In the AST, currently we use `BinOpKind` within `ExprKind::AssignOp` and
`AssocOp::AssignOp`, even though this allows some nonsensical
combinations. E.g. there is no `&&=` operator. Likewise for HIR and
THIR.
This commit introduces `AssignOpKind` which only includes the ten
assignable operators, and uses it in `ExprKind::AssignOp` and
`AssocOp::AssignOp`. (And does similar things for `hir::ExprKind` and
`thir::ExprKind`.) This avoids the possibility of nonsensical
combinations, as seen by the removal of the `bug!` case in
`lang_item_for_binop`.
The commit is mostly plumbing, including:
- Adds an `impl From<AssignOpKind> for BinOpKind` (AST) and `impl
From<AssignOp> for BinOp` (MIR/THIR).
- `BinOpCategory` can now be created from both `BinOpKind` and
`AssignOpKind`.
- Replaces the `IsAssign` type with `Op`, which has more information and
a few methods.
- `suggest_swapping_lhs_and_rhs`: moves the condition to the call site,
it's easier that way.
- `check_expr_inner`: had to factor out some code into a separate
method.
I'm on the fence about whether avoiding the nonsensical combinations is
worth the extra code.
First, move the `lang_item_for_op` call from the top of
`lookup_op_method`'s body to its callsites. It makes those callsites a
little more verbose, but also means `lookup_op_method` no longer cares
whether it's handling a binop or unop. This lets us remove `Op` and
split `lang_item_for_op` into `lang_item_for_{bin,un}op`, which is a
little simpler.
This change is a prerequisite for adding the `ast::AssignOpKind` type in
a subsequent commit.
Rollup of 6 pull requests
Successful merges:
- #138992 (literal pattern lowering: use the pattern's type instead of the literal's in `const_to_pat`)
- #139211 (interpret: add a version of run_for_validation for &self)
- #139235 (`AstValidator` tweaks)
- #139237 (Add a dep kind for use of the anon node with zero dependencies)
- #139260 (Add dianqk to codegen reviewers)
- #139264 (Fix two incorrect turbofish suggestions)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix two incorrect turbofish suggestions
This fixes#121901
This is my contribution to Rust, and my first contribution to a language parser that I didn't write myself.
I am a bit outside my depth here, so any constructive criticism is appreciated.
Add a dep kind for use of the anon node with zero dependencies
This adds a dep kind for use of the anon node with zero dependencies instead of making use of the null node. I don't think this matters, but it is nicer than random null nodes in the dep graph.
`AstValidator` tweaks
When I read through `AstValidator` there were several things that tripped me up, and made the code harder to understand than I would have liked. This PR addresses them. Best reviewed one commit at a time.
r? ``@davidtwco``
literal pattern lowering: use the pattern's type instead of the literal's in `const_to_pat`
This has two purposes:
- First, it enables removing the `treat_byte_string_as_slice` fields from `TypeckResults` and `ConstToPat`. A byte string pattern's type will be `&[u8]` when matching on a slice reference, so `const_to_pat` will lower it to a slice ref pattern. I believe this is tested by `tests/ui/match/pattern-deref-miscompile.rs`.
- Second, it will simplify the implementation of byte string literals in deref patterns. If byte string patterns can be given the type `[u8; N]` or `[u8]` during HIR typeck, then nothing needs to be changed in `const_to_pat` in order to lower the patterns `deref!(b"..."): Vec<u8>` and `deref!(b"..."): Box<[u8; 3]>`.
Implementation-wise, this uses `lit_to_const` to make a const with the pattern's type and the literal's valtree; that feels to me like the best way to make sure that the valtree representations of the pattern type and literal are the same. Though it may necessitate later changes to `lit_to_const` to accommodate giving byte string literal patterns non-reference types—would that be reasonable?
This unfortunately doesn't work for the `string_deref_patterns` feature (since that gives string literal patterns the `String` type), so I added a workaround for that. However, once `deref_patterns` supports string literals, it may be able to replace `string_deref_patterns`; the special case for `String` can removed at that point.
r? ``@oli-obk``
Move methods from `Map` to `TyCtxt`, part 5.
This eliminates all methods on `Map`. Actually removing `Map` will occur in a follow-up PR.
A follow-up to #137504.
r? `@Zalathar`
`for_each_assignment_mut` can skip assignment statements with side effects,
which can result in some assignment statements retrieving outdated value.
For example, it may skip a dereference assignment statement.
Various local trait item iteration cleanups
Adding a trait impl for `Foo` unconditionally affected all queries that are interested in a completely independent trait `Bar`. Perf has no effect on this. We probably don't have a good perf test for this tho.
r? `@compiler-errors`
I am unsure about 9d05efb66f as it doesn't improve anything wrt incremental, because we still do all the checks for valid `Drop` impls, which subsequently will still invoke many queries and basically keep the depgraph the same.
I want to do
9549077a47/compiler/rustc_middle/src/ty/trait_def.rs (L141)
but would leave that to a follow-up PR, this one changes enough things as it is
`AstValidator` has several `with_*` methods, each one setting a field
that adjust how checking takes place for items within certain other
items. E.g. `with_in_trait_impl` is used to adjust the checking done on
items inside an `impl` item. Weirdly, the scopes used for most of the
`with_*` calls are very broad, and include things that aren't "inside"
the item, such as visibility, unsafety, and constness.
This commit minimizes the scope of these `with_*` calls so they only
apply to the things inside the item.
