Commit Graph

244611 Commits

Author SHA1 Message Date
Weihang Lo
d616bb1426
Update cargo 2024-01-23 13:35:15 -05:00
Nicholas Thompson
9dccd5dce1 Further Implement Power of Two Optimization 2024-01-23 12:03:50 -05:00
Nicholas Thompson
55e04d5236 Further Implement is_val_statically_known 2024-01-23 12:02:31 -05:00
Nicholas Thompson
971e37ff7e Further Implement is_val_statically_known 2024-01-23 12:02:31 -05:00
bors
dfe53afaeb Auto merge of #119433 - taiki-e:rc-uninit-ref, r=Nilstrieb
rc,sync: Do not create references to uninitialized values

Closes #119241

r? `@RalfJung`
2024-01-23 16:43:45 +00:00
Oli Scherer
1c9e621308 No need to check min_length 2024-01-23 16:35:27 +00:00
Oli Scherer
271821fbc3 Switch to using ImmTy instead of OpTy, as we don't use the MPlace variant at all 2024-01-23 16:35:27 +00:00
Oli Scherer
c5e371da19 Inline Index conversion into project method 2024-01-23 16:35:26 +00:00
Oli Scherer
6a01dc9ad7 Remove unnecessary optional layout being passed along 2024-01-23 16:35:26 +00:00
Oli Scherer
d03eb339aa Implement ConstantIndex handling and use that instead using our own ProjectionElem variant 2024-01-23 16:35:26 +00:00
Oli Scherer
2d99ea0be2 Remove ConstPropMachine and re-use the DummyMachine instead 2024-01-23 16:35:26 +00:00
Oli Scherer
3419273f1f Avoid some packing/unpacking of the AssertLint enum 2024-01-23 16:35:23 +00:00
Oli Scherer
249ec9f08b We don't look into static items anymore during const prop 2024-01-23 16:34:43 +00:00
Oli Scherer
1f398abcb6 const prop nonsense eliminated 2024-01-23 16:34:43 +00:00
Oli Scherer
6ecb2aa580 We're not really using the ConstPropMachine anymore 2024-01-23 16:34:43 +00:00
Oli Scherer
89e6a67310 Const prop doesn't need a stack anymore 2024-01-23 16:34:43 +00:00
Oli Scherer
0294a0de09 Remove location threading 2024-01-23 16:34:42 +00:00
Oli Scherer
e904a640ac Stop using eval_rvalue_into_place in const prop 2024-01-23 16:34:42 +00:00
Oli Scherer
ac48ad517b partially inline eval_rvalue_into_place for const prop lint 2024-01-23 16:34:42 +00:00
Oli Scherer
fbd10a3cc5 Allow passing a layout to the eval_* methods 2024-01-23 16:34:42 +00:00
bohan
851d4c4e24 add several resolution test cases 2024-01-24 00:01:59 +08:00
Oli Scherer
db7cd57091 Remove track_errors entirely 2024-01-23 15:23:22 +00:00
Ben Kimock
c8a675d752
Add a doc comment for eval_mir_constant
Co-authored-by: Ralf Jung <post@ralfj.de>
2024-01-23 10:17:50 -05:00
Michael Goulet
5fc39e0796 Random type checker changes 2024-01-23 15:10:23 +00:00
bors
6265a95b37 Auto merge of #119044 - RalfJung:intern-without-types, r=oli-obk
const-eval interning: get rid of type-driven traversal

This entirely replaces our const-eval interner, i.e. the code that takes the final result of a constant evaluation from the local memory of the const-eval machine to the global `tcx` memory. The main goal of this change is to ensure that we can detect mutable references that sneak into this final value -- this is something we want to reject for `static` and `const`, and while const-checking performs some static analysis to ensure this, I would be much more comfortable stabilizing const_mut_refs if we had a dynamic check that sanitizes the final value. (This is generally the approach we have been using on const-eval: do a static check to give nice errors upfront, and then do a dynamic check to be really sure that the properties we need for soundness, actually hold.)

We can do this now that https://github.com/rust-lang/rust/pull/118324 landed and each pointer comes with a bit (completely independent of its type) storing whether mutation is permitted through this pointer or not.

