Split out `ty::AliasTerm` from `ty::AliasTy`
Splitting out `AliasTerm` (for use in project and normalizes goals) and `AliasTy` (for use in `ty::Alias`)
r? lcnr
Pass list of defineable opaque types into canonical queries
This eliminates `DefiningAnchor::Bubble` for good and brings the old solver closer to the new one wrt cycles and nested obligations. At that point the difference between `DefiningAnchor::Bind([])` and `DefiningAnchor::Error` was academic. We only used the difference for some sanity checks, which actually had to be worked around in places, so I just removed `DefiningAnchor` entirely and just stored the list of opaques that may be defined.
fixes#108498
fixes https://github.com/rust-lang/rust/issues/116877
* [x] run crater
- https://github.com/rust-lang/rust/pull/122077#issuecomment-2013293931
remove `sub_relations` from the `InferCtxt`
While doing so, I tried to remove the `delay_span_bug` in `rematch_impl` again, which lead me to discover another `freshen` bug, fixing that one in the second commit. See commit descriptions for the reasoning behind each change.
r? `@compiler-errors`
Convert `delayed_bug`s to `bug`s.
I have a suspicion that quite a few delayed bug paths are impossible to reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite, then converted back every `bug` that was hit. A surprising number were never hit.
This is too dangerous to merge. Increased coverage (fuzzing or a crater run) would likely hit more cases. But it might be useful for people to look at and think about which paths are genuinely unreachable.
r? `@ghost`
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
improve normalization of `Pointee::Metadata`
This PR makes it so that `<Wrapper<Tail> as Pointee>::Metadata` is normalized to `<Tail as Pointee>::Metadata` if we don't know `Wrapper<Tail>: Sized`. With that, the trait solver can prove projection predicates like `<Wrapper<Tail> as Pointee>::Metadata == <Tail as Pointee>::Metadata`, which makes it possible to use the metadata APIs to cast between the tail and the wrapper:
```rust
#![feature(ptr_metadata)]
use std::ptr::{self, Pointee};
fn cast_same_meta<T: ?Sized, U: ?Sized>(ptr: *const T) -> *const U
where
T: Pointee<Metadata = <U as Pointee>::Metadata>,
{
let (thin, meta) = ptr.to_raw_parts();
ptr::from_raw_parts(thin, meta)
}
struct Wrapper<T: ?Sized>(T);
fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> {
cast_same_meta(ptr)
}
```
Previously, this failed to compile:
```
error[E0271]: type mismatch resolving `<Wrapper<T> as Pointee>::Metadata == <T as Pointee>::Metadata`
--> src/lib.rs:16:5
|
15 | fn cast_to_wrapper<T: ?Sized>(ptr: *const T) -> *const Wrapper<T> {
| - found this type parameter
16 | cast_same_meta(ptr)
| ^^^^^^^^^^^^^^ expected `Wrapper<T>`, found type parameter `T`
|
= note: expected associated type `<Wrapper<T> as Pointee>::Metadata`
found associated type `<T as Pointee>::Metadata`
= note: an associated type was expected, but a different one was found
```
(Yes, you can already do this with `as` casts. But using functions is so much ✨ *safer* ✨, because you can't change the metadata on accident.)
---
This PR essentially changes the built-in impls of `Pointee` from this:
```rust
// before
impl Pointee for u8 {
type Metadata = ();
}
impl Pointee for [u8] {
type Metadata = usize;
}
// ...
impl Pointee for Wrapper<u8> {
type Metadata = ();
}
impl Pointee for Wrapper<[u8]> {
type Metadata = usize;
}
// ...
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T: ?Sized> Pointee for Wrapper<T>
where
Wrapper<T>: Sized
{
type Metadata = ();
}
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T /*: Sized */> Pointee for T {
type Metadata = ();
}
```
to this:
```rust
// after
impl Pointee for u8 {
type Metadata = ();
}
impl Pointee for [u8] {
type Metadata = usize;
}
// ...
impl<T: ?Sized> Pointee for Wrapper<T> {
// in the old solver this will instead project to the "deep" tail directly,
// e.g. `Wrapper<Wrapper<T>>::Metadata = T::Metadata`
type Metadata = <T as Pointee>::Metadata;
}
// ...
// This impl is only selected if `T` is a type parameter or unnormalizable projection or opaque type.
fallback impl<T /*: Sized */> Pointee for T {
type Metadata = ();
}
```
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`