Since LLVM 19, it is necessary to set not only module flags, but
also function attributes for branch protection on aarch64. See
e15d67cfc2
for the relevant LLVM change.
reenable some windows tests
Locally passing on `x86_64-pc-windows-msvc`, fingers crossed for `*-pc-windows-gnu`.
try-job: x86_64-msvc
try-job: x86_64-mingw
Ensure floats are returned losslessly by the Rust ABI on 32-bit x86
Solves #115567 for the (default) `"Rust"` ABI. When compiling for 32-bit x86, this PR changes the `"Rust"` ABI to return floats indirectly instead of in x87 registers (with the exception of single `f32`s, which this PR returns in general purpose registers as they are small enough to fit in one). No change is made to the `"C"` ABI as that ABI requires x87 register usage and therefore will need a different solution.
`-Z patchable-function-entry` works like `-fpatchable-function-entry`
on clang/gcc. The arguments are total nop count and function offset.
See MCP rust-lang/compiler-team#704
Account for things that optimize out in inlining costs
This updates the MIR inlining `CostChecker` to have both bonuses and penalties, rather than just penalties.
That lets us add bonuses for some things where we want to encourage inlining without risking wrapping into a gigantic cost. For example, `switchInt(const …)` we give an inlining bonus because codegen will actually eliminate the branch (and associated dead blocks) once it's monomorphized, so measuring both sides of the branch gives an unrealistically-high cost to it. Similarly, an `unreachable` terminator gets a small bonus, because whatever branch leads there doesn't actually exist post-codegen.
Stabilise `c_unwind`
Fix#74990Fix#115285 (that's also where FCP is happening)
Marking as draft PR for now due to `compiler_builtins` issues
r? `@Amanieu`
Don't build a broken/untested profiler runtime on mingw targets
Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Why.20build.20a.20broken.2Funtested.20profiler.20runtime.20on.20mingw.3F#75872 added `--enable-profiler` to the `x86_64-mingw` job (to cause some additional tests to run), but had to also add `//@ ignore-windows-gnu` to all of the tests that rely on the profiler runtime actually *working*, because it's broken on that target.
We can achieve a similar outcome by going through all the `//@ needs-profiler-support` tests that don't actually need to produce/run a binary, and making them use `-Zno-profiler-runtime` instead, so that they can run even in configurations that don't have the profiler runtime available. Then we can remove `--enable-profiler` from `x86_64-mingw`, and still get the same amount of testing.
This PR also removes `--enable-profiler` from the mingw dist builds, since it is broken/untested on that target. Those builds have had that flag for a very long time.
For PGO/coverage tests that don't need to build or run an actual artifact, we
can use `-Zno-profiler-runtime` to run the test even when the profiler runtime
is not available.
Rollup of 16 pull requests
Successful merges:
- #123374 (DOC: Add FFI example for slice::from_raw_parts())
- #124514 (Recommend to never display zero disambiguators when demangling v0 symbols)
- #125978 (Cleanup: HIR ty lowering: Consolidate the places that do assoc item probing & access checking)
- #125980 (Nvptx remove direct passmode)
- #126187 (For E0277 suggest adding `Result` return type for function when using QuestionMark `?` in the body.)
- #126210 (docs(core): make more const_ptr doctests assert instead of printing)
- #126249 (Simplify `[T; N]::try_map` signature)
- #126256 (Add {{target}} substitution to compiletest)
- #126263 (Make issue-122805.rs big endian compatible)
- #126281 (set_env: State the conclusion upfront)
- #126286 (Make `storage-live.rs` robust against rustc internal changes.)
- #126287 (Update a cranelift patch file for formatting changes.)
- #126301 (Use `tidy` to sort crate attributes for all compiler crates.)
- #126305 (Make PathBuf less Ok with adding UTF-16 then `into_string`)
- #126310 (Migrate run make prefer rlib)
- #126314 (fix RELEASES: we do not support upcasting to auto traits)
r? `@ghost`
`@rustbot` modify labels: rollup
Instead of not generating the function at all on big endian (which
makes the CHECK lines fail), instead use to_le() on big endian,
so that we essentially perform a bswap for both endiannesses.