Rollup of 14 pull requests
Successful merges:
- #135295 (Check empty SIMD vector in inline asm)
- #138003 (Add the new `amx` target features and the `movrs` target feature)
- #138823 (rustc_target: RISC-V: add base `I`-related important extensions)
- #138913 (Remove even more instances of `@ts-expect-error` from search.js)
- #138941 (Do not mix normalized and unnormalized caller bounds when constructing param-env for `receiver_is_dispatchable`)
- #139060 (replace commit placeholder in vendor status with actual commit)
- #139102 (coverage: Avoid splitting spans during span extraction/refinement)
- #139191 (small opaque type/borrowck cleanup)
- #139200 (Skip suggest impl or dyn when poly trait is not a real trait)
- #139208 (fix dead link netbsd.md)
- #139210 (chore: remove redundant backtick)
- #139212 (Update mdbook to 0.4.48)
- #139214 (Tell rustfmt to use the 2024 edition in ./x.py fmt)
- #139225 (move autodiff from EnzymeAD/Enzyme to our rust-lang/Enzyme soft-fork)
r? `@ghost`
`@rustbot` modify labels: rollup
A bunch of span-related names in `AstValidator` don't end in `span`,
which goes against the usual naming conventions and makes the code
surprisingly hard to read. E.g. a name like `body` doesn't sound like
it's a span.
This commit adds `_span` suffixes.
Tell rustfmt to use the 2024 edition in ./x.py fmt
Most crates in this repo have been moved to the 2024 edition already. This also allows removing a rustfmt exclusion for a cg_clif test.
Skip suggest impl or dyn when poly trait is not a real trait
Fixes#139174
When `poly_trait_ref` is not a real trait, we should stop suggesting `impl` and `dyn` to avoid false positives. 3 cases were added to the ui test.
0b45675cfc/compiler/rustc_hir_analysis/src/hir_ty_lowering/lint.rs (L88-L93)
In the first commit, I submitted the test and passed it. In the second commit, I modified the code and we can see the changes in the test.
r? compiler
coverage: Avoid splitting spans during span extraction/refinement
This PR removes or simplifies some of the steps involved in extracting coverage-relevant spans from MIR, and preparing them for use in coverage instrumentation metadata.
A common theme is that we now try harder to avoid modifying or combining spans in non-trivial ways, because those modifications present the most risk for weird behaviour or ICEs.
The main changes are:
- When extracting spans from MIR call terminators, try to restrict them to just the function name.
- Instead of splitting spans around “holes”, just discard any span that overlaps with a hole.
- Instead of splitting macro-invocation spans into two parts, truncate them to just the macro name and subsequent `!`.
---
This results in a lot of tiny changes to the spans that end up in coverage metadata, and a few changes to coverage reports. Judging by test snapshots, these changes appear to be quite minor in practice.
Do not mix normalized and unnormalized caller bounds when constructing param-env for `receiver_is_dispatchable`
See comments in code and in test I added.
r? `@BoxyUwU` since you reviewed the last PR, or reassign
Fixes#138937
rustc_target: RISC-V: add base `I`-related important extensions
Of ratified RISC-V features defined, this commit adds extensions satisfying following criteria:
* Formerly a part of the `I` extension and splitted thereafter (now ratified as `I` + `Zifencei` + `Zicsr` + `Zicntr` + `Zihpm`) or
* Dicoverable from newer versions of the Linux kernel and implemented as a part of `std_detect`'s feature (`Zihintpause`) and
* Available on LLVM 18.
This is based on [the latest ratified ISA Manuals (version 20240411)](https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications).
LLVM Definitions:
* [`Zifencei`](https://github.com/llvm/llvm-project/blob/llvmorg-20.1.0/llvm/lib/Target/RISCV/RISCVFeatures.td#L133-L137)
* [`Zicsr`](https://github.com/llvm/llvm-project/blob/llvmorg-20.1.0/llvm/lib/Target/RISCV/RISCVFeatures.td#L116-L120)
* [`Zicntr`](https://github.com/llvm/llvm-project/blob/llvmorg-20.1.0/llvm/lib/Target/RISCV/RISCVFeatures.td#L122-L124)
* [`Zihpm`](https://github.com/llvm/llvm-project/blob/llvmorg-20.1.0/llvm/lib/Target/RISCV/RISCVFeatures.td#L153-L155)
* [`Zihintpause`](https://github.com/llvm/llvm-project/blob/llvmorg-20.1.0/llvm/lib/Target/RISCV/RISCVFeatures.td#L139-L144)
Additional (1):
One of those, `Zicsr`, is a dependency of many other ISA extensions and this commit adds correct dependencies to `Zicsr`.
Additional (2):
In RISC-V, `G` is an abbreviation of following extensions:
* `I`
* `M`
* `A`
* `F`
* `D`
* `Zicsr` (although implied by `F`)
* `Zifencei`
and all RISC-V targets with the `G` abbreviation and targets for Android / VxWorks are updated accordingly.
Note:
Android will require RVA22 (likely RVA22U64) and some more extensions, which is a superset of RV64GC. For VxWorks, all BSPs currently distributed by Wind River are for boards with RV64GC (this commit also updates `riscv32-wrs-vxworks` though).
--------
This is the version 4.
`Ztso` in the original proposal is removed on the PR version 2 due to the minimum LLVM version (non-experimental `Ztso` requires LLVM 19 while minimum LLVM version of Rust is 18). This is not back in PR version 3 and 4 after noticing adding `Ztso` is possible by checking host LLVM version because PR version 3 introduces compiler target changes (and adding more extensions would complicate the problems; sorry `Zihintpause`).
Version 4:
* Fixed some commit messages,
* Added Android / VxWorks targets to imply `G` and
* Added an implication from `Zve32x` to `Zicsr` (which makes all vector extension subsets to imply `Zicsr`)
since #138742 is now merged.
Related:
* #44839
(`riscv_target_feature`)
* #114544
(This PR can be a prerequisite of resolving a part of that tracking issue)
* #138742
(Touches the same place and vector extensions depend on `Zicsr`)
NOT Related but linked:
* #132618
(This PR won't be blocked by this issue since none of those extensions do not change the ABI)
`@rustbot` r? `@Amanieu`
`@rustbot` label +T-compiler +O-riscv +A-target-feature
Add the new `amx` target features and the `movrs` target feature
Adds 5 new `amx` target features included in LLVM20. These are guarded under `x86_amx_intrinsics` (#126622)
- `amx-avx512`
- `amx-fp8`
- `amx-movrs`
- `amx-tf32`
- `amx-transpose`
Adds the `movrs` target feature (from #137976).
