tests: Normalize `\r\n` to `\n` in some run-make tests
The output is produced by printf from C code in these cases, and printf prints in text mode, which means `\n` will be printed as `\r\n` on Windows.
In --bless mode the new output with `\r\n` will replace expected output in `tests/run-make/raw-dylib-*\output.txt` files, which use \n, always resulting in dirty files in the repo.
remove an unnecessary stderr-per-bitwidth
also update some regexp, `a(lloc)?` would no longer match now that we have compiletest itself do alloc ID normalization.
r? ````@oli-obk````
coverage: `llvm-cov` expects column numbers to be bytes, not code points
Normally the compiler emits column numbers as a 1-based number of Unicode code points.
But when we embed coverage mappings for `-Cinstrument-coverage`, those mappings will ultimately be read by the `llvm-cov` tool. That tool assumes that column numbers are 1-based numbers of *bytes*, and relies on that assumption when slicing up source code to apply highlighting (in HTML reports, and in text-based reports with colour).
For the very common case of all-ASCII source code, bytes and code points are the same, so the difference isn't noticeable. But for code that contains non-ASCII characters, emitting column numbers as code points will result in `llvm-cov` slicing strings in the wrong places, producing mangled output or fatal errors.
(See https://github.com/taiki-e/cargo-llvm-cov/issues/275 as an example of what can go wrong.)
Improved support of collapse_debuginfo attribute for macros.
Added walk_chain_collapsed function to consider collapse_debuginfo attribute in parent macros in call chain.
Fixed collapse_debuginfo attribute processing for cranelift (there was if/else branches error swap).
cc https://github.com/rust-lang/rust/issues/100758
It was added in #54232. It seems like it was aimed at NLL development,
which is well in the past. Also, it looks like `-Ztreat-err-as-bug` can
be used to achieve the same effect. So it doesn't seem necessary.
Map is implemented as a pointer to a mutable object.
Rustdoc never mutates function signatures after constructing them,
but the JS engine doesn't know that.
To save a bunch of memory, use a single immutable map
for every decoded type object with no bindings or generics.
Consuming `emit`
This PR makes `DiagnosticBuilder::emit` consuming, i.e. take `self` instead of `&mut self`. This is good because it doesn't make sense to emit a diagnostic twice.
This requires some changes to `DiagnosticBuilder` method changing -- every existing non-consuming chaining method gets a new consuming partner with a `_mv` suffix -- but permits a host of beneficial follow-up changes: more concise code through more chaining, removal of redundant diagnostic construction API methods, and removal of machinery to track the possibility of a diagnostic being emitted multiple times.
r? `@compiler-errors`
They are no longer used, because
`{DiagCtxt,DiagCtxtInner}::emit_diagnostic` are used everywhere instead.
This also means `track_diagnostic` can become consuming.
Currently it's used for two dynamic checks:
- When a diagnostic is emitted, has it been emitted before?
- When a diagnostic is dropped, has it been emitted/cancelled?
The first check is no longer need, because `emit` is consuming, so it's
impossible to emit a `DiagnosticBuilder` twice. The second check is
still needed.
This commit replaces `DiagnosticBuilderState` with a simpler
`Option<Box<Diagnostic>>`, which is enough for the second check:
functions like `emit` and `cancel` can take the `Diagnostic` and then
`drop` can check that the `Diagnostic` was taken.
The `DiagCtxt` reference from `DiagnosticBuilderState` is now stored as
its own field, removing the need for the `dcx` method.
As well as making the code shorter and simpler, the commit removes:
- One (deprecated) `ErrorGuaranteed::unchecked_claim_error_was_emitted`
call.
- Two `FIXME(eddyb)` comments that are no longer relevant.
- The use of a dummy `Diagnostic` in `into_diagnostic`.
Nice!
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
The old code was very hard to understand, involving an
`emit_without_consuming` call *and* a `delay_as_bug_without_consuming`
call.
With slight changes both calls can be avoided. Not creating the error
until later is crucial, as is the early return in the `if recovered`
block.
It took me some time to come up with this reworking -- it went through
intermediate states much further from the original code than this final
version -- and it's isn't obvious at a glance that it is equivalent. But
I think it is, and the unchanged test behaviour is good supporting
evidence.
The commit also changes `check_trailing_angle_brackets` to return
`Option<ErrorGuaranteed>`. This provides a stricter proof that it
emitted an error message than asserting `dcx.has_errors().is_some()`,
which would succeed if any error had previously been emitted anywhere.
It's not clear why this was here, because the created error is returned
as a normal error anyway.
Nor is it clear why removing the call works. The change doesn't affect
any tests; `tests/ui/parser/issues/issue-102182-impl-trait-recover.rs`
looks like the only test that could have been affected.
Instead of taking `seq` as a mutable reference,
`maybe_recover_struct_lit_bad_delims` now consumes `seq` on the recovery
path, and returns `seq` unchanged on the non-recovery path. The commit
also combines an `if` and a `match` to merge two identical paths.
Also change `recover_seq_parse_error` so it receives a `PErr` instead of
a `PResult`, because all the call sites now handle the `Ok`/`Err`
distinction themselves.
In this parsing recovery function, we only need to emit the previously
obtained error message and mark `expr` as erroneous in the case where we
actually recover.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.