Remove hard-coded hashes from codegen tests
This removes hard-coded hashes from the codegen and assembly tests. These use FileCheck, which supports eliding part of the pattern being matched, including by capturing it as a pattern parameter for later matching-on. This is much more appropriate than asking contributors to engage with deliberately-opaque identifier schemes.
In order to reduce the likelihood of error, every hash-coded segment I've touched now expects a certain length. This correctly represents these cases, as our hash outputs have a predetermined amount of entropy attached to them.
This is not done for the UI test suite as those are comparatively easy to simply `--bless`, whereas that would be inappropriate for codegen tests. It is also not done for debuginfo tests as those tests do not support such elision in a correct and useful way.
Fix tests/codegen/riscv-abi/call-llvm-intrinsics.rs
Fix tests/codegen/riscv-abi/riscv64-lp64d-abi.rs
Fix tests/codegen/riscv-abi/riscv64-lp64f-lp64d-abi.rs
On riscv64gc ignore tests/ui/debuginfo/debuginfo-emit-llvm-ir-and-split-debuginfo.rs
Make tests/codegen/riscv-abi/riscv64-lp64d-abi.rs no_core
Make tests/codegen/riscv-abi/riscv64-lp64f-lp64d-abi.rs no_core
Set -O for tests/codegen/riscv-abi/riscv64-lp64d-abi.rs
Set -O for tests/codegen/riscv-abi/riscv64-lp64f-lp64d-abi.rs
When things like our internal hashing or representations change,
it is inappropriate for these tests to suddenly fail for no reason.
The chance of error is reduced if we instead pattern-match.
Make repr(packed) vectors work with SIMD intrinsics
In #117116 I fixed `#[repr(packed, simd)]` by doing the expected thing and removing padding from the layout. This should be the last step in providing a solution to rust-lang/portable-simd#319
Unroll first iteration of checked_ilog loop
This follows the optimization of #115913. As shown in https://github.com/rust-lang/rust/pull/115913#issuecomment-2066788006, the performance was improved in all important cases, but some regressions were introduced for the benchmarks `u32_log_random_small`, `u8_log_random` and `u8_log_random_small`.
Basically, #115913 changed the implementation from one division per iteration to one multiplication per iteration plus one division. When there are zero iterations, this is a regression from zero divisions to one division.
This PR avoids this by avoiding the division if we need zero iterations by returning `Some(0)` early. It also reduces the number of multiplications by one in all other cases.
Except for `simd-intrinsic/`, which has a lot of files containing
multiple types like `u8x64` which really are better when hand-formatted.
There is a surprising amount of two-space indenting in this directory.
Non-trivial changes:
- `rustfmt::skip` needed in `debug-column.rs` to preserve meaning of the
test.
- `rustfmt::skip` used in a few places where hand-formatting read more
nicely: `enum/enum-match.rs`
- Line number adjustments needed for the expected output of
`debug-column.rs` and `coroutine-debug.rs`.
Make more of the test suite run on Mac Catalyst
Combined with https://github.com/rust-lang/rust/pull/125225, the only failing parts of the test suite are in `tests/rustdoc-js`, `tests/rustdoc-js-std` and `tests/debuginfo`. Tested with:
```console
./x test --target=aarch64-apple-ios-macabi library/std
./x test --target=aarch64-apple-ios-macabi --skip=tests/rustdoc-js --skip=tests/rustdoc-js-std --skip=tests/debuginfo tests
```
Will probably put up a PR later to enable _running_ on (not just compiling for) Mac Catalyst in CI, though not sure where exactly I should do so? `src/ci/github-actions/jobs.yml`?
