Ok((id, item, None)) } /// Parse a `mod { ... }` or `mod ;` item fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<'a, ItemInfo> { let (in_cfg, outer_attrs) = { let mut strip_unconfigured = ::config::StripUnconfigured { sess: self.sess, should_test: false, // irrelevant features: None, // don't perform gated feature checking }; let outer_attrs = strip_unconfigured.process_cfg_attrs(outer_attrs.to_owned()); (!self.cfg_mods || strip_unconfigured.in_cfg(&outer_attrs), outer_attrs) }; let id_span = self.span; let id = self.parse_ident()?; if self.check(&token::Semi) { self.bump(); if in_cfg && self.recurse_into_file_modules { // This mod is in an external file. Let's go get it! let ModulePathSuccess { path, directory_ownership, warn } = self.submod_path(id, &outer_attrs, id_span)?; let (module, mut attrs) = self.eval_src_mod(path, directory_ownership, id.to_string(), id_span)?; if warn { let attr = ast::Attribute { id: attr::mk_attr_id(), style: ast::AttrStyle::Outer, path: ast::Path::from_ident(syntax_pos::DUMMY_SP, Ident::from_str("warn_directory_ownership")), tokens: TokenStream::empty(), is_sugared_doc: false, span: syntax_pos::DUMMY_SP, }; attr::mark_known(&attr); attrs.push(attr); } Ok((id, module, Some(attrs))) } else { let placeholder = ast::Mod { inner: syntax_pos::DUMMY_SP, items: Vec::new() }; Ok((id, ItemKind::Mod(placeholder), None)) } } else { let old_directory = self.directory.clone(); self.push_directory(id, &outer_attrs); self.expect(&token::OpenDelim(token::Brace))?; let mod_inner_lo = self.span; let attrs = self.parse_inner_attributes()?; let module = self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo)?; self.directory = old_directory; Ok((id, ItemKind::Mod(module), Some(attrs))) } } fn push_directory(&mut self, id: Ident, attrs: &[Attribute]) { if let Some(path) = attr::first_attr_value_str_by_name(attrs, "path") { self.directory.path.push(&path.as_str()); self.directory.ownership = DirectoryOwnership::Owned; } else { self.directory.path.push(&id.name.as_str()); } } pub fn submod_path_from_attr(attrs: &[ast::Attribute], dir_path: &Path) -> Option { attr::first_attr_value_str_by_name(attrs, "path").map(|d| dir_path.join(&d.as_str())) } /// Returns either a path to a module, or . pub fn default_submod_path(id: ast::Ident, dir_path: &Path, codemap: &CodeMap) -> ModulePath { let mod_name = id.to_string(); let default_path_str = format!("{}.rs", mod_name); let secondary_path_str = format!("{}{}mod.rs", mod_name, path::MAIN_SEPARATOR); let default_path = dir_path.join(&default_path_str); let secondary_path = dir_path.join(&secondary_path_str); let default_exists = codemap.file_exists(&default_path); let secondary_exists = codemap.file_exists(&secondary_path); let result = match (default_exists, secondary_exists) { (true, false) => Ok(ModulePathSuccess { path: default_path, directory_ownership: DirectoryOwnership::UnownedViaMod(false), warn: false, }), (false, true) => Ok(ModulePathSuccess { path: secondary_path, directory_ownership: DirectoryOwnership::Owned, warn: false, }), (false, false) => Err(Error::FileNotFoundForModule { mod_name: mod_name.clone(), default_path: default_path_str, secondary_path: secondary_path_str, dir_path: format!("{}", dir_path.display()), }), (true, true) => Err(Error::DuplicatePaths { mod_name: mod_name.clone(), default_path: default_path_str, secondary_path: secondary_path_str, }), }; ModulePath { name: mod_name, path_exists: default_exists || secondary_exists, result: result, } } fn submod_path(&mut self, id: ast::Ident, outer_attrs: &[ast::Attribute], id_sp: Span) -> PResult<'a, ModulePathSuccess> { if let Some(path) = Parser::submod_path_from_attr(outer_attrs, &self.directory.path) { return Ok(ModulePathSuccess { directory_ownership: match path.file_name().and_then(|s| s.to_str()) { Some("mod.rs") => DirectoryOwnership::Owned, _ => DirectoryOwnership::UnownedViaMod(true), }, path: path, warn: false, }); } let paths = Parser::default_submod_path(id, &self.directory.path, self.sess.codemap()); if let DirectoryOwnership::UnownedViaBlock = self.directory.ownership { let msg = "Cannot declare a non-inline module inside a block unless it has a path attribute"; let mut err = self.diagnostic().struct_span_err(id_sp, msg); if paths.path_exists { let msg = format!