`@rustbot` label O-x86_64 O-x86_32 T-compiler A-target-feature
r? `@Amanieu`
Of ratified RISC-V features defined, this commit adds extensions
satisfying following criteria:
* Formerly a part of the "I" extension and splitted thereafter
(now ratified as "I" + "Zifencei" + "Zicsr" + "Zicntr" + "Zihpm") or
* Dicoverable from newer versions of the Linux kernel and implemented
as a part of std_detect's feature ("Zihintpause").
This is based on the latest ratified ISA Manuals (version 20240411).
Additional (1):
One of those, "Zicsr", is a dependency of many other ISA extensions and
this commit adds correct dependencies to "Zicsr".
Additional (2):
In RISC-V, "G" is an abbreviation of following extensions:
* "I"
* "M"
* "A"
* "F"
* "D"
* "Zicsr" (although implied by "F")
* "Zifencei"
and all RISC-V targets with the "G" abbreviation and targets for Android /
VxWorks are updated accordingly.
Note:
Android will require RVA22 (likely RVA22U64) and some more extensions,
which is a superset of RV64GC. For VxWorks, all BSPs currently distributed
by Wind River are for boards with RV64GC (this commit also updates
riscv32-wrs-vxworks though).
Currently it uses `walk_item` on some item kinds. For other item kinds
it visits the fields individually. For the latter group, this commit
adds `visit_attrs_vis` and `visit_attrs_vis_ident` which bundle up
visits to the fields that don't need special handling. This makes it
clearer that they haven't been forgotten about.
Also, it's better to do the attribute visits at the start because
attributes precede the items in the source code. Because of this, a
couple of tests have their output improved: errors appear in an order
that matches the source code order.
Currently some code paths return early, while others fall through to the
`visit::walk_item` call, which is easy to overlook (I did, at first),
even with the explanatory comments.
This commit removes the early returns and moves the `visit::walk_item`
calls up where necessary. This makes the function easier to read and
slightly shorter.
Notes about tests:
- tests/ui/rfcs/rfc-2294-if-let-guard/feature-gate.rs: some messages are
now duplicated due to repeated parsing.
- tests/ui/rfcs/rfc-2497-if-let-chains/disallowed-positions.rs: ditto.
- `tests/ui/proc-macro/macro-rules-derive-cfg.rs`: the diff looks large
but the only difference is the insertion of a single
invisible-delimited group around a metavar.
- `tests/ui/attributes/nonterminal-expansion.rs`: a slight span
degradation, somehow related to the recent massive attr parsing
rewrite (#135726). I couldn't work out exactly what is going wrong,
but I don't think it's worth holding things up for a single slightly
suboptimal error message.
Feed HIR for by-move coroutine body def, since the inliner tries to read its attrs
See the comments in the test.
I'm surprised that nobody found this[^1] (edit: nvm haha), but you have to go out of your way to construct the by-move body and then inline it w/ a poll call, so I guess the inliner just never really gets into this situation before.
Fixes#134335
r? oli-obk
[^1]: Well, ````@eholk```` found this when working on the `iter! {}` macro, since it more dramatically affects those.
PassWrapper: adapt for llvm/llvm-project@94122d58fc77079a291a3d008914…
…006cb509d9db
We also have to remove the LLVM argument in cast-target-abi.rs for LLVM
21. I'm not really sure what the best approach here is since that test already uses revisions. We could also fork the test into a copy for LLVM 19-20 and another for LLVM 21, but what I did for now was drop the lint-abort-on-error flag to LLVM figuring that some coverage was better than none, but I'm happy to change this if that was a bad direction.
r? dianqk
````@rustbot```` label llvm-main
increment depth of nested obligations
properly fixes the root cause of #109268. While we didn't get hangs here before, I ended up encountering its root cause again with #138785.
r? types
Note potential but private items in show_candidates
Closes#138626 .
We should add potential private items to give ample hints.
And for the other seemingly false positive ` pub use crate:1️⃣:Foo;` should be kept because we don't know if the user wants to import other module's items or not, and therefore should be given the full option to do so.
r? compiler
remove `feature(inline_const_pat)`
Summarizing https://rust-lang.zulipchat.com/#narrow/channel/144729-t-types/topic/remove.20feature.28inline_const_pat.29.20and.20shared.20borrowck.
With https://github.com/rust-lang/types-team/issues/129 we will start to borrowck items together with their typeck parent. This is necessary to correctly support opaque types, blocking the new solver and TAIT/ATPIT stabilization with the old one. This means that we cannot really support `inline_const_pat` as they are implemented right now:
- we want to typeck inline consts together with their parent body to allow inference to flow both ways and to allow the const to refer to local regions of its parent.This means we also need to borrowck the inline const together with its parent as that's necessary to properly support opaque types
- we want the inline const pattern to participate in exhaustiveness checking
- to participate in exhaustiveness checking we need to evaluate it, which requires borrowck, which now relies on borrowck of the typeck root, which ends up checking exhaustiveness again. **This is a query cycle**.
There are 4 possible ways to handle this:
- stop typechecking inline const patterns together with their parent
- causes inline const patterns to be different than inline const exprs
- prevents bidirectional inference, we need to either fail to compile `if let const { 1 } = 1u32` or `if let const { 1u32 } = 1`
- region inference for inline consts will be harder, it feels non-trivial to support inline consts referencing local regions from the parent fn
- inline consts no longer participate in exhaustiveness checking. Treat them like `pat if pat == const { .. }` instead. We then only evaluate them after borrowck
- difference between `const { 1 }` and `const FOO: usize = 1; match x { FOO => () }`. This is confusing
- do they carry their weight if they are now just equivalent to using an if-guard
- delay exhaustiveness checking until after borrowck
- should be possible in theory, but is a quite involved change and may have some unexpected challenges
- remove this feature for now
I believe we should either delay exhaustiveness checking or remove the feature entirely. As moving exhaustiveness checking to after borrow checking is quite complex I think the right course of action is to fully remove the feature for now and to add it again once/if we've got that implementation figured out.