Note that I've deliberately _not_ enabled stack overflow handlers on iOS/tvOS/watchOS/visionOS (see https://github.com/rust-lang/rust/issues/25872), but rather just skipped those tests, as it uses quite a few APIs that I'd be weary about getting rejected by the App Store (note that Swift doesn't do it on those platforms either).
r? ``@workingjubilee``
CC ``@thomcc``
``@rustbot`` label O-ios O-apple
Omit non-needs_drop drop_in_place in vtables
This replaces the drop_in_place reference with null in vtables. On librustc_driver.so, this drops about ~17k (11%) dynamic relocations from the output, since many vtables can now be placed in read-only memory, rather than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites. I'm not sure that's readily avoidable without changing the vtable format (e.g., so that we can use a pc-relative relocation instead of an absolute address, and avoid the dynamic relocation that way). But it seems likely that the check is cheap at runtime.
Accepted MCP: https://github.com/rust-lang/compiler-team/issues/730
This adds the `only-apple`/`ignore-apple` compiletest directive, and
uses that basically everywhere instead of `only-macos`/`ignore-macos`.
Some of the updates in `run-make` are a bit redundant, as they use
`ignore-cross-compile` and won't run on iOS - but using Apple in these
is still more correct, so I've made that change anyhow.
This replaces the drop_in_place reference with null in vtables. On
librustc_driver.so, this drops about ~17k dynamic relocations from the
output, since many vtables can now be placed in read-only memory, rather
than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites.
That's hard to avoid without changing the vtable format (e.g., to use a
pc-relative relocation instead of an absolute address, and avoid the
dynamic relocation that way). But it seems likely that the check is
cheap at runtime.
These types are currently rejected for `as` casts by the compiler.
Remove this incorrect check and add codegen tests for all conversions
involving these types.
https://github.com/llvm/llvm-project/pull/89799 changes llvm.dbg.value/declare intrinsics to be in a different, out-of-instruction-line representation. For example
call void @llvm.dbg.declare(...)
becomes
#dbg_declare(...)
Update tests accordingly to work with both the old and new way.
There are a few tests that depend on some target features **not** being
enabled by default, and usually they are correct with the default x86-64
target CPU. However, in downstream builds we have modified the default
to fit our distros -- `x86-64-v2` in RHEL 9 and `x86-64-v3` in RHEL 10
-- and the latter especially trips tests that expect not to have AVX.
These cases are few enough that we can just set them back explicitly.
codegen tests: Tolerate `range()` qualifications in enum tests
Current LLVM can infer range bounds on the i8s involved with these tests, and annotates it. Accept these bounds if present.
`@rustbot` label: +llvm-main
cc `@durin42`
Set writable and dead_on_unwind attributes for sret arguments
Set the `writable` and `dead_on_unwind` attributes for `sret` arguments. This allows call slot optimization to remove more memcpy's.
See https://llvm.org/docs/LangRef.html#parameter-attributes for the specification of these attributes. In short, the statement we're making here is that:
* The return slot is writable.
* The return slot will not be read if the function unwinds.
Fixes https://github.com/rust-lang/rust/issues/90595.
Stop using LLVM struct types for alloca
The alloca type has no semantic meaning, only the size (and alignment, but we specify it explicitly) matter. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout. It is likely that a future LLVM version will change to an untyped alloca representation.
Split out from #121577.
r? `@ghost`
Dellvmize some intrinsics (use `u32` instead of `Self` in some integer intrinsics)
This implements https://github.com/rust-lang/compiler-team/issues/693 minus what was implemented in #123226.
Note: I decided to _not_ change `shl`/... builder methods, as it just doesn't seem worth it.
r? ``@scottmcm``
For things with easily pre-checked overflow conditions -- shifts and unsigned subtraction -- write then checked methods in such a way that we stop emitting wrapping versions of them.
For example, today <https://rust.godbolt.org/z/qM9YK8Txb> neither
```rust
a.checked_sub(b).unwrap()
```
nor
```rust
a.checked_sub(b).unwrap_unchecked()
```
actually optimizes to `sub nuw`. After this PR they do.
Add the missing inttoptr when we ptrtoint in ptr atomics
Ralf noticed this here: https://github.com/rust-lang/rust/pull/122220#discussion_r1535172094
Our previous codegen forgot to add the cast back to integer type. The code compiles anyway, because of course all locals are in-memory to start with, so previous codegen would do the integer atomic, store the integer to a local, then load a pointer from that local. Which is definitely _not_ what we wanted: That's an integer-to-pointer transmute, so all pointers returned by these `AtomicPtr` methods didn't have provenance. Yikes.