("Maybe `use` the module `{}` instead of redeclaring it", paths.name); err.span_note(id_sp, &msg); } Err(err) } else if let DirectoryOwnership::UnownedViaMod(warn) = self.directory.ownership { if warn { if let Ok(result) = paths.result { return Ok(ModulePathSuccess { warn: true, ..result }); } } let mut err = self.diagnostic().struct_span_err(id_sp, "cannot declare a new module at this location"); if id_sp != syntax_pos::DUMMY_SP { let src_path = PathBuf::from(self.sess.codemap().span_to_filename(id_sp)); if let Some(stem) = src_path.file_stem() { let mut dest_path = src_path.clone(); dest_path.set_file_name(stem); dest_path.push("mod.rs"); err.span_note(id_sp, &format!("maybe move this module `{}` to its own \ directory via `{}`", src_path.to_string_lossy(), dest_path.to_string_lossy())); } } if paths.path_exists { err.span_note(id_sp, &format!("... or maybe `use` the module `{}` instead \ of possibly redeclaring it", paths.name)); } Err(err) } else { paths.result.map_err(|err| self.span_fatal_err(id_sp, err)) } } /// Read a module from a source file. fn eval_src_mod(&mut self, path: PathBuf, directory_ownership: DirectoryOwnership, name: String, id_sp: Span) -> PResult<'a, (ast::ItemKind, Vec )> { let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut(); if let Some(i) = included_mod_stack.iter().position(|p| *p == path) { let mut err = String::from("circular modules: "); let len = included_mod_stack.len(); for p in &included_mod_stack[i.. len] { err.push_str(&p.to_string_lossy()); err.push_str(" -> "); } err.push_str(&path.to_string_lossy()); return Err(self.span_fatal(id_sp, &err[..])); } included_mod_stack.push(path.clone()); drop(included_mod_stack); let mut p0 = new_sub_parser_from_file(self.sess, &path, directory_ownership, Some(name), id_sp); p0.cfg_mods = self.cfg_mods; let mod_inner_lo = p0.span; let mod_attrs = p0.parse_inner_attributes()?; let m0 = p0.parse_mod_items(&token::Eof, mod_inner_lo)?; self.sess.included_mod_stack.borrow_mut().pop(); Ok((ast::ItemKind::Mod(m0), mod_attrs)) } /// Parse a function declaration from a foreign module fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec) -> PResult<'a, ForeignItem> { self.expect_keyword(keywords::Fn)?; let (ident, mut generics) = self.parse_fn_header()?; let decl = self.parse_fn_decl(true)?; generics.where_clause = self.parse_where_clause()?; let hi = self.span; self.expect(&token::Semi)?; Ok(ast::ForeignItem { ident: ident, attrs: attrs, node: ForeignItemKind::Fn(decl, generics), id: ast::DUMMY_NODE_ID, span: lo.to(hi), vis: vis }) } /// Parse a static item from a foreign module. /// Assumes that the `static` keyword is already parsed. fn parse_item_foreign_static(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec) -> PResult<'a, ForeignItem> { let mutbl = self.eat_keyword(keywords::Mut); let ident = self.parse_ident()?; self.expect(&token::Colon)?; let ty = self.parse_ty()?; let hi = self.span; self.expect(&token::Semi)?; Ok(ForeignItem { ident: ident, attrs: attrs, node: ForeignItemKind::Static(ty, mutbl), id: ast::DUMMY_NODE_ID, span: lo.to(hi), vis: vis }) } /// Parse extern crate links /// /// # Examples /// /// extern crate foo; /// extern crate bar as foo; fn parse_item_extern_crate(&mut self, lo: Span, visibility: Visibility, attrs: Vec) -> PResult<'a, P> { let crate_name = self.parse_ident()?; let (maybe_path, ident) = if let Some(ident) = self.parse_rename()? { (Some(crate_name.name), ident) } else { (None, crate_name) }; self.expect(&token::Semi)?; let prev_span = self.prev_span; Ok(self.mk_item(lo.to(prev_span), ident, ItemKind::ExternCrate(maybe_path), visibility, attrs)) } /// Parse `extern` for foreign ABIs /// modules. /// /// `extern` is expected to have been /// consumed before calling this method /// /// # Examples: /// /// extern "C" {} /// extern {} fn parse_item_foreign_mod(&mut self, lo: Span, opt_abi: Option, visibility: Visibility, mut attrs: Vec) -> PResult<'a, P> { self.expect(&token::OpenDelim(token::Brace))?; let abi = opt_abi.unwrap_or(Abi::C); attrs.extend(self.parse_inner_attributes()?); let