The new interner is a lot simpler than the old one: previously we did a complete type-driven traversal to determine the mutability of all memory we see, and then a second pass to intern any leftover raw pointers. The new interner simply recursively traverses the allocation holding the final result, and all allocations reachable from it (which can be determined from the raw bytes of the result, without knowing anything about types), and ensures they all get interned. The initial allocation is interned as immutable for `const` and pomoted and non-interior-mutable `static`; all other allocations are interned as immutable for `static`, `const`, and promoted. The main subtlety is justifying that those inner allocations may indeed be interned immutably, i.e., that mutating them later would anyway already be UB:
- for promoteds, we rely on the analysis that does promotion to ensure that this is sound.
- for `const` and `static`, we check that all pointers in the final result that point to things that are new (i.e., part of this const evaluation) are immutable, i.e., were created via `&<expr>` at a non-interior-mutable type. Mutation through immutable pointers is UB so we are free to intern that memory as immutable.

Interning raises an error if it encounters a dangling pointer or a mutable pointer that violates the above rules.

I also extended our type-driven const validity checks to ensure that `&mut T` in the final value of a const points to mutable memory, at least if `T` is not zero-sized. This catches cases of people turning `&i32` into `&mut i32` (which would still be considered a read-only pointer). Similarly, when these checks encounter an `UnsafeCell`, they are checking that it lives in mutable memory. (Both of these only traverse the newly created values; if those point to other consts/promoteds, the check stops there. But that's okay, we don't have to catch all the UB.) I co-developed this with the stricter interner changes but I can split it out into a separate PR if you prefer.

This PR does have the immediate effect of allowing some new code on stable, for instance:
```rust
const CONST_RAW: *const Vec<i32> = &Vec::new() as *const _;
```
Previously that code got rejected since the type-based interner didn't know what to do with that pointer. It's a raw pointer, we cannot trust its type. The new interner does not care about types so it sees no issue with this code; there's an immutable pointer pointing to some read-only memory (storing a `Vec<i32>`), all is good. Accepting this code pretty much commits us to non-type-based interning, but I think that's the better strategy anyway.

This PR also leads to slightly worse error messages when the final value of a const contains a dangling reference. Previously we would complete interning and then the type-based validation would detect this dangling reference and show a nice error saying where in the value (i.e., in which field) the dangling reference is located. However, the new interner cannot distinguish dangling references from dangling raw pointers, so it must throw an error when it encounters either of them. It doesn't have an understanding of the value structure so all it can say is "somewhere in this constant there's a dangling pointer". (Later parts of the compiler don't like dangling pointers/references so we have to reject them either during interning or during validation.) This could potentially be improved by doing validation before interning, but that's a larger change that I have not attempted yet. (It's also subtle since we do want validation to use the final mutability bits of all involved allocations, and currently it is interning that marks a bunch of allocations as immutable -- that would have to still happen before validation.)

`@rust-lang/wg-const-eval` I hope you are okay with this plan. :)
`@rust-lang/lang` paging you in since this accepts new code on stable as explained above. Please let me know if you think FCP is necessary.
2024-01-23 14:08:08 +00:00
HTGAzureX1212.
da1d0c4a69
tidy 2024-01-23 21:17:06 +08:00
HTGAzureX1212.
3a07333a8a
address requested changes 2024-01-23 21:16:24 +08:00
Ryan Levick
31ecf34125 Add the wasm32-wasi-preview2 target
Signed-off-by: Ryan Levick <me@ryanlevick.com>
2024-01-23 13:26:16 +01:00
bors
0e4243538b Auto merge of #116152 - cjgillot:unchunck, r=nnethercote
Only use dense bitsets in dataflow analyses

When a dataflow state has the size close to the number of locals, we should prefer a dense bitset, like we already store locals in a dense vector.
Other occurrences of `ChunkedBitSet` need to be justified by the size of the dataflow state.
2024-01-23 11:56:30 +00:00
Nikita Popov
f4f589a028 Remove support for no-system-llvm
Also add tests for min-system-llvm-version.
2024-01-23 11:19:51 +01:00
Nikita Popov
31f5f033e9 Remove uses of no-system-llvm
It looks like none of these are actually needed.
2024-01-23 10:31:07 +01:00
bors
8b94152af6 Auto merge of #117958 - risc0:erik/target-triple, r=davidtwco,Mark-Simulacrum
riscv32im-risc0-zkvm-elf: add target

This pull request adds RISC Zero's Zero Knowledge Virtual Machine (zkVM) as a target for rust. The zkVM used to produce proofs of execution of RISC-V ELF binaries. In order to do this, the target will execute the ELF to generate a receipt containing the output of the computation along with a cryptographic seal. This receipt can be verified to ensure the integrity of the computation and its result. This target is implemented as software only; it has no hardware implementation.

