Match LLVM ABI in `extern "C"` functions for `f128` on Windows
As MSVC doesn't support `_Float128`, x86-64 Windows doesn't have a defined ABI for `f128`. Currently, Rust will pass and return `f128` indirectly for `extern "C"` functions. This is inconsistent with LLVM, which passes and returns `f128` in XMM registers, meaning that e.g. the ABI of `extern "C"` compiler builtins won't match. This PR fixes this discrepancy by making the x86-64 Windows `extern "C"` ABI pass `f128` directly through to LLVM, so that Rust will follow whatever LLVM does. This still leaves the difference between LLVM and GCC (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054) but this PR is still an improvement as at least Rust is now consistent with it's primary codegen backend and compiler builtins from `compiler-builtins` will now work.
I've also fixed the x86-64 Windows `has_reliable_f16` match arm in `std` `build.rs` to refer to the correct target, and added an equivalent match arm to `has_reliable_f128` as the LLVM-GCC ABI difference affects both `f16` and `f128`.
Tracking issue: #116909
try-job: x86_64-msvc
try-job: x86_64-mingw
Structured suggestion for `extern crate foo` when `foo` isn't resolved in import
When encountering a name in an import that could have come from a crate that wasn't imported, use a structured suggestion to suggest `extern crate foo;` pointing at the right place in the crate.
When encountering `_` in an import, do not suggest `extern crate _;`.
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ maybe a missing crate `spam`?
|
help: consider importing the `spam` crate
|
LL + extern crate spam;
|
```
When an archive fails to build, print the path
Currently the output on failure is as follows:
Compiling block-buffer v0.10.4
Compiling crypto-common v0.1.6
Compiling digest v0.10.7
Compiling sha2 v0.10.8
Compiling xz2 v0.1.7
error: failed to build archive: No such file or directory
error: could not compile `bootstrap` (lib) due to 1 previous error
Change this to print which file is being constructed, to give some hint about what is going on.
error: failed to build archive at `path/to/output`: No such file or directory
derive(SmartPointer): rewrite bounds in where and generic bounds
Fix#127647
Due to the `Unsize` bounds, we need to commute the bounds on the pointee type to the new self type.
cc ```@Darksonn```
Update to LLVM 19
The LLVM 19.1.0 final release is planned for Sep 3rd. The rustc 1.82 stable release will be on Oct 17th.
The unstable MC/DC coverage support is temporarily broken by this update. It will be restored by https://github.com/rust-lang/rust/pull/126733. The implementation changed substantially in LLVM 19, and there are no plans to support both the LLVM 18 and LLVM 19 implementation at the same time.
Compatibility note for wasm:
> WebAssembly target support for the `multivalue` target feature has changed when upgrading to LLVM 19. Support for generating functions with multiple returns no longer works and `-Ctarget-feature=+multivalue` has a different meaning than it did in LLVM 18 and prior. The WebAssembly target features `multivalue` and `reference-types` are now both enabled by default, but generated code is not affected by default. These features being enabled are encoded in the `target_features` custom section and may affect downstream tooling such as `wasm-opt` consuming the module, but the actual generated WebAssembly will continue to not use either `multivalue` or `reference-types` by default. There is no longer any supported means to generate a module that has a function with multiple returns.
Related changes:
* https://github.com/rust-lang/rust/pull/127605
* https://github.com/rust-lang/rust/pull/127613
* https://github.com/rust-lang/rust/pull/127654
* https://github.com/rust-lang/rust/pull/128141
* https://github.com/llvm/llvm-project/pull/98933
Fixes https://github.com/rust-lang/rust/issues/121444.
Fixes https://github.com/rust-lang/rust/issues/128212.
The pattern-analysis code needs to print patterns, as part of its user-visible
diagnostics. But it never actually tries to print "real" patterns! Instead, it
only ever prints synthetic patterns that it has reconstructed from its own
internal represenations.