mut foreign_items = vec![]; while let Some(item) = self.parse_foreign_item()? { foreign_items.push(item); } self.expect(&token::CloseDelim(token::Brace))?; let prev_span = self.prev_span; let m = ast::ForeignMod { abi: abi, items: foreign_items }; let invalid = keywords::Invalid.ident(); Ok(self.mk_item(lo.to(prev_span), invalid, ItemKind::ForeignMod(m), visibility, attrs)) } /// Parse type Foo = Bar; fn parse_item_type(&mut self) -> PResult<'a, ItemInfo> { let ident = self.parse_ident()?; let mut tps = self.parse_generics()?; tps.where_clause = self.parse_where_clause()?; self.expect(&token::Eq)?; let ty = self.parse_ty()?; self.expect(&token::Semi)?; Ok((ident, ItemKind::Ty(ty, tps), None)) } /// Parse the part of an "enum" decl following the '{' fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<'a, EnumDef> { let mut variants = Vec::new(); let mut all_nullary = true; let mut any_disr = None; while self.token != token::CloseDelim(token::Brace) { let variant_attrs = self.parse_outer_attributes()?; let vlo = self.span; let struct_def; let mut disr_expr = None; let ident = self.parse_ident()?; if self.check(&token::OpenDelim(token::Brace)) { // Parse a struct variant. all_nullary = false; struct_def = VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID); } else if self.check(&token::OpenDelim(token::Paren)) { all_nullary = false; struct_def = VariantData::Tuple(self.parse_tuple_struct_body()?, ast::DUMMY_NODE_ID); } else if self.eat(&token::Eq) { disr_expr = Some(self.parse_expr()?); any_disr = disr_expr.as_ref().map(|expr| expr.span); struct_def = VariantData::Unit(ast::DUMMY_NODE_ID); } else { struct_def = VariantData::Unit(ast::DUMMY_NODE_ID); } let vr = ast::Variant_ { name: ident, attrs: variant_attrs, data: struct_def, disr_expr: disr_expr, }; variants.push(respan(vlo.to(self.prev_span), vr)); if !self.eat(&token::Comma) { break; } } self.expect(&token::CloseDelim(token::Brace))?; match any_disr { Some(disr_span) if !all_nullary => self.span_err(disr_span, "discriminator values can only be used with a c-like enum"), _ => () } Ok(ast::EnumDef { variants: variants }) } /// Parse an "enum" declaration fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> { let id = self.parse_ident()?; let mut generics = self.parse_generics()?; generics.where_clause = self.parse_where_clause()?; self.expect(&token::OpenDelim(token::Brace))?; let enum_definition = self.parse_enum_def(&generics).map_err(|e| { self.recover_stmt(); self.eat(&token::CloseDelim(token::Brace)); e })?; Ok((id, ItemKind::Enum(enum_definition, generics), None)) } /// Parses a string as an ABI spec on an extern type or module. Consumes /// the `extern` keyword, if one is found. fn parse_opt_abi(&mut self) -> PResult<'a, Option> { match self.token { token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => { let sp = self.span; self.expect_no_suffix(sp, "ABI spec", suf); self.bump(); match abi::lookup(&s.as_str()) { Some(abi) => Ok(Some(abi)), None => { let prev_span = self.prev_span; self.span_err( prev_span, &format!("invalid ABI: expected one of [{}], \ found `{}`", abi::all_names().join(", "), s)); Ok(None) } } } _ => Ok(None), } } /// Parse one of the items allowed by the flags. /// NB: this function no longer parses the items inside an /// extern crate. fn parse_item_(&mut self, attrs: Vec, macros_allowed: bool, attributes_allowed: bool) -> PResult<'a, Option>> { maybe_whole!(self, NtItem, |item| { let mut item = item.unwrap(); let mut attrs = attrs; mem::swap(&mut item.attrs, &mut attrs); item.attrs.extend(attrs); Some(P(item)) }); let lo = self.span; let visibility = self.parse_visibility(false)?; if self.eat_keyword(keywords::Use) { // USE ITEM let item_ = ItemKind::Use(self.parse_view_path()?); self.expect(&token::Semi)?; let prev_span = self.prev_span; let invalid = keywords::Invalid.ident(); let item = self.mk_item(lo.to(prev_span), invalid, item_, visibility, attrs); return Ok(Some(item)); } if self.eat_keyword(keywords::Extern) { if self.eat_keyword(keywords::Crate) { return Ok(Some(self.parse_item_extern_crate(lo, visibility, attrs)?)); } let opt_abi = self.parse_opt_abi()?; if self.eat_keyword(keywords::Fn) { // EXTERN