`const { .. }`-expressions remain stable. These seem to have been the main motivation for https://github.com/rust-lang/rfcs/issues/2920.
r? types
cc `@rust-lang/types` `@rust-lang/lang` #76001
`ast::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
`Trait`, `TraitAlias`, `MacroDef`, `Delegation`.
- It's always empty for these item kinds: `Use`, `ForeignMod`,
`GlobalAsm`, `Impl`, `MacCall`, `DelegationMac`.
There is a similar story for `AssocItemKind` and `ForeignItemKind`.
Some sites that handle items check for an empty ident, some don't. This
is a very C-like way of doing things, but this is Rust, we have sum
types, we can do this properly and never forget to check for the
exceptional case and never YOLO possibly empty identifiers (or possibly
dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- `ast::Item` got 8 bytes bigger. This could be avoided by boxing the
fields within some of the `ast::ItemKind` variants (specifically:
`Struct`, `Union`, `Enum`). I might do that in a follow-up; this
commit is big enough already.
- For the visitors: `FnKind` no longer needs an `ident` field because
the `Fn` within how has one.
- In the parser, the `ItemInfo` typedef is no longer needed. It was used
in various places to return an `Ident` alongside an `ItemKind`, but
now the `Ident` (if present) is within the `ItemKind`.
- In a few places I renamed identifier variables called `name` (or
`foo_name`) as `ident` (or `foo_ident`), to better match the type, and
because `name` is normally used for `Symbol`s. It's confusing to see
something like `foo_name.name`.
`expand_test_case` looks for any item with a `#[test_case]` attribute
and adds a `test_path_symbol` attribute to it while also fiddling with
the item's ident's span.
This is pretty weird, because `#[test_case]` is only valid on
`fn`/`const`/`static` items, as far as I can tell. But you don't
currently get an error or warning if you use it on other kinds of items.
This commit changes things so that a `#[test_case]` item is modified
only if it is `fn`/`const`/`static`. This is relevant for moving idents
from `Item` to `ItemKind`, because some item kinds don't have an ident,
e.g. `impl` blocks.
The commit also does the following.
- Renames a local variable `test_id` as `test_ident`.
- Changes a `const` to `static` in
`tests/ui/custom_test_frameworks/full.rs` to give the `static` case
some test coverage.
- Adds a `struct` and `impl` to the same test to give some test coverage
to the non-affected item kinds. These have a `FIXME` comment
identifying the weirdness here. Hopefully this will be useful
breadcrumbs for somebody else in the future.
This is a way to shrink call spans that doesn't involve mixing different spans,
and avoids overlap with argument spans.
This patch also removes some low-value comments that were causing rustfmt to
ignore the match arms.
Fix `armv7-sony-vita-newlibeabihf` LLVM target triple
It was previously normalized by LLVM to `thumbv7a-vita-unknown-eabihf` (can be seen with `clang -target thumbv7a-vita-eabihf -v`), which seems wrong, as Vita is the OS name.
Motivation: To make it easier to verify that [`cc-rs`' conversion from `rustc` to Clang/LLVM triples](https://github.com/rust-lang/cc-rs/issues/1431) is correct.
CC target maintainers ``@nikarh,`` ``@pheki`` and ``@ZetaNumbers.``
r? jieyouxu
This is part of the implementation of `#[doc(keyword = "match")]`
attributes used by `std` to provide documentation for keywords.
`is_doc_keyword` currently does a crude keyword range test that's
intended to catch all keywords but misses `kw::Yeet`. This commit
changes it to use `Symbol` methods, including the new `is_weak` method
(required for `union`). `Symbol` methods are much less prone to falling
out of date if new keywords are added.
We also have to remove the LLVM argument in cast-target-abi.rs for LLVM
21. I'm not really sure what the best approach here is since that test
already uses revisions. We could also fork the test into a copy for LLVM
19-20 and another for LLVM 21, but what I did for now was drop the
lint-abort-on-error flag to LLVM figuring that some coverage was better
than none, but I'm happy to change this if that was a bad direction.
The above also applies for ffi-out-of-bounds-loads.rs.
r? dianqk
@rustbot label llvm-main
Rollup of 6 pull requests
Successful merges:
- #138176 (Prefer built-in sized impls (and only sized impls) for rigid types always)
- #138749 (Fix closure recovery for missing block when return type is specified)
- #138842 (Emit `unused_attributes` for `#[inline]` on exported functions)
- #139153 (Encode synthetic by-move coroutine body with a different `DefPathData`)
- #139157 (Remove mention of `exhaustive_patterns` from `never` docs)
- #139167 (Remove Amanieu from the libs review rotation)
r? `@ghost`
`@rustbot` modify labels: rollup
Encode synthetic by-move coroutine body with a different `DefPathData`
See the included test. In the first revision rpass1, we have an async closure `{closure#0}` which has a coroutine as a child `{closure#0}::{closure#0}`. We synthesize a by-move coroutine body, which is `{closure#0}::{closure#1}` which depends on the mir_built query, which depends on the typeck query.
In the second revision rpass2, we've replaced the coroutine-closure by a closure with two children closure. Notably, the def path of the second child closure is the same as the synthetic def id from the last revision: `{closure#0}::{closure#1}`. When type-checking this closure, we end up trying to compute its def_span, which tries to fetch it from the incremental cache; this will try to force the dependencies from the last run, which ends up forcing the mir_built query, which ends up forcing the typeck query, which ends up with a query cycle.
