Repeat iterator always returns the same element and behaves the same way
backwards and forwards. Take iterator can trivially implement backwards
iteration over Repeat inner iterator by simply doing forwards iteration.
DoubleEndedIterator is not currently implemented for Take<Repeat<T>>
because Repeat doesn’t implement ExactSizeIterator which is a required
bound on DEI implementation for Take.
Similarly, since Repeat is an infinite iterator which never stops, Take
can trivially know how many elements it’s going to return. This allows
implementing ExactSizeIterator on Take<Repeat<T>>.
While at it, observe that ExactSizeIterator can also be implemented for
Take<RepeatWhile<F>> so add that implementation too. Since in contrast
to Repeat, RepeatWhile doesn’t guarante to always return the same value,
DoubleEndedIterator isn’t implemented.
Those changes render core::iter::repeat_n somewhat redundant.
Issue: https://github.com/rust-lang/rust/issues/104434
Issue: https://github.com/rust-lang/rust/issues/104729
Explicitly specify type parameter on FromResidual for Option and ControlFlow.
~~Remove type parameter default `R = <Self as Try>::Residual` from `FromResidual`~~ _Specify default type parameter on `FromResidual` impls in the stdlib_ to work around https://github.com/rust-lang/rust/issues/99940 / https://github.com/rust-lang/rust/issues/87350 ~~as mentioned in https://github.com/rust-lang/rust/issues/84277#issuecomment-1773259264~~.
This does not completely fix the issue, but works around it for `Option` and `ControlFlow` specifically (`Result` does not have the issue since it already did not use the default parameter of `FromResidual`).
~~(Does this need an ACP or similar?)~~ ~~This probably needs at least an FCP since it changes the API described in [the RFC](https://github.com/rust-lang/rfcs/pull/3058). Not sure if T-lang, T-libs-api, T-libs, or some combination (The tracking issue is tagged T-lang, T-libs-api).~~ This probably doesn't need T-lang input, since it is not changing the API of `FromResidual` from the RFC? Maybe needs T-libs-api FCP?
miri: make vtable addresses not globally unique
Miri currently gives vtables a unique global address. That's not actually matching reality though. So this PR enables Miri to generate different addresses for the same type-trait pair.
To avoid generating an unbounded number of `AllocId` (and consuming unbounded amounts of memory), we use the "salt" technique that we also already use for giving constants non-unique addresses: the cache is keyed on a "salt" value n top of the actually relevant key, and Miri picks a random salt (currently in the range `0..16`) each time it needs to choose an `AllocId` for one of these globals -- that means we'll get up to 16 different addresses for each vtable. The salt scheme is integrated into the global allocation deduplication logic in `tcx`, and also used for functions and string literals. (So this also fixes the problem that casting the same function to a fn ptr over and over will consume unbounded memory.)
r? `@saethlin`
Fixes https://github.com/rust-lang/miri/issues/3737
Rather than writing character at a time, optimise Debug implementation
for core::ascii::Char such that it writes the entire representation as
with a single write_str call.
With that, add tests for Display and Debug implementations.
This restores the original binary search implementation from #45333
which has the nice property of having a loop count that only depends on
the size of the slice. This, along with explicit conditional moves
from #128250, means that the entire binary search loop can be perfectly
predicted by the branch predictor.
Additionally, LLVM is able to unroll the loop when the slice length is
known at compile-time. This results in a very compact code sequence of
3-4 instructions per binary search step and zero branches.
Fixes#53823
Stabilize `const_waker`
Closes: https://github.com/rust-lang/rust/issues/102012.
For `local_waker` and `context_ext` related things, I just ~~moved them to dedicated feature gates and reused their own tracking issue (maybe it's better to open a new one later, but at least they should not be tracked under https://github.com/rust-lang/rust/issues/102012 from the beginning IMO.)~~ reused their own feature gates as suggested by ``@tgross35.``
``@rustbot`` label: +T-libs-api
r? libs-api
add `is_multiple_of` for unsigned integer types
tracking issue: https://github.com/rust-lang/rust/issues/128101
This adds the `.is_multiple_of` method on unsigned integers.
Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
This function is equivalent to `self % rhs == 0`, except that it will not panic for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`, `n.is_multiple_of(0) == false`.
Fix doc nits
Many tiny changes to stdlib doc comments to make them consistent (for example "Returns foo", rather than "Return foo"), adding missing periods, paragraph breaks, backticks for monospace style, and other minor nits.
Stabilize const `{integer}::from_str_radix` i.e. `const_int_from_str`
This PR stabilizes the feature `const_int_from_str`.
- ACP Issue: rust-lang/libs-team#74
- Implementation PR: rust-lang/rust#99322
- Part of Tracking Issue: rust-lang/rust#59133
API Change Diff:
```diff
impl {integer} {
- pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;
+ pub const fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;
}
impl ParseIntError {
- pub fn kind(&self) -> &IntErrorKind;
+ pub const fn kind(&self) -> &IntErrorKind;
}
```
This makes it easier to parse integers at compile-time, e.g.
the example from the Tracking Issue:
```rust
env!("SOMETHING").parse::<usize>().unwrap()
```
could now be achived with
```rust
match usize::from_str_radix(env!("SOMETHING"), 10) {
Ok(val) => val,
Err(err) => panic!("Invalid value for SOMETHING environment variable."),
}
```
rather than having to depend on a library that implements or manually implement the parsing at compile-time.