FUNCTION ITEM let fn_span = self.prev_span; let abi = opt_abi.unwrap_or(Abi::C); let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Normal, respan(fn_span, Constness::NotConst), abi)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } else if self.check(&token::OpenDelim(token::Brace)) { return Ok(Some(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs)?)); } self.unexpected()?; } if self.eat_keyword(keywords::Static) { // STATIC ITEM let m = if self.eat_keyword(keywords::Mut) { Mutability::Mutable } else { Mutability::Immutable }; let (ident, item_, extra_attrs) = self.parse_item_const(Some(m))?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Const) { let const_span = self.prev_span; if self.check_keyword(keywords::Fn) || (self.check_keyword(keywords::Unsafe) && self.look_ahead(1, |t| t.is_keyword(keywords::Fn))) { // CONST FUNCTION ITEM let unsafety = if self.eat_keyword(keywords::Unsafe) { Unsafety::Unsafe } else { Unsafety::Normal }; self.bump(); let (ident, item_, extra_attrs) = self.parse_item_fn(unsafety, respan(const_span, Constness::Const), Abi::Rust)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } // CONST ITEM if self.eat_keyword(keywords::Mut) { let prev_span = self.prev_span; self.diagnostic().struct_span_err(prev_span, "const globals cannot be mutable") .help("did you mean to declare a static?") .emit(); } let (ident, item_, extra_attrs) = self.parse_item_const(None)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.check_keyword(keywords::Unsafe) && self.look_ahead(1, |t| t.is_keyword(keywords::Trait)) { // UNSAFE TRAIT ITEM self.expect_keyword(keywords::Unsafe)?; self.expect_keyword(keywords::Trait)?; let (ident, item_, extra_attrs) = self.parse_item_trait(ast::Unsafety::Unsafe)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if (self.check_keyword(keywords::Unsafe) && self.look_ahead(1, |t| t.is_keyword(keywords::Impl))) || (self.check_keyword(keywords::Default) && self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe)) && self.look_ahead(2, |t| t.is_keyword(keywords::Impl))) { // IMPL ITEM let defaultness = self.parse_defaultness()?; self.expect_keyword(keywords::Unsafe)?; self.expect_keyword(keywords::Impl)?; let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Unsafe, defaultness)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.check_keyword(keywords::Fn) { // FUNCTION ITEM self.bump(); let fn_span = self.prev_span; let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Normal, respan(fn_span, Constness::NotConst), Abi::Rust)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.check_keyword(keywords::Unsafe) && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) { // UNSAFE FUNCTION ITEM self.bump(); let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi()?.unwrap_or(Abi::C) } else { Abi::Rust }; self.expect_keyword(keywords::Fn)?; let fn_span = self.prev_span; let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Unsafe, respan(fn_span, Constness::NotConst), abi)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Mod) { // MODULE ITEM let (ident, item_, extra_attrs) = self.parse_item_mod(&attrs[..])?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Type) { // TYPE ITEM let (ident, item_, extra_attrs) = self.parse_item_type()?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Enum) { // ENUM ITEM let (ident, item_, extra_attrs) = self.parse_item_enum()?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Trait) { // TRAIT ITEM let (ident, item_, extra_attrs) = self.parse_item_trait(ast::Unsafety::Normal)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if (self.check_keyword(keywords::Impl)) || (self.check_keyword(keywords::Default) && self.look_ahead(1, |t| t.is_keyword(keywords::Impl))) { // IMPL ITEM let defaultness = self.parse_defaultness()?; self.expect_keyword(keywords::Impl)?; let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Normal, defaultness)?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.eat_keyword(keywords::Struct) { // STRUCT ITEM let (ident, item_, extra_attrs) = self.parse_item_struct()?