The problem here is that we really should never have used the same `DefPathData` for the synthetic by-move coroutine body, since it's not a closure. Changing the `DefPathData` will mean that we can see that the def ids are distinct, which means we won't try to look up the closure's def span from the incremental cache, which will properly skip replaying the node's dependencies and avoid a query cycle.
Fixes#139142
Emit `unused_attributes` for `#[inline]` on exported functions
I saw someone post a code sample that contained these two attributes, which immediately made me suspicious.
My suspicions were confirmed when I did a small test and checked the compiler source code to confirm that in these cases, `#[inline]` is indeed ignored (because you can't exactly `LocalCopy`an unmangled symbol since that would lead to duplicate symbols, and doing a mix of an unmangled `GloballyShared` and mangled `LocalCopy` instantiation is too complicated for our current instatiation mode logic, which I don't want to change right now).
So instead, emit the usual unused attribute lint with a message saying that the attribute is ignored in this position.
I think this is not 100% true, since I expect LLVM `inlinehint` to still be applied to such a function, but that's not why people use this attribute, they use it for the `LocalCopy` instantiation mode, where it doesn't work.
r? saethlin as the instantiation guy
Procedurally, I think this should be fine to merge without any lang involvement, as this only does a very minor extension to an existing lint.
Fix closure recovery for missing block when return type is specified
Firstly, fix the `is_array_like_block` condition to make sure we're actually recovering a mistyped *block* rather than some other delimited expression. This fixes#138748.
Secondly, split out the recovery of missing braces on a closure body into a separate recovery. Right now, the suggestion `"you might have meant to write this as part of a block"` originates from `suggest_fixes_misparsed_for_loop_head`, which feels kinda brittle and coincidental since AFAICT that recovery wasn't ever really intended to fix this.
We also can make this `MachineApplicable` in this case.
Fixes#138748
r? `@fmease` or reassign if you're busy/don't wanna review this
Prefer built-in sized impls (and only sized impls) for rigid types always
This PR changes the confirmation of `Sized` obligations to unconditionally prefer the built-in impl, even if it has nested obligations. This also changes all other built-in impls (namely, `Copy`/`Clone`/`DiscriminantKind`/`Pointee`) to *not* prefer built-in impls over param-env impls. This aligns the old solver with the behavior of the new solver.
---
In the old solver, we register many builtin candidates with the `BuiltinCandidate { has_nested: bool }` candidate kind. The precedence this candidate takes over other candidates is based on the `has_nested` field. We only prefer builtin impls over param-env candidates if `has_nested` is `false`
2b4694a698/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1804-L1866)
Preferring param-env candidates when the builtin candidate has nested obligations *still* ends up leading to detrimental inference guidance, like:
```rust
fn hello<T>() where (T,): Sized {
let x: (_,) = Default::default();
// ^^ The `Sized` obligation on the variable infers `_ = T`.
let x: (i32,) = x;
// We error here, both a type mismatch and also b/c `T: Default` doesn't hold.
}
```
Therefore this PR adjusts the candidate precedence of `Sized` obligations by making them a distinct candidate kind and unconditionally preferring them over all other candidate kinds.
Special-casing `Sized` this way is necessary as there are a lot of traits with a `Sized` super-trait bound, so a `&'a str: From<T>` where-bound results in an elaborated `&'a str: Sized` bound. People tend to not add explicit where-clauses which overlap with builtin impls, so this tends to not be an issue for other traits.
We don't know of any tests/crates which need preference for other builtin traits. As this causes builtin impls to diverge from user-written impls we would like to minimize the affected traits. Otherwise e.g. moving impls for tuples to std by using variadic generics would be a breaking change. For other builtin impls it's also easier for the preference of builtin impls over where-bounds to result in issues.
---
There are two ways preferring builtin impls over where-bounds can be incorrect and undesirable:
- applying the builtin impl results in undesirable region constraints. E.g. if only `MyType<'static>` implements `Copy` then a goal like `(MyType<'a>,): Copy` would require `'a == 'static` so we must not prefer it over a `(MyType<'a>,): Copy` where-bound
- this is mostly not an issue for `Sized` as all `Sized` impls are builtin and don't add any region constraints not already required for the type to be well-formed
- however, even with `Sized` this is still an issue if a nested goal also gets proven via a where-bound: [playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=30377da5b8a88f654884ab4ebc72f52b)
- if the builtin impl has associated types, we should not prefer it over where-bounds when normalizing that associated type. This can result in normalization adding more region constraints than just proving trait bounds. https://github.com/rust-lang/rust/issues/133044
- not an issue for `Sized` as it doesn't have associated types.
r? lcnr
Revert "Rollup merge of #136127 - WaffleLapkin:dyn_ptr_unwrap_cast, r=compiler-errors"
...not permanently tho. Just until we can land something like #138542, which will fix the underlying perf issues (https://github.com/rust-lang/rust/pull/136127#issuecomment-2743891744). I just don't want this to land on beta and have people rely on this behavior if it'll need some reworking for it to be implemented performantly.
r? `@WaffleLapkin` or reassign -- sorry for reverting ur pr! i'm working on getting it re-landed soon :>
hygiene: Rewrite `apply_mark_internal` to be more understandable
The previous implementation allocated new `SyntaxContext`s in the inverted order, and it was generally very hard to understand why its result matches what the `opaque` and `opaque_and_semitransparent` field docs promise.
```rust
/// This context, but with all transparent and semi-transparent expansions filtered away.
opaque: SyntaxContext,
/// This context, but with all transparent expansions filtered away.
opaque_and_semitransparent: SyntaxContext,
```
It also couldn't be easily reused for the case where the context id is pre-reserved like in #129827.
The new implementation tries to follow the docs in a more straightforward way.
I did the transformation in small steps, so it indeed matches the old implementation, not just the docs.
So I suggest reading only the new version.
Improve hir_pretty for struct expressions.