Here's the IR for `AtomicPtr::fetch_byte_add` on 1.76: https://godbolt.org/z/8qTEjeraY
```llvm
define noundef ptr `@atomicptr_fetch_byte_add(ptr` noundef nonnull align 8 %a, i64 noundef %v) unnamed_addr #0 !dbg !7 {
start:
%0 = alloca ptr, align 8, !dbg !12
%val = inttoptr i64 %v to ptr, !dbg !12
call void `@llvm.lifetime.start.p0(i64` 8, ptr %0), !dbg !28
%1 = ptrtoint ptr %val to i64, !dbg !28
%2 = atomicrmw add ptr %a, i64 %1 monotonic, align 8, !dbg !28
store i64 %2, ptr %0, align 8, !dbg !28
%self = load ptr, ptr %0, align 8, !dbg !28
call void `@llvm.lifetime.end.p0(i64` 8, ptr %0), !dbg !28
ret ptr %self, !dbg !33
}
```
r? `@RalfJung`
cc `@nikic`
llvm/llvm-project#87910 infers `nuw` and `nsw` on some `trunc`
instructions we're doing `FileCheck` on. Tolerate but don't require them
to support both release and head LLVM.
`f16` and `f128` step 4: basic library support
This is the next step after https://github.com/rust-lang/rust/pull/121926, another portion of https://github.com/rust-lang/rust/pull/114607
Tracking issue: https://github.com/rust-lang/rust/issues/116909
This PR adds the most basic operations to `f16` and `f128` that get lowered as LLVM intrinsics. This is a very small step but it seemed reasonable enough to add unopinionated basic operations before the larger modules that are built on top of them.
r? ```@Amanieu``` since you were pretty involved in the RFC
cc ```@compiler-errors```
```@rustbot``` label +T-libs-api +S-blocked +F-f16_and_f128
I added this back in 111999, but I no longer think it's a good idea
- It had to get scaled back to only power-of-two things to not break a bunch of targets
- LLVM seems to be getting better at memcpy removal anyway
- Introducing vector instructions has seemed to sometimes (115515) make autovectorization worse
So this removes it from the codegen crates entirely, and instead just tries to use <https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/traits/builder/trait.BuilderMethods.html#method.typed_place_copy> instead of direct `memcpy` so things will still use load/store for immediates.
Re-enable the early otherwise branch optimization
Closes#95162. Fixes#119014.
This is the first part of #121397.
An invalid enum discriminant can come from anywhere. We have to check to see if all successors contain the discriminant statement. This should have a pass to hoist instructions.
r? cjgillot
Don't emit divide-by-zero panic paths in `StepBy::len`
I happened to notice today that there's actually two such calls emitted in the assembly: <https://rust.godbolt.org/z/1Wbbd3Ts6>
Since they're impossible, hopefully telling LLVM that will also help optimizations elsewhere.
Fix argument ABI for overaligned structs on ppc64le
When passing a 16 (or higher) aligned struct by value on ppc64le, it needs to be passed as an array of `i128` rather than an array of `i64`. This will force the use of an even starting doubleword.
For the case of a 16 byte struct with alignment 16 it is important that `[1 x i128]` is used instead of `i128` -- apparently, the latter will get treated similarly to `[2 x i64]`, not exhibiting the correct ABI. Add a `force_array` flag to `Uniform` to support this.
The relevant clang code can be found here:
fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L878-L884)fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L780-L784)
I think the corresponding psABI wording is this:
> Fixed size aggregates and unions passed by value are mapped to as
> many doublewords of the parameter save area as the value uses in
> memory. Aggregrates and unions are aligned according to their
> alignment requirements. This may result in doublewords being
> skipped for alignment.
In particular the last sentence. Though I didn't find any wording for Clang's behavior of clamping the alignment to 16.