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if self.is_union_item() { // UNION ITEM self.bump(); let (ident, item_, extra_attrs) = self.parse_item_union()?; let prev_span = self.prev_span; let item = self.mk_item(lo.to(prev_span), ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(Some(item)); } if let Some(macro_def) = self.eat_macro_def(&attrs, &visibility)? { return Ok(Some(macro_def)); } self.parse_macro_use_or_failure(attrs,macros_allowed,attributes_allowed,lo,visibility) } /// Parse a foreign item. fn parse_foreign_item(&mut self) -> PResult<'a, Option> { let attrs = self.parse_outer_attributes()?; let lo = self.span; let visibility = self.parse_visibility(false)?; // FOREIGN STATIC ITEM // Treat `const` as `static` for error recovery, but don't add it to expected tokens. if self.check_keyword(keywords::Static) || self.token.is_keyword(keywords::Const) { if self.token.is_keyword(keywords::Const) { self.diagnostic() .struct_span_err(self.span, "extern items cannot be `const`") .span_suggestion(self.span, "instead try using", "static".to_owned()) .emit(); } self.bump(); // `static` or `const` return Ok(Some(self.parse_item_foreign_static(visibility, lo, attrs)?)); } // FOREIGN FUNCTION ITEM if self.check_keyword(keywords::Fn) { return Ok(Some(self.parse_item_foreign_fn(visibility, lo, attrs)?)); } // FIXME #5668: this will occur for a macro invocation: match self.parse_macro_use_or_failure(attrs, true, false, lo, visibility)? { Some(item) => { return Err(self.span_fatal(item.span, "macros cannot expand to foreign items")); } None => Ok(None) } } /// This is the fall-through for parsing items. fn parse_macro_use_or_failure( &mut self, attrs: Vec , macros_allowed: bool, attributes_allowed: bool, lo: Span, visibility: Visibility ) -> PResult<'a, Option>> { if macros_allowed && self.token.is_path_start() { // MACRO INVOCATION ITEM let prev_span = self.prev_span; self.complain_if_pub_macro(&visibility, prev_span); let mac_lo = self.span; // item macro. let pth = self.parse_path(PathStyle::Mod)?; self.expect(&token::Not)?; // a 'special' identifier (like what `macro_rules!` uses) // is optional. We should eventually unify invoc syntax // and remove this. let id = if self.token.is_ident() { self.parse_ident()? } else { keywords::Invalid.ident() // no special identifier }; // eat a matched-delimiter token tree: let (delim, tts) = self.expect_delimited_token_tree()?; if delim != token::Brace { if !self.eat(&token::Semi) { self.span_err(self.prev_span, "macros that expand to items must either \ be surrounded with braces or followed by \ a semicolon"); } } let hi = self.prev_span; let mac = respan(mac_lo.to(hi), Mac_ { path: pth, tts: tts }); let item = self.mk_item(lo.to(hi), id, ItemKind::Mac(mac), visibility, attrs); return Ok(Some(item)); } // FAILURE TO PARSE ITEM match visibility { Visibility::Inherited => {} _ => { return Err(self.span_fatal(self.prev_span, "unmatched visibility `pub`")); } } if !attributes_allowed && !attrs.is_empty() { self.expected_item_err(&attrs); } Ok(None) } fn collect_tokens(&mut self, f: F) -> PResult<'a, (R, TokenStream)> where F: FnOnce(&mut Self) -> PResult<'a, R> { // Record all tokens we parse when parsing this item. let mut tokens = Vec::new(); match self.token_cursor.frame.last_token { LastToken::Collecting(_) => { panic!("cannot collect tokens recursively yet") } LastToken::Was(ref mut last) => tokens.extend(last.take()), } self.token_cursor.frame.last_token = LastToken::Collecting(tokens); let prev = self.token_cursor.stack.len(); let ret = f(self); let last_token = if self.token_cursor.stack.len() == prev { &mut self.token_cursor.frame.last_token } else { &mut self.token_cursor.stack[prev].last_token }; let mut tokens = match *last_token { LastToken::Collecting(ref mut v) => mem::replace(v, Vec::new()), LastToken::Was(_) => panic!