While working on https://github.com/rust-lang/rust/pull/139131 I noticed the hir pretty printer outputs an empty line between each field, and is also missing a space before the `{` and the `}`:
```rust
let a =
StructWithSomeFields{
field_1: 1,
field_2: 2,
field_3: 3,
field_4: 4,
field_5: 5,
field_6: 6,};
let a = StructWithSomeFields{ field_1: 1, field_2: 2, ..a};
```
This changes it to:
```rust
let a =
StructWithSomeFields {
field_1: 1,
field_2: 2,
field_3: 3,
field_4: 4,
field_5: 5,
field_6: 6 };
let a = StructWithSomeFields { field_1: 1, field_2: 2, ..a };
```
Remove attribute `#[rustc_error]`
It was an ancient way to write `check-pass` tests, but now it's no longer necessary (except for the `delayed_bug_from_inside_query` flavor, which is retained).
Simplify expansion for format_args!().
Instead of calling `Placeholder::new()`, we can just use a struct expression directly.
Before:
```rust
Placeholder::new(…, …, …, …)
```
After:
```rust
Placeholder {
position: …,
flags: …,
width: …,
precision: …,
}
```
(I originally avoided the struct expression, because `Placeholder` had a lot of fields. But now that https://github.com/rust-lang/rust/pull/136974 is merged, it only has four fields left.)
This will make the `fmt` argument to `fmt::Arguments::new_v1_formatted()` a candidate for const promotion, which is important if we ever hope to tackle https://github.com/rust-lang/rust/issues/92698 (It doesn't change anything yet though, because the `args` argument to `fmt::Arguments::new_v1_formatted()` is not const-promotable.)
Subtree sync for rustc_codegen_cranelift
The main highlights this time are a Cranelift update, support for `#[target_feature]` for inline asm on arm64 and some vendor intrinsic fixes for arm64.
[AIX] Ignore linting on repr(C) structs with repr(packed) or repr(align(n))
This PR updates the lint added in 9b40bd7 to ignore repr(C) structs that also have repr(packed) or repr(align(n)).
As these representations can be modifiers on repr(C), it is assumed that users that add these should know what they are doing, and thus the the lint should not warn on the respective structs. For example, for the time being, using repr(packed) and manually padding a repr(C) struct can be done to correctly align struct members on AIX.
Instead of calling new(), we can just use a struct expression directly.
Before:
Placeholder::new(…, …, …, …)
After:
Placeholder {
position: …,
flags: …,
width: …,
precision: …,
}
Set `target_vendor = "openwrt"` on `mips64-openwrt-linux-musl`
OpenWRT is a Linux distribution for embedded network devices. The target name contains `openwrt`, so we should set `cfg(target_vendor = "openwrt")`.
This is similar to what other Linux distributions do (the only one in-tree is `x86_64-unikraft-linux-musl`, but that sets `target_vendor = "unikraft"`).
Motivation: To make correctly [parsing target names](https://github.com/rust-lang/cc-rs/pull/1413) simpler.
Fixes https://github.com/rust-lang/rust/issues/131165.
CC target maintainer `@Itus-Shield`
Fix `uclibc` LLVM target triples
`uclibc` is not an environment understood by LLVM, it is only a concept in Clang that can be selected with `-muclibc` (it affects which dynamic linker is passed to the static linker's `-dynamic-linker` flag).
In fact, using `uclibcgnueabi`/`uclibc` is actively harmful, as it prevents LLVM from seeing that the target is gnu-like; we should use `gnueabi`/`gnu` directly instead.
Motivation: To make it easier to verify that [`cc-rs`' conversion from `rustc` to Clang/LLVM triples](https://github.com/rust-lang/cc-rs/issues/1431) is correct.
**There are no target maintainers for these targets.** So I'll CC ``@lancethepants`` and ``@skrap`` who maintain the related `armv7-unknown-linux-uclibceabi` and `armv7-unknown-linux-uclibceabihf` (both of which already pass `-gnu` instead of `-uclibc`) in case they have any insights.
r? jieyouxu
Remove `terminating_scopes` hash set.
Instead of inserting and checking ids in a hashset, we can just pass a boolean as argument.
For example:
```diff
- visitor.terminating_scopes.insert(arm.hir_id.local_id);
- visitor.enter_node_scope_with_dtor(arm.hir_id.local_id);
+ visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true);
```
Do not treat lifetimes from parent items as influencing child items
```rust
struct A;
impl Bar<'static> for A {
const STATIC: &str = "";
// ^ no future incompat warning
}
```
has no future incompat warning, because there is no ambiguity. But
```rust
struct C;
impl Bar<'_> for C {
// ^^ this lifeimte
const STATIC: &'static str = {
struct B;
impl Bar<'static> for B {
const STATIC: &str = "";
// causes ^ to emit a future incompat warning
}
""
};
}
```
had one before this PR, because the impl for `B` (which is just a copy of `A`) thought it was influenced by a lifetime on the impl for `C`.
I double checked all other `lifetime_ribs` iterations and all of them do check for `Item` boundaries. This feels very fragile tho, and ~~I think we should do not even be able to see ribs from parent items, but that's a different refactoring that I'd rather not do at the same time as a bugfix~~. EDIT: ah nevermind, this is needed for improving diagnostics like "use of undeclared lifetime" being "can't use generic parameters from outer item" instead.
r? `@compiler-errors`
Remove ScopeDepth
The scope depth was tracked, but never seemed to be used for anything.
Every single place that used `(Scope, ScopeDepth)`, matched it on `(p, _)`.
rustc_resolve: fix instability in lib.rmeta contents
rust-lang/rust@23032f31c9 accidentally introduced some nondeterminism in the ordering of lib.rmeta files, which we caught in our bazel-based builds only recently due to being further behind than normal. In my testing, this fixes the issue.