Fixes https://github.com/rust-lang/rust/issues/122767.
r? `@cuviper`
Implement minimal, internal-only pattern types in the type system
rebase of https://github.com/rust-lang/rust/pull/107606
You can create pattern types with `std::pat::pattern_type!(ty is pat)`. The feature is incomplete and will panic on you if you use any pattern other than integral range patterns. The only way to create or deconstruct a pattern type is via `transmute`.
This PR's implementation differs from the MCP's text. Specifically
> This means you could implement different traits for different pattern types with the same base type. Thus, we just forbid implementing any traits for pattern types.
is violated in this PR. The reason is that we do need impls after all in order to make them usable as fields. constants of type `std::time::Nanoseconds` struct are used in patterns, so the type must be structural-eq, which it only can be if you derive several traits on it. It doesn't need to be structural-eq recursively, so we can just manually implement the relevant traits on the pattern type and use the pattern type as a private field.
Waiting on:
* [x] move all unrelated commits into their own PRs.
* [x] fix niche computation (see 2db07f94f44f078daffe5823680d07d4fded883f)
* [x] add lots more tests
* [x] T-types MCP https://github.com/rust-lang/types-team/issues/126 to finish
* [x] some commit cleanup
* [x] full self-review
* [x] remove 61bd325da19a918cc3e02bbbdce97281a389c648, it's not necessary anymore I think.
* [ ] ~~make sure we never accidentally leak pattern types to user code (add stability checks or feature gate checks and appopriate tests)~~ we don't even do this for the new float primitives
* [x] get approval that [the scope expansion to trait impls](https://rust-lang.zulipchat.com/#narrow/stream/326866-t-types.2Fnominated/topic/Pattern.20types.20types-team.23126/near/427670099) is ok
r? `@BoxyUwU`
When passing a 16 (or higher) aligned struct by value on ppc64le,
it needs to be passed as an array of `i128` rather than an array
of `i64`. This will force the use of an even starting register.
For the case of a 16 byte struct with alignment 16 it is important
that `[1 x i128]` is used instead of `i128` -- apparently, the
latter will get treated similarly to `[2 x i64]`, not exhibiting
the correct ABI. Add a `force_array` flag to `Uniform` to support
this.
The relevant clang code can be found here:
fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L878-L884)fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L780-L784)
I think the corresponding psABI wording is this:
> Fixed size aggregates and unions passed by value are mapped to as
> many doublewords of the parameter save area as the value uses in
> memory. Aggregrates and unions are aligned according to their
> alignment requirements. This may result in doublewords being
> skipped for alignment.
In particular the last sentence.
Fixes https://github.com/rust-lang/rust/issues/122767.
Use unchecked_sub in str indexing
https://github.com/rust-lang/rust/pull/108763 applied this logic to indexing for slices, but of course `str` has its own separate impl.
Found this by skimming over the codegen for https://github.com/oxidecomputer/hubris/; their dist builds enable overflow checks so the lack of `unchecked_sub` was producing an impossible-to-hit overflow check and also inhibiting some inlining.
r? scottmcm
I happened to notice today that there's actually two such calls emitted in the assembly: <https://rust.godbolt.org/z/1Wbbd3Ts6>
Since they're impossible, hopefully telling LLVM that will also help optimizations elsewhere.
CFI: Don't rewrite ty::Dynamic directly
Now that we're using a type folder, the arguments in predicates are processed automatically - we don't need to descend manually.
We also want to keep projection clauses around, and this does so.
r? `@compiler-errors`
Now that we're using a type folder, the arguments in predicates are
processed automatically - we don't need to descend manually.
We also want to keep projection clauses around, and this does so.
CFI: Restore typeid_for_instance default behavior
Restore typeid_for_instance default behavior of performing self type erasure, since it's the most common case and what it does most of the time. Using concrete self (or not performing self type erasure) is for assigning a secondary type id, and secondary type ids are only assigned when they're unique and to methods, and also are only tested for when methods are used as function pointers.
Restore typeid_for_instance default behavior of performing self type
erasure, since it's the most common case and what it does most of the
time. Using concrete self (or not performing self type erasure) is for
assigning a secondary type id, and secondary type ids are only assigned
when they're unique and to methods, and also are only tested for when
methods are used as function pointers.