We can therefore simultaneously remove two obstacles to changing `thir::Pat`,
by having the pattern-analysis code use its own dedicated type for building
printable patterns, and then making `thir::Pat` not printable at all.
This reverts commit ae0ec731a8.
The original change in #128304 was intended to be a step towards being able to
print `thir::Pat` even after switching to `PatId`.
But because the only patterns that need to be printed are the synthetic ones
created by pattern analysis (for diagnostic purposes only), it makes more sense
to completely separate the printable patterns from the real THIR patterns.
`parse_expr_assoc_with` has an awkward structure -- sometimes the lhs is
already parsed. This commit splits the post-lhs part into a new method
`parse_expr_assoc_rest_with`, which makes everything shorter and
simpler.
It has a single use. This makes the `let` handling case in
`parse_stmt_without_recovery` more similar to the statement path and
statement expression cases.
This makes it possible for the `unsafe(...)` syntax to only be
valid at the top level, and the `NestedMetaItem`s will automatically
reject `unsafe(...)`.
Mark `Parser::eat`/`check` methods as `#[must_use]`
These methods return a `bool`, but we probably should either use these values or explicitly throw them away (e.g. when we just want to unconditionally eat a token if it exists).
I changed a few places from `eat` to `expect`, but otherwise I tried to leave a comment explaining why the `eat` was okay.
This also adds a test for the `pattern_type!` macro, which used to silently accept a missing `is` token.
Detect non-lifetime binder params shadowing item params
We should check that `for<T>` shadows `T` from an item in the same way that `for<'a>` shadows `'a` from an item.
r? ``@petrochenkov`` since you're familiar w the nuances of rib kinds
allow overwriting the output of `rustc --version`
Our wonderful bisection folk [have to work around](https://github.com/rust-lang/rust/issues/123276#issuecomment-2075001510) crates that do incomplete nightly/feature detection, as otherwise the bisection just points to where the feature detection breaks, and not to the actual breakage they are looking for.
This is also annoying behaviour to nightly users who did not opt-in to those nightly features. Most nightly users want to be in control of the nightly breakage they get, by
* choosing when to update rustc
* choosing when to update dependencies
* choosing which nightly features they are willing to take the breakage for
The reason this breakage occurs is that the build script of some crates run `rustc --version`, and if the version looks like nightly or dev, it will enable nightly features. These nightly features may break in random ways whenever we change something in nightly, so every release of such a crate will only work with a small range of nightly releases. This causes bisection to fail whenever it tries an unsupported nightly, even though that crate is not related to the bisection at all, but is just an unrelated dependency.
This PR (and the policy I want to establish with this FCP) is only for situations like the `version_check`'s `supports_feature` function. It is explicitly not for `autocfg` or similar feature-detection-by-building-rust-code, irrespective of my opinions on it and the similarity of nightly breakage that can occur with such schemes. These cause much less breakage, but should the breakage become an issue, they should get covered by this policy, too.
This PR allows changing the version and release strings reported by `rustc --version` via the `RUSTC_OVERRIDE_VERSION_STRING` env var. The bisection issue is then fixed by https://github.com/rust-lang/cargo-bisect-rustc/pull/335.
I mainly want to establish a compiler team policy:
> We do not consider feature detection on nightly (on stable via compiler version numbering is fine) a valid use case that we need to support, and if it causes problems, we are at liberty to do what we deem best - either actively working to prevent it or to actively ignore it. We may try to work with responsive and cooperative authors, but are not obligated to.
Should they subvert the workarounds that nightly users or cargo-bisect-rustc can use, we should be able to land rustc PRs that target the specific crates that cause issues for us and outright replace their build script's logic to disable nightly detection.
I am not including links to crates, PRs or issues here, as I don't actually care about the specific use cases and don't want to make it trivial to go there and leave comments. This discussion is going to be interesting enough on its own, without branching out.
Add limit for unclosed delimiters in lexer diagnostic
Fixes#127868
The first commit shows the original diagnostic, and the second commit shows the changes.