Avoid wrapping constant allocations in packed structs when not necessary
This way LLVM will set the string merging flag if the alloc is a nul terminated string, reducing binary sizes.
try-job: armhf-gnu
Rollup of 6 pull requests
Successful merges:
- #138720 (Specify a concrete stack size in channel tests)
- #139010 (Improve `xcrun` error handling)
- #139021 (std: get rid of pre-Vista fallback code)
- #139025 (Do not trim paths in MIR validator)
- #139026 (Use `abs_diff` where applicable)
- #139030 (saethlin goes on vacation)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `kw::Empty` uses from `hir::Lifetime::ident`
`hir::Lifetime::ident` is sometimes set to `kw::Empty` and it's really confusing. This PR stops that. Helps with #137978.
r? `@lcnr`
It's an old (2017 or earlier) type that describes a `self` receiver.
It's only used in `rustc_hir_analysis` for two error messages, and much
of the complexity isn't used. I suspect it used to be used for more
things.
This commit removes it, and moves a greatly simplified version of the
`determine` method into `rustc_hir_analysis`, renamed as
`get_self_string`. The big comment on the method is removed because it
no longer seems relevant.
Do not trim paths in MIR validator
From my inline comment:
```
// The type checker formats a bunch of strings with type names in it, but these strings
// are not always going to be encountered on the error path since the inliner also uses
// the validator, and there are certain kinds of inlining (even for valid code) that
// can cause validation errors (mostly around where clauses and rigid projections).
```
Fixes https://github.com/rust-lang/rust/issues/138979
r? `@jieyouxu`
Improve `xcrun` error handling
The compiler invokes `xcrun` on macOS when linking Apple targets, to find the Xcode SDK which contain all the necessary linker stubs. The error messages that `xcrun` outputs aren't always that great though, so this PR tries to improve that by providing extra context when an error occurs.
Fixes https://github.com/rust-lang/rust/issues/56829.
Fixes https://github.com/rust-lang/rust/issues/84534.
Part of https://github.com/rust-lang/rust/issues/129432.
See also the alternative https://github.com/rust-lang/rust/pull/131433.
Tested on:
- `x86_64-apple-darwin`, MacBook Pro running Mac OS X 10.12.6
- With no tooling installed
- With Xcode 9.2
- With Xcode 9.2 Commandline Tools
- `aarch64-apple-darwin`, MacBook M2 Pro running macOS 14.7.4
- With Xcode 13.4.1
- With Xcode 16.2
- Inside `nix-shell -p xcbuild` (nixpkgs' `xcrun` shim)
- `aarch64-apple-darwin`, VM running macOS 15.3.1
- With no tooling installed
- With Xcode 16.2 Commandline Tools
``@rustbot`` label O-apple
r? compiler
CC ``@BlackHoleFox`` ``@thomcc``
`hir::Lifetime::ident` currently sometimes uses `kw::Empty` for elided
lifetimes and sometimes uses `kw::UnderscoreLifetime`, and the
distinction is used when creating some error suggestions, e.g. in
`Lifetime::suggestion` and `ImplicitLifetimeFinder::visit_ty`. I found
this *really* confusing, and it took me a while to understand what was
going on.
This commit replaces all uses of `kw::Empty` in `hir::Lifetime::ident`
with `kw::UnderscoreLifetime`. It adds a new field
`hir::Lifetime::is_path_anon` that mostly replaces the old
empty/underscore distinction and makes things much clearer.
Some other notable changes:
- Adds a big comment to `Lifetime` talking about permissable field
values.
- Adds some assertions in `new_named_lifetime` about what ident values
are permissible for the different `LifetimeRes` values.
- Adds a `Lifetime::new` constructor that does some checking to make
sure the `is_elided` and `is_anonymous` states are valid.
- `add_static_impl_trait_suggestion` now looks at `Lifetime::res`
instead of the ident when creating the suggestion. This is the one
case where `is_path_anon` doesn't replace the old empty/underscore
distinction.
- A couple of minor pretty-printing improvements.
"Missing" patterns are possible in bare fn types (`fn f(u32)`) and
similar places. Currently these are represented in the AST with
`ast::PatKind::Ident` with no `by_ref`, no `mut`, an empty ident, and no
sub-pattern. This flows through to `{hir,thir}::PatKind::Binding` for
HIR and THIR.
This is a bit nasty. It's very non-obvious, and easy to forget to check
for the exceptional empty identifier case.
This commit adds a new variant, `PatKind::Missing`, to do it properly.
The process I followed:
- Add a `Missing` variant to `{ast,hir,thir}::PatKind`.
- Chang `parse_param_general` to produce `ast::PatKind::Missing`
instead of `ast::PatKind::Missing`.
- Look through `kw::Empty` occurrences to find functions where an
existing empty ident check needs replacing with a `PatKind::Missing`
check: `print_param`, `check_trait_item`, `is_named_param`.
- Add a `PatKind::Missing => unreachable!(),` arm to every exhaustive
match identified by the compiler.
- Find which arms are actually reachable by running the test suite,
changing them to something appropriate, usually by looking at what
would happen to a `PatKind::Ident`/`PatKind::Binding` with no ref, no
`mut`, an empty ident, and no subpattern.
Quite a few of the `unreachable!()` arms were never reached. This makes
sense because `PatKind::Missing` can't happen in every pattern, only
in places like bare fn tys and trait fn decls.
I also tried an alternative approach: modifying `ast::Param::pat` to
hold an `Option<P<Pat>>` instead of a `P<Pat>`, but that quickly turned
into a very large and painful change. Adding `PatKind::Missing` is much
easier.
Improve suggest construct with literal syntax instead of calling
Closing #138931
When constructing a structure through a format similar to calling a constructor, we can use verbose suggestions to hint at using literal syntax for clearer advice. The case of multiple fields is also considered here, provided that the field has the same number of arguments as CallExpr.
r? compiler
Clean up a few things in rustc_hir_analysis::check::region
Each commit is independent. They are all small clean-ups in rustc_hir_analysis::check::region.
Remove `kw::Empty` uses from `rustc_middle`.