---
Checklist based on [Libs Stabilization Guide - When there's const involved](https://std-dev-guide.rust-lang.org/development/stabilization.html#when-theres-const-involved)
I am treating this as a [partial stabilization](https://std-dev-guide.rust-lang.org/development/stabilization.html#partial-stabilizations) as it shares a tracking issue (and is rather small), so directly opening the partial stabilization PR for the subset (feature `const_int_from_str`) being stabilized.
- [x] ping Constant Evaluation WG
- [x] no unsafe involved
- [x] no `#[allow_internal_unstable]`
- [ ] usage of `intrinsic::const_eval_select` rust-lang/rust#124625 in `from_str_radix_assert` to change the error message between compile-time and run-time
- [ ] [rust-labg/libs-api FCP](https://github.com/rust-lang/rust/pull/124941#issuecomment-2207021921)
This is possible now that inline const blocks are stable; the idea was
even mentioned as an alternative when `uninit_array()` was added:
<https://github.com/rust-lang/rust/pull/65580#issuecomment-544200681>
> if it’s stabilized soon enough maybe it’s not worth having a
> standard library method that will be replaceable with
> `let buffer = [MaybeUninit::<T>::uninit(); $N];`
Const array repetition and inline const blocks are now stable (in the
next release), so that circumstance has come to pass, and we no longer
have reason to want `uninit_array()` other than convenience. Therefore,
let’s evaluate the inconvenience by not using `uninit_array()` in
the standard library, before potentially deleting it entirely.
Generalize `{Rc,Arc}::make_mut()` to unsized types.
* `{Rc,Arc}::make_mut()` now accept any type implementing the new unstable trait `core::clone::CloneToUninit`.
* `CloneToUninit` is implemented for `T: Clone` and for `[T] where T: Clone`.
* `CloneToUninit` is a generalization of the existing internal trait `alloc::alloc::WriteCloneIntoRaw`.
* New feature gate: `clone_to_uninit`
This allows performing `make_mut()` on `Rc<[T]>` and `Arc<[T]>`, which was not previously possible.
---
Previous PR description, now obsolete:
> Add `{Rc, Arc}::make_mut_slice()`
>
> These functions behave identically to `make_mut()`, but operate on `Arc<[T]>` instead of `Arc<T>`.
>
> This allows performing the operation on slices, which was not previously possible because `make_mut()` requires `T: Clone` (and slices, being `!Sized`, do not and currently cannot implement `Clone`).
>
> Feature gate: `make_mut_slice`
try-job: test-various
This trait allows cloning DSTs, but is unsafe to implement and use
because it writes to possibly-uninitialized memory which must be of the
correct size, and must initialize that memory.
It is only implemented for `T: Clone` and `[T] where T: Clone`, but
additional implementations could be provided for specific `dyn Trait`
or custom-DST types.
Print the tested value in int_log tests
Tiny change - from the failures in https://github.com/rust-lang/rust/pull/125016, it would have been nice to see what the tested values were. Update the assertion messages.
Replace sort implementations
This PR replaces the sort implementations with tailor-made ones that strike a balance of run-time, compile-time and binary-size, yielding run-time and compile-time improvements. Regressing binary-size for `slice::sort` while improving it for `slice::sort_unstable`. All while upholding the existing soft and hard safety guarantees, and even extending the soft guarantees, detecting strict weak ordering violations with a high chance and reporting it to users via a panic.
* `slice::sort` -> driftsort [design document](https://github.com/Voultapher/sort-research-rs/blob/main/writeup/driftsort_introduction/text.md), includes detailed benchmarks and analysis.
* `slice::sort_unstable` -> ipnsort [design document](https://github.com/Voultapher/sort-research-rs/blob/main/writeup/ipnsort_introduction/text.md), includes detailed benchmarks and analysis.
#### Why should we change the sort implementations?
In the [2023 Rust survey](https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html#challenges), one of the questions was: "In your opinion, how should work on the following aspects of Rust be prioritized?". The second place was "Runtime performance" and the third one "Compile Times". This PR aims to improve both.
#### Why is this one big PR and not multiple?
* The current documentation gives performance recommendations for `slice::sort` and `slice::sort_unstable`. If for example only one of them were to be changed, this advice would be misleading for some Rust versions. By replacing them atomically, the advice remains largely unchanged, and users don't have to change their code.
* driftsort and ipnsort share a substantial part of their implementations.
* The implementation of `select_nth_unstable` uses internals of `slice::sort_unstable`, which makes it impractical to split changes.