Delegation: support generics for delegation from free functions
(The PR was split from https://github.com/rust-lang/rust/pull/123958, explainer - https://github.com/Bryanskiy/posts/blob/master/delegation%20in%20generic%20contexts.md)
This PR implements generics inheritance from free functions to free functions and trait methods.
#### free functions to free functions:
```rust
fn to_reuse<T: Clone>(_: T) {}
reuse to_reuse as bar;
// desugaring:
fn bar<T: Clone>(x: T) {
to_reuse(x)
}
```
Generics, predicates and signature are simply copied. Generic arguments in paths are ignored during generics inheritance:
```rust
fn to_reuse<T: Clone>(_: T) {}
reuse to_reuse::<u8> as bar;
// desugaring:
fn bar<T: Clone>(x: T) {
to_reuse::<u8>(x) // ERROR: mismatched types
}
```
Due to implementation limitations callee path is lowered without modifications. Therefore, it is a compilation error at the moment.
#### free functions to trait methods:
```rust
trait Trait<'a, A> {
fn foo<'b, B>(&self, x: A, y: B) {...}
}
reuse Trait::foo;
// desugaring:
fn foo<'a, 'b, This: Trait<'a, A>, A, B>(this: &This, x: A, y: B) {
Trait::foo(this, x, y)
}
```
The inheritance is similar to the previous case but with some corrections:
- `Self` parameter converted into `T: Trait`
- generic parameters need to be reordered so that lifetimes go first
Arguments are similarly ignored.
---
In the future, we plan to support generic inheritance for delegating from all contexts to all contexts (from free/trait/impl to free/trait /impl). These cases were considered first as the simplest from the implementation perspective.
Disable the tests and generate an error if MC/DC is used on LLVM 19.
The support will be ported separately, as it is substantially
different on LLVM 19, and there are no plans to support both
versions.
Rollup of 4 pull requests
Successful merges:
- #127574 (elaborate unknowable goals)
- #128141 (Set branch protection function attributes)
- #128315 (Fix vita build of std and forbid unsafe in unsafe in the os/vita module)
- #128339 ([rustdoc] Make the buttons remain when code example is clicked)
r? `@ghost`
`@rustbot` modify labels: rollup
Add `select_unpredictable` to force LLVM to use CMOV
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs into branches if it comes from a `select` marked with an `unpredictable` metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits such a `select` and uses it in the implementation of `binary_search_by`.
Set branch protection function attributes
Since LLVM 19, it is necessary to set not only module flags, but also function attributes for branch protection on aarch64. See e15d67cfc2 for the relevant LLVM change.
Fixes https://github.com/rust-lang/rust/issues/127829.
elaborate unknowable goals
A reimplemented version of #124532 affecting only the new solver. Always trying to prove super traits ends up causing a fatal overflow error in diesel, so we cannot land this in the old solver.
The following test currently does not pass coherence:
```rust
trait Super {}
trait Sub<T>: Super {}
trait Overlap<T> {}
impl<T, U: Sub<T>> Overlap<T> for U {}
impl<T> Overlap<T> for () {}
fn main() {}
```
We check whether `(): Sub<?t>` holds. This stalls with ambiguity as downstream crates may add an impl for `(): Sub<Local>`. However, its super trait bound `(): Super` cannot be implemented downstream, so this one is known not to hold.
By trying to prove that all the super bounds of a trait before adding a coherence unknowable candidate, this compiles. This is necessary to prevent breakage from enabling `-Znext-solver=coherence` (#121848), see tests/ui/coherence/super-traits/super-trait-knowable-2.rs for more details. The idea is that while there may be an impl of the trait itself we don't know about, if we're able to prove that a super trait is definitely not implemented, then that impl would also never apply/not be well-formed.
This approach is different from #124532 as it allows tests/ui/coherence/super-traits/super-trait-knowable-3.rs to compile. The approach in #124532 only elaborating the root obligations while this approach tries it for all unknowable trait goals.
r? `@compiler-errors`
When encountering a name in an import that could have come from a crate that wasn't imported, use a structured suggestion to suggest `extern crate foo;` pointing at the right place in the crate.