## Tier 3 target policy:

Here is a copy of the tier 3 target policy:

> Tier 3 target policy:
>
> At this tier, the Rust project provides no official support for a target, so we
> place minimal requirements on the introduction of targets.
>
> A proposed new tier 3 target must be reviewed and approved by a member of the
> compiler team based on these requirements. The reviewer may choose to gauge
> broader compiler team consensus via a [[Major Change Proposal (MCP)](https://forge.rust-lang.org/compiler/mcp.html)](https://forge.rust-lang.org/compiler/mcp.html).
>
> A proposed target or target-specific patch that substantially changes code
> shared with other targets (not just target-specific code) must be reviewed and
> approved by the appropriate team for that shared code before acceptance.
>
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)

The maintainers are named in the target description file

> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
>

We understand.

> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
>     - The target must not introduce license incompatibilities.

We understand and will not introduce incompatibilities. All of our code that we publish is licensed under Apache-2.0.

> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).

We understand. We are open to either license for the Rust repository.

> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.

We understand. The runtime libraries and the execution environment and software associated with this environment uses `Apache-2.0` so this should not be an issue.

> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.

We understand. We only depend on FOSS libraries. Dependencies such as runtime libraries for this target are licensed as `Apache-2.0`.

> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.

There are no such terms present

> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.

I am not the reviewer of this pull request

> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.

We understand.

> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.

The target implements core and alloc. And std support is currently experimental as some functionalities in std are either a) not applicable to our target or b) more work in research and experimentation needs to be done. For more information about the characteristics of this target, please refer to the target description file.

> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.

See file target description file

> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.

We understand.

> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.

We understand.

> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
>     - In particular, this may come up when working on closely related targets,
>     such as variations of the same architecture with different features. Avoid
>     introducing unconditional uses of features that another variation of the
>     target may not have; use conditional compilation or runtime detection, as
>     appropriate, to let each target run code supported by that target.

We understand.

> If a tier 3 target stops meeting these requirements, or the target maintainers
> no longer have interest or time, or the target shows no signs of activity and
> has not built for some time, or removing the target would improve the quality
> of the Rust codebase, we may post a PR to remove it; any such PR will be CCed
> to the target maintainers (and potentially other people who have previously
> worked on the target), to check potential interest in improving the situation.

We understand.
2024-01-23 09:30:36 +00:00
Nikita Popov
823e8b041a Allow disjoint flag in codegen test 2024-01-23 10:12:36 +01:00
bors
e35a56d96f Auto merge of #119892 - joboet:libs_use_assert_unchecked, r=Nilstrieb,cuviper
Use `assert_unchecked` instead of `assume` intrinsic in the standard library

Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.

CC #119131
2024-01-23 06:45:58 +00:00
Esteban Küber
34f4f3da4f Suggest boxing both arms of if expr if that solves divergent arms involving impl Trait
When encountering the following

```rust
// run-rustfix
trait Trait {}
struct Struct;
impl Trait for Struct {}
fn foo() -> Box<dyn Trait> {
    Box::new(Struct)
}
fn bar() -> impl Trait {
    Struct
}
fn main() {
    let _ = if true {
        Struct
    } else {
        foo() //~ ERROR E0308
    };
    let _ = if true {
        foo()
    } else {
        Struct //~ ERROR E0308
    };
    let _ = if true {
        Struct
    } else {
        bar() // impl Trait
    };
    let _ = if true {
        bar() // impl Trait
    } else {
        Struct
    };
}
```

suggest boxing both arms

```rust
    let _ = if true {
        Box::new(Struct) as Box<dyn Trait>
    } else {
        Box::new(bar())
    };
    let _ = if true {
        Box::new(bar()) as Box<dyn Trait>
    } else {
        Box::new(Struct)
    };
```
2024-01-23 04:42:26 +00:00
HTGAzureX1212.
f3682a1304
add list of characters to uncommon codepoints lint 2024-01-23 10:56:33 +08:00
bors
0011fac90d Auto merge of #120017 - nnethercote:lint-api, r=oli-obk
Fix naming in the lint API