---
This PR is a collaboration with `@orlp.`
Clean up some comments near `use` declarations
#125443 will reformat all `use` declarations in the repository. There are a few edge cases involving comments on `use` declarations that require care. This PR cleans up some clumsy comment cases, taking us a step closer to #125443 being able to merge.
r? ``@lqd``
Most modules have such a blank line, but some don't. Inserting the blank
line makes it clearer that the `//!` comments are describing the entire
module, rather than the `use` declaration(s) that immediately follows.
The addition of `core::iter::zip` (#82917) set a precedent for adding
plain functions for iterator adaptors. Adding `chain` makes it a little
easier to `chain` two iterators.
```
for (x, y) in chain(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().chain(ys) {}
```
Change f32::midpoint to upcast to f64
This has been verified by kani as a correct optimization
see: https://github.com/rust-lang/rust/issues/110840#issuecomment-1942587398
The new implementation is branchless and only differs in which NaN values are produced (if any are produced at all), which is fine to change. Aside from NaN handling, this implementation produces bitwise identical results to the original implementation.
Question: do we need a codegen test for this? I didn't add one, since the original PR #92048 didn't have any codegen tests.
This has been verified by kani as a correct optimization
see: https://github.com/rust-lang/rust/issues/110840#issuecomment-1942587398
The new implementation is branchless, and only differs in which NaN
values are produced (if any are produced at all). Which is fine to change.
Aside from NaN handling, this implementation produces bitwise identical
results to the original implementation.
The new implementation is gated on targets that have a fast 64-bit
floating point implementation in hardware, and on WASM.
Expand `for_loops_over_fallibles` lint to lint on fallibles behind references.
Extends the scope of the (warn-by-default) lint `for_loops_over_fallibles` from just `for _ in x` where `x: Option<_>/Result<_, _>` to also cover `x: &(mut) Option<_>/Result<_>`
```rs
fn main() {
// Current lints
for _ in Some(42) {}
for _ in Ok::<_, i32>(42) {}
// New lints
for _ in &Some(42) {}
for _ in &mut Some(42) {}
for _ in &Ok::<_, i32>(42) {}
for _ in &mut Ok::<_, i32>(42) {}
// Should not lint
for _ in Some(42).into_iter() {}
for _ in Some(42).iter() {}
for _ in Some(42).iter_mut() {}
for _ in Ok::<_, i32>(42).into_iter() {}
for _ in Ok::<_, i32>(42).iter() {}
for _ in Ok::<_, i32>(42).iter_mut() {}
}
```
<details><summary><code>cargo build</code> diff</summary>
```diff
diff --git a/old.out b/new.out
index 84215aa..ca195a7 100644
--- a/old.out
+++ b/new.out
`@@` -1,33 +1,93 `@@`
warning: for loop over an `Option`. This is more readably written as an `if let` statement
--> src/main.rs:3:14
|
3 | for _ in Some(42) {}
| ^^^^^^^^
|
= note: `#[warn(for_loops_over_fallibles)]` on by default
help: to check pattern in a loop use `while let`
|
3 | while let Some(_) = Some(42) {}
| ~~~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
3 | if let Some(_) = Some(42) {}
| ~~~~~~~~~~~~ ~~~
warning: for loop over a `Result`. This is more readably written as an `if let` statement
--> src/main.rs:4:14
|
4 | for _ in Ok::<_, i32>(42) {}
| ^^^^^^^^^^^^^^^^
|
help: to check pattern in a loop use `while let`
|
4 | while let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
4 | if let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~ ~~~
-warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 2 warnings
- Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.04s
+warning: for loop over a `&Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:7:14
+ |
+7 | for _ in &Some(42) {}
+ | ^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+7 | while let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+7 | if let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:8:14
+ |
+8 | for _ in &mut Some(42) {}
+ | ^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+8 | while let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+8 | if let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:9:14
+ |
+9 | for _ in &Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+9 | while let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+9 | if let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:10:14
+ |
+10 | for _ in &mut Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+10 | while let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+10 | if let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 6 warnings
+ Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
```
</details>
-----
Question:
* ~~Currently, the article `an` is used for `&Option`, and `&mut Option` in the lint diagnostic, since that's what `Option` uses. Is this okay or should it be changed? (likewise, `a` is used for `&Result` and `&mut Result`)~~ The article `a` is used for `&Option`, `&mut Option`, `&Result`, `&mut Result` and (as before) `Result`. Only `Option` uses `an` (as before).
`@rustbot` label +A-lint
- `slice::sort` -> driftsort
https://github.com/Voultapher/sort-research-rs/blob/main/writeup/driftsort_introduction/text.md
- `slice::sort_unstable` -> ipnsort
https://github.com/Voultapher/sort-research-rs/blob/main/writeup/ipnsort_introduction/text.md
Replaces the sort implementations with tailor made ones that strike a
balance of run-time, compile-time and binary-size, yielding run-time and
compile-time improvements. Regressing binary-size for `slice::sort`
while improving it for `slice::sort_unstable`. All while upholding the
existing soft and hard safety guarantees, and even extending the soft
guarantees, detecting strict weak ordering violations with a high chance
and reporting it to users via a panic.
In addition the implementation of `select_nth_unstable` is also adapted
as it uses `slice::sort_unstable` internals.