CFI: Support function pointers for trait methods
Adds support for both CFI and KCFI for function pointers to trait methods by attaching both concrete and abstract types to functions.
KCFI does this through generation of a `ReifyShim` on any function pointer for a method that could go into a vtable, and keeping this separate from `ReifyShim`s that are *intended* for vtable us by setting a `ReifyReason` on them.
CFI does this by setting both the concrete and abstract type on every instance.
This should land after #123024 or a similar PR, as it diverges the implementation of CFI vs KCFI.
r? `@compiler-errors`
Rename `UninhabitedEnumBranching` to `UnreachableEnumBranching`
Per [#120268](https://github.com/rust-lang/rust/pull/120268#discussion_r1517492060), I rename `UninhabitedEnumBranching` to `UnreachableEnumBranching` .
I solved some nits to add some comments.
I adjusted the workaround restrictions. This should be useful for `a <= b` and `if let Some/Ok(v)`. For enum with few variants, `early-tailduplication` should not cause compile time overhead.
r? RalfJung
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
This is just one part of the MCP, but it's the one that IMHO removes the most noise from the standard library code.
Seems net simpler this way, since MIR already supported heterogeneous shifts anyway, and thus it's not more work for backends than before.
Remove len argument from RawVec::reserve_for_push
Removes `RawVec::reserve_for_push`'s `len` argument since it's always the same as capacity.
Also makes `Vec::insert` use `RawVec::reserve_for_push`.
CFI: Fix methods as function pointer cast
Fix casting between methods and function pointers by assigning a secondary type id to methods with their concrete self so they can be used as function pointers.
This was split off from #116404.
cc `@compiler-errors` `@workingjubilee`
Codegen const panic messages as function calls
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting shared library (see [perf]).
A sample improvement from nightly:
```
leaq str.0(%rip), %rdi
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdx
movl $25, %esi
callq *_ZN4core9panicking5panic17h17cabb89c5bcc999E@GOTPCREL(%rip)
```
to this PR:
```
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdi
callq *_RNvNtNtCsduqIKoij8JB_4core9panicking11panic_const23panic_const_div_by_zero@GOTPCREL(%rip)
```
[perf]: https://perf.rust-lang.org/compare.html?start=a7e4de13c1785819f4d61da41f6704ed69d5f203&end=64fbb4f0b2d621ff46d559d1e9f5ad89a8d7789b&stat=instructions:u
Fix casting between methods and function pointers by assigning a
secondary type id to methods with their concrete self so they can be
used as function pointers.
CFI: Fix drop and drop_in_place
Fix drop and drop_in_place by transforming self of drop and drop_in_place methods into a Drop trait objects.
This was split off from https://github.com/rust-lang/rust/pull/116404.
cc `@compiler-errors` `@workingjubilee`
CFI: Support self_cell-like recursion
Current `transform_ty` attempts to avoid cycles when normalizing `#[repr(transparent)]` types to their interior, but runs afoul of this pattern used in `self_cell`:
```
struct X<T> {
x: u8,
p: PhantomData<T>,
}
#[repr(transparent)]
struct Y(X<Y>);
```
When attempting to normalize Y, it will still cycle indefinitely. By using a types-visited list, this will instead get expanded exactly one layer deep to X<Y>, and then stop, not attempting to normalize `Y` any further.
This PR was split off from #121962 as part of fixing the larger vtable compatibility issues.
r? ``````@workingjubilee``````
Let codegen decide when to `mem::swap` with immediates
Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.
Thus this PR introduces a new `typed_swap` intrinsic with a fallback body, and replaces that fallback implementation when swapping immediates or scalar pairs.
r? oli-obk
Replaces #111744, and means we'll never need more libs PRs like #111803 or #107140
Current `transform_ty` attempts to avoid cycles when normalizing
`#[repr(transparent)]` types to their interior, but runs afoul of this
pattern used in `self_cell`:
```
struct X<T> {
x: u8,
p: PhantomData<T>,
}
#[repr(transparent)]
struct Y(X<Y>);
```
When attempting to normalize Y, it will still cycle indefinitely. By
using a types-visited list, this will instead get expanded exactly
one layer deep to X<Y>, and then stop, not attempting to normalize `Y`
any further.