Methods for emit lints are named very inconsistently. This PR fixes that up.

r? `@compiler-errors`
2024-01-23 00:06:57 +00:00
Camille GILLOT
afaac75ac7 Do not thread through Assert terminator. 2024-01-23 00:00:24 +00:00
Camille GILLOT
d7a7be4049 Add test for jump-threading assume. 2024-01-23 00:00:22 +00:00
Camille GILLOT
161c674ef0 Add Assume custom MIR. 2024-01-22 23:55:10 +00:00
Camille GILLOT
e07ffe97b8 Use a plain bitset for liveness analyses. 2024-01-22 23:18:45 +00:00
Camille GILLOT
7e64de431e Remove uses of HybridBitSet. 2024-01-22 22:53:20 +00:00
bors
d6b151fc77 Auto merge of #120251 - matthiaskrgr:rollup-gttrw68, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #119664 (Fix tty detection for msys2's `/dev/ptmx`)
 - #120104 (never_patterns: Count `!` bindings as diverging)
 - #120109 (Move cmath into `sys`)
 - #120143 (Consolidate logic around resolving built-in coroutine trait impls)
 - #120159 (Track `verbose` and `verbose_internals`)
 - #120216 (Fix a `trimmed_def_paths` assertion failure.)
 - #120220 (Document `Token{Stream,Tree}::Display` more thoroughly.)
 - #120233 (Revert stabilization of trait_upcasting feature)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-01-22 22:04:50 +00:00
lcnr
c6088f7dd1 RawTy to LoweredTy 2024-01-22 22:20:55 +01:00
David Carlier
ed4b99a99c fixing build for the BSD 2024-01-22 21:17:46 +00:00
Matthias Krüger
a787232abb
Rollup merge of #120233 - oli-obk:revert_trait_obj_upcast_stabilization, r=lcnr
Revert stabilization of trait_upcasting feature

Reverts #118133

This reverts commit 6d2b84b3ed, reversing changes made to 73bc12199e.

The feature has a soundness bug:

* #120222

It is unclear to me whether we'll actually want to destabilize, but I thought it was still prudent to open the PR for easy destabilization once we get there.
2024-01-22 22:12:10 +01:00
Matthias Krüger
a4307184be
Rollup merge of #120220 - nnethercote:TokenStream-Display-docs, r=petrochenkov
Document `Token{Stream,Tree}::Display` more thoroughly.

To expressly warn against the kind of proc macro implementation that was broken in #119875.

r? ``@petrochenkov``
2024-01-22 22:12:10 +01:00
Matthias Krüger
31b56a8a35
Rollup merge of #120216 - nnethercote:fix-trimmed_def_paths-assertion, r=compiler-errors
Fix a `trimmed_def_paths` assertion failure.

`RegionHighlightMode::force_print_trimmed_def_path` can call `trimmed_def_paths` even when `tcx.sess.opts.trimmed_def_paths` is false. Based on the `force` in the method name, it seems this is deliberate, so I have removed the assertion.

Fixes #120035.

r? `@compiler-errors`
2024-01-22 22:12:09 +01:00
Matthias Krüger
8966d60650
Rollup merge of #120159 - jyn514:track-verbose, r=wesleywiser
Track `verbose` and `verbose_internals`

`verbose_internals` has been UNTRACKED since it was introduced. When i added `verbose` in https://github.com/rust-lang/rust/pull/119129 i made it UNTRACKED as well.

``@bjorn3`` says: https://github.com/rust-lang/rust/pull/119286#discussion_r1436134354
> On errors we don't finalize the incr comp cache, but non-fatal diagnostics are cached afaik.
Otherwise we would have to replay the query in question, which we may not be able to do if the query key is not reconstructible from the dep node fingerprint.

So we must track these flags to avoid replaying incorrect diagnostics.

r? incremental
2024-01-22 22:12:09 +01:00
Matthias Krüger
221115cbd6
Rollup merge of #120143 - compiler-errors:consolidate-instance-resolve-for-coroutines, r=oli-obk
Consolidate logic around resolving built-in coroutine trait impls

Deduplicates a lot of code. Requires defining a new lang item for `Coroutine::resume` for consistency, but it seems not harmful at worst, and potentially later useful at best.

r? oli-obk
2024-01-22 22:12:08 +01:00