There are several places in `rustc_middle` that check for an empty lifetime name. These checks appear to be totally unnecessary, because empty lifetime names aren't produced here. (Empty lifetime names *are* possible in `hir::Lifetime`. Perhaps there was some confusion between it and the `rustc_middle` types?)
This commit removes the `kw::Empty` checks.
r? `@lcnr`
expand: Leave traces when expanding `cfg` attributes
This is the same as https://github.com/rust-lang/rust/pull/138515, but for `cfg(true)` instead of `cfg_attr`.
The difference is that `cfg(true)`s already left "traces" after themselves - the `cfg` attributes themselves, with `expanded_inert_attrs` set to true, with full tokens, available to proc macros.
This is not a reasonably expected behavior, but it could not be removed without a replacement, because a [major rustdoc feature](https://github.com/rust-lang/rfcs/pull/3631) and a number of clippy lints rely on it. This PR implements a replacement.
This needs a crater run, because it changes observable behavior (in an intended way) - proc macros can no longer see expanded `cfg(true)` attributes.
(Some minor unnecessary special casing for `sym::cfg_attr` is also removed in this PR.)
r? `@nnethercote`
Rollup of 10 pull requests
Successful merges:
- #130883 (Add environment variable query)
- #138624 (Add mipsel maintainer)
- #138672 (Avoiding calling queries when collecting active queries)
- #138935 (Update wg-prio triagebot config)
- #138946 (Un-bury chapters from the chapter list in rustc book)
- #138964 (Implement lint against using Interner and InferCtxtLike in random compiler crates)
- #138977 (Don't deaggregate InvocationParent just to reaggregate it again)
- #138980 (Collect items referenced from var_debug_info)
- #138985 (Use the correct binder scope for elided lifetimes in assoc consts)
- #138987 (Always emit `native-static-libs` note, even if it is empty)
r? `@ghost`
`@rustbot` modify labels: rollup
Use the correct binder scope for elided lifetimes in assoc consts
Beyond diagnostics this has no real effect, and it's also just about a future incompat lint. But it causes ICEs in some refactorings that I'm doing, so trying to get it out of the way
Collect items referenced from var_debug_info
The collection is limited to full debuginfo builds to match behavior of FunctionCx::compute_per_local_var_debug_info.
Fixes#138942.
Don't deaggregate InvocationParent just to reaggregate it again
Also makes it easier to add more things to it in the future (which I am doing in some local experiments, so not really a reason to do this just now, but I think this PR stands on its own).
Implement lint against using Interner and InferCtxtLike in random compiler crates
Often `Interner` defines similar methods to `TyCtxt` (but often simplified due to the simpler API surface of the type system layer for the new solver), which people will either unintentionally or intentionally import and use. Let's discourage that.
r? lcnr
Avoiding calling queries when collecting active queries
This PR changes active query collection to no longer call queries. Instead the fields needing queries have their computation delayed to when an cycle error is emitted or when printing the query backtrace in a panic.
This is done by splitting the fields in `QueryStackFrame` needing queries into a new `QueryStackFrameExtra` type. When collecting queries `QueryStackFrame` will contain a closure that can create `QueryStackFrameExtra`, which does make use of queries. Calling `lift` on a `QueryStackFrame` or `CycleError` will convert it to a variant containing `QueryStackFrameExtra` using those closures.
This also only calls queries needed to collect information on a cycle errors, instead of information on all active queries.
Calling queries when collecting active queries is a bit odd. Calling queries should not be done in the deadlock handler at all.
This avoids the out of memory scenario in https://github.com/rust-lang/rust/issues/124901.
Add environment variable query
Generally, `rustc` prefers command-line arguments, but in some cases, an environment variable really is the most sensible option. We should make sure that this works properly with the compiler's change-tracking mechanisms, such that changing the relevant environment variable causes a rebuild.
This PR is a first step forwards in doing that.
Part of the work needed to do https://github.com/rust-lang/rust/issues/118204, see https://github.com/rust-lang/rust/pull/129342 for some discussion.
r? ``@petrochenkov``
Instantiate binder before registering nested obligations for auto/built-in traits
Instead of turning a `Binder<Vec<Ty>>` into a bunch of higher-ranked predicates, instantiate the binder eagerly *once* and turn them into a bunch of non-higher-ranked predicates.
Right now this feels like a noop, but this `enter_forall_and_leak_universe` call would be the singular place where we could instantiate bound lifetime assumptions for coroutine witnesses... if we had them. Thus consolidating the binder instantiation here is useful if we want to fix the coroutine-auto-trait problem.
r? lcnr
Remove `prev_index_to_index` field from `CurrentDepGraph`
The dep graph currently has 2 ways to map a previous index into a current index. The `prev_index_to_index` map stores the current index equivalent of a previous index. For indices which are marked green, we also store the same information in the `DepNodeColorMap`. We actually only need to known the mapping for green nodes however, so this PR removes `prev_index_to_index` and instead makes use of the `DepNodeColorMap`.
To avoid racing when promoting a node from the previous session, the encoder lock is now used to ensure only one thread encodes the promoted node. This was previously done by the lock in `prev_index_to_index`.
This also changes `nodes_newly_allocated_in_current_session` used to detect duplicate dep nodes to contain both new and previous nodes, which is simpler and can better catch duplicates.
The dep node index encoding used in `DepNodeColorMap` is tweak to avoid subtraction / addition to optimize accessing the current equivalent of a previous index.
r? `@oli-obk`
This allows us to remove the field `treat_byte_string_as_slice` from
`TypeckResults`, since the pattern's type contains everything necessary
to get the correct lowering for byte string literal patterns.
This leaves the implementation of `string_deref_patterns` broken, to be
fixed in the next commit.
In #124902, mem-categorization got merged into ExprUseVisitor itself.
Adjust the comments that have become misleading or confusing following
this change.
A name like "report_error" suggests that the error in question might be
user facing. Use "bug" to make it clear that the error in question will
be an ICE.