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting binary.
CFI: Skip non-passed arguments
Rust will occasionally rely on fn((), X) -> Y being compatible with fn(X) -> Y, since () is a non-passed argument. Relax CFI by choosing not to encode non-passed arguments.
This PR was split off from #121962 as part of fixing the larger vtable compatibility issues.
r? `@workingjubilee`
Rust will occasionally rely on fn((), X) -> Y being compatible with
fn(X) -> Y, since () is a non-passed argument. Relax CFI by choosing not
to encode non-passed arguments.
CFI: Break tests into smaller files
Break type metadata identifiers tests into smaller set of tests/files, and move CFI (and KCFI) codegen tests to a cfi (and kcfi) subdirectory,
Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.
So introduce a new `typed_swap` intrinsic with a fallback body, but replace that implementation for immediates and scalar pairs.
Tests added in cast-target-abi.rs, covering the single element, array,
and prefix cases in `CastTarget::llvm_type`, and the Rust-is-larger/smaller
cases in the Rust<->ABI copying code.
ffi-out-of-bounds-loads.rs was overhauled to be runnable on any
platform. Its alignment also increases due to the removal of a `min` in
the previous commit; this was probably an insufficient workaround for
this issue or similar. The higher alignment is fine, since the alloca is
actually aligned to 8 bytes, as the test checks now confirm.
Stop walking the bodies of statics for reachability, and evaluate them instead
cc `@saethlin` `@RalfJung`
cc #119214
This reuses the `DefIdVisitor` from `rustc_privacy`, because they basically try to do the same thing.
This PR's changes can probably be extended to constants, too, but let's tackle that separately, it's likely more involved.
Represent `Result<usize, Box<T>>` as ScalarPair(i64, ptr)
This allows types like `Result<usize, std::io::Error>` (and integers of differing sign, e.g. `Result<u64, i64>`) to be passed in a pair of registers instead of through memory, like `Result<u64, u64>` or `Result<Box<T>, Box<U>>` are today.
Fixes#97540.
r? `@ghost`
Lower transmutes from int to pointer type as gep on null
I thought of this while looking at https://github.com/rust-lang/rust/pull/121242. See that PR's description for why this lowering is preferable.
The UI test that's being changed here crashes without changing the transmutes into casts. Based on that, this PR should not be merged without a crater build-and-test run.
Test wasm32-wasip1 in CI, not wasm32-unknown-unknown
This commit changes CI to no longer test the `wasm32-unknown-unknown` target and instead test the `wasm32-wasip1` target. There was some discussion of this in a [Zulip thread], and the motivations for this PR are:
* Runtime failures on `wasm32-unknown-unknown` print nothing, meaning all you get is "something failed". In contrast `wasm32-wasip1` can print to stdout/stderr.
* The unknown-unknown target is missing lots of pieces of libstd, and while `wasm32-wasip1` is also missing some pieces (e.g. threads) it's missing fewer pieces. This means that many more tests can be run.
Overall my hope is to improve the debuggability of wasm failures on CI and ideally be a bit less of a maintenance burden.
This commit specifically removes the testing of `wasm32-unknown-unknown` and replaces it with testing of `wasm32-wasip1`. Along the way there were a number of other archiectural changes made as well, including:
* A new `target.*.runtool` option can now be specified in `config.toml` which is passed as `--runtool` to `compiletest`. This is used to reimplement execution of WebAssembly in a less-wasm-specific fashion.
* The default value for `runtool` is an ambiently located WebAssembly runtime found on the system, if any. I've implemented logic for Wasmtime.
* Existing testing support for `wasm32-unknown-unknown` and Emscripten has been removed. I'm not aware of Emscripten testing being run any time recently and otherwise `wasm32-wasip1` is in theory the focus now.