("our vector went away?"), }; // If we're not at EOF our current token wasn't actually consumed by // `f`, but it'll still be in our list that we pulled out. In that case // put it back. if self.token == token::Eof { *last_token = LastToken::Was(None); } else { *last_token = LastToken::Was(tokens.pop()); } Ok((ret?, tokens.into_iter().collect())) } pub fn parse_item(&mut self) -> PResult<'a, Option>> { let attrs = self.parse_outer_attributes()?; let (ret, tokens) = self.collect_tokens(|this| { this.parse_item_(attrs, true, false) })?; // Once we've parsed an item and recorded the tokens we got while // parsing we may want to store `tokens` into the item we're about to // return. Note, though, that we specifically didn't capture tokens // related to outer attributes. The `tokens` field here may later be // used with procedural macros to convert this item back into a token // stream, but during expansion we may be removing attributes as we go // along. // // If we've got inner attributes then the `tokens` we've got above holds // these inner attributes. If an inner attribute is expanded we won't // actually remove it from the token stream, so we'll just keep yielding // it (bad!). To work around this case for now we just avoid recording // `tokens` if we detect any inner attributes. This should help keep // expansion correct, but we should fix this bug one day! Ok(ret.map(|item| { item.map(|mut i| { if !i.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { i.tokens = Some(tokens); } i }) })) } fn parse_path_list_items(&mut self) -> PResult<'a, Vec> { self.parse_unspanned_seq(&token::OpenDelim(token::Brace), &token::CloseDelim(token::Brace), SeqSep::trailing_allowed(token::Comma), |this| { let lo = this.span; let ident = if this.eat_keyword(keywords::SelfValue) { keywords::SelfValue.ident() } else { this.parse_ident()? }; let rename = this.parse_rename()?; let node = ast::PathListItem_ { name: ident, rename: rename, id: ast::DUMMY_NODE_ID }; Ok(respan(lo.to(this.prev_span), node)) }) } /// `::{` or `::*` fn is_import_coupler(&mut self) -> bool { self.check(&token::ModSep) && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace) || *t == token::BinOp(token::Star)) } /// Matches ViewPath: /// MOD_SEP? non_global_path /// MOD_SEP? non_global_path as IDENT /// MOD_SEP? non_global_path MOD_SEP STAR /// MOD_SEP? non_global_path MOD_SEP LBRACE item_seq RBRACE /// MOD_SEP? LBRACE item_seq RBRACE fn parse_view_path(&mut self) -> PResult<'a, P> { let lo = self.span; if self.check(&token::OpenDelim(token::Brace)) || self.check(&token::BinOp(token::Star)) || self.is_import_coupler() { // `{foo, bar}`, `::{foo, bar}`, `*`, or `::*`. self.eat(&token::ModSep); let prefix = ast::Path { segments: vec![PathSegment::crate_root(lo)], span: lo.to(self.span), }; let view_path_kind = if self.eat(&token::BinOp(token::Star)) { ViewPathGlob(prefix) } else { ViewPathList(prefix, self.parse_path_list_items()?) }; Ok(P(respan(lo.to(self.span), view_path_kind))) } else { let prefix = self.parse_path(PathStyle::Mod)?.default_to_global(); if self.is_import_coupler() { // `foo::bar::{a, b}` or `foo::bar::*` self.bump(); if self.check(&token::BinOp(token::Star)) { self.bump(); Ok(P(respan(lo.to(self.span), ViewPathGlob(prefix)))) } else { let items = self.parse_path_list_items()?; Ok(P(respan(lo.to(self.span), ViewPathList(prefix, items)))) } } else { // `foo::bar` or `foo::bar as baz` let rename = self.parse_rename()?. unwrap_or(prefix.segments.last().unwrap().identifier); Ok(P(respan(lo.to(self.prev_span), ViewPathSimple(rename, prefix)))) } } } fn parse_rename(&mut self) -> PResult<'a, Option> { if self.eat_keyword(keywords::As) { self.parse_ident().map(Some) } else { Ok(None) } } /// Parses a source module as a crate. This is the main /// entry point for the parser. pub fn parse_crate_mod(&mut self) -> PResult<'a, Crate> { let lo = self.span; Ok(ast::Crate { attrs: self.parse_inner_attributes()?, module: self.parse_mod_items(&token::Eof, lo)?, span: lo.to(self.span), }) } pub fn parse_optional_str(&mut self) -> Option<(Symbol, ast::StrStyle, Option)> { let ret = match self.token { token::Literal(token::Str_(s), suf) => (s, ast::StrStyle::Cooked, suf), token::Literal(token::StrRaw(s, n), suf) => (s, ast::StrStyle::Raw(n), suf), _ => return None }; self.bump(); Some(ret) } pub fn parse_str(&mut self) -> PResult<'a, (Symbol, StrStyle)> { match self.parse_optional_str() { Some((s, style, suf)) => { let sp = self.prev_span; self.expect_no_suffix(sp, "string literal", suf); Ok((s, style)) } _ => Err(self.fatal("expected string literal")) } } }