* I've added a new `//@ needs-threads` directive for `compiletest` and classified a bunch of wasm-ignored tests as needing threads. In theory these tests can run on `wasm32-wasi-preview1-threads`, for example.
* I've tried to audit all existing tests that are either `ignore-emscripten` or `ignore-wasm*`. Many now run on `wasm32-wasip1` due to being able to emit error messages, for example. Many are updated with comments as to why they can't run as well.
* The `compiletest` output matching for `wasm32-wasip1` automatically uses "match a subset" mode implemented in `compiletest`. This is because WebAssembly runtimes often add extra information on failure, such as the `unreachable` instruction in `panic!`, which isn't able to be matched against the golden output from native platforms.
* I've ported most existing `run-make` tests that use custom Node.js wrapper scripts to the new run-make-based-in-Rust infrastructure. To do this I added `wasmparser` as a dependency of `run-make-support` for the various wasm tests to use that parse wasm files. The one test that executed WebAssembly now uses `wasmtime`-the-CLI to execute the test instead. I have not ported over an exception-handling test as Wasmtime doesn't implement this yet.
* I've updated the `test` crate to print out timing information for WASI targets as it can do that (gets a previously ignored test now passing).
* The `test-various` image now builds a WASI sysroot for the WASI target and additionally downloads a fixed release of Wasmtime, currently the latest one at 18.0.2, and uses that for testing.
[Zulip thread]: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Have.20wasm.20tests.20ever.20caused.20problems.20on.20CI.3F/near/424317944
* The WASI targets deal with the `main` symbol a bit differently than
native so some `codegen` and `assembly` tests have been ignored.
* All `ignore-emscripten` directives have been updated to
`ignore-wasm32` to be more clear that all wasm targets are ignored and
it's not just Emscripten.
* Most `ignore-wasm32-bare` directives are now gone.
* Some ignore directives for wasm were switched to `needs-unwind`
instead.
* Many `ignore-wasm32*` directives are removed as the tests work with
WASI as opposed to `wasm32-unknown-unknown`.
Use ptradd for vtable indexing
Extension of #121665.
After this, the only remaining usages of GEP are [this](cd81f5b27e/compiler/rustc_codegen_llvm/src/intrinsic.rs (L909-L920)) kinda janky Emscription EH code, which I'll change in a future PR, and array indexing / pointer offsets, where there isn't yet a canonical `ptradd` form. (Out of curiosity I tried converting the latter to `ptradd(ptr, mul(size, index))`, but that causes codegen regressions right now.)
r? `@nikic`
Stop using LLVM struct types for byval/sret
For `byval` and `sret`, the type has no semantic meaning, only the size matters\*†. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout.
\*: The alignment would matter, if we didn't explicitly specify it. From what I can tell, we always specified the alignment for `sret`; for `byval`, we didn't until #112157.
†: For `byval`, the hidden copy may be impacted by padding in the LLVM struct type, i.e. padding bytes may not be copied. (I'm not sure if this is done today, but I think it would be legal.) But we manually pad our LLVM struct types specifically to avoid there ever being LLVM-visible padding, so that shouldn't be an issue.
Split out from #121577.
r? `@nikic`
Update a test to support Symbol Mangling V0
Note that since this is a symbol from `std`, overriding the symbol mangling version via the `compile-flags` directive does not work.
Vec::try_with_capacity
Related to #91913
Implements try_with_capacity for `Vec`, `VecDeque`, and `String`. I can follow it up with more collections if desired.
`Vec::try_with_capacity()` is functionally equivalent to the current stable:
```rust
let mut v = Vec::new();
v.try_reserve_exact(n)?
```
However, `try_reserve` calls non-inlined `finish_grow`, which requires old and new `Layout`, and is designed to reallocate memory. There is benefit to using `try_with_capacity`, besides syntax convenience, because it generates much smaller code at the call site with a direct call to the allocator. There's codegen test included.
It's also a very desirable functionality for users of `no_global_oom_handling` (Rust-for-Linux), since it makes a very commonly used function available in that environment (`with_capacity` is used much more frequently than all `(try_)reserve(_exact)`).
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``