When encountering `_` in an import, do not suggest `extern crate _;`.
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ maybe a missing crate `spam`?
|
help: consider importing the `spam` crate
|
LL + extern crate spam;
|
```
Rollup of 6 pull requests
Successful merges:
- #126247 (rustdoc: word wrap CamelCase in the item list table and sidebar)
- #128104 (Not lint pub structs without pub constructors intentionally)
- #128153 (Stop using `MoveDataParamEnv` for places that don't need a param-env)
- #128284 (Stabilize offset_of_nested)
- #128342 (simplify the use of `CiEnv`)
- #128355 (triagebot: make sure Nora is called Nora)
r? `@ghost`
`@rustbot` modify labels: rollup
Stabilize offset_of_nested
Tracking issue #120140. Closes#120140.
As the FCP is now nearing its end I have opened a stabilization PR. I have done this separately to the offset_of_enum feature, since that FCP has not started.
`@rustbot` label F-offset_of_nested T-lang T-libs-api
Stop using `MoveDataParamEnv` for places that don't need a param-env
I think not threading through a `ParamEnv` makes it clearer that these functions don't do anything particularly "type systems"-y.
r? cjgillot
Scan strings to be normalized for printing in a linear scan and collect
the resulting `String` only once.
Use a binary search when looking for chars to be replaced, instead of a
`HashMap::get`.
Make `rustc_attr::parse_version` pub
I'd like to use it in Clippy but I'll make those changes in the Clippy repo after the sync so it doesn't cause a conflict with https://github.com/rust-lang/rust-clippy/pull/13168
Tell users not to file a bug when using internal library features
Actually fixes#97501. I don't think we should suppress the suggestion to add `#![feature(..)]`, though I guess I could be convinced otherwise.
r? `@Nilstrieb` cc `@RalfJung`
Didn't add a test b/c I don't think we test this for lang features either, but I can confirm it does work.
```
warning: the feature `core_intrinsics` is internal to the compiler or standard library
--> /home/michael/test.rs:1:12
|
1 | #![feature(core_intrinsics)]
| ^^^^^^^^^^^^^^^
|
= note: using it is strongly discouraged
= note: `#[warn(internal_features)]` on by default
thread 'rustc' panicked at compiler/rustc_mir_transform/src/validate.rs:94:25:
broken MIR in Item(DefId(0:6 ~ test[42db]::{impl#0}::add)) (after phase change to runtime-optimized) at bb0[0]:
Cannot perform arithmetic Add on type WrapInt8
stack backtrace:
0: begin_panic_handler
at ./library/std/src/panicking.rs:665:5
1: panic_fmt
at ./library/core/src/panicking.rs:74:14
2: fail<alloc::string::String>
at ./compiler/rustc_mir_transform/src/validate.rs:146:9
3: run_pass
at ./compiler/rustc_mir_transform/src/validate.rs:94:13
4: validate_body
at ./compiler/rustc_mir_transform/src/pass_manager.rs:193:5
5: run_passes_inner
at ./compiler/rustc_mir_transform/src/pass_manager.rs:176:13
6: rustc_mir_transform::pass_manager::run_passes
at ./compiler/rustc_mir_transform/src/pass_manager.rs:87:5
7: run_optimization_passes
at ./compiler/rustc_mir_transform/src/lib.rs:561:5
8: inner_optimized_mir
at ./compiler/rustc_mir_transform/src/lib.rs:667:5
9: optimized_mir
at ./compiler/rustc_mir_transform/src/lib.rs:630:21
10: {closure#0}
at ./compiler/rustc_query_impl/src/plumbing.rs:285:13
[... omitted 22 frames ...]
11: query_get_at<rustc_query_system::query::caches::DefIdCache<rustc_middle::query::erase::Erased<[u8; 8]>>>
at ./compiler/rustc_middle/src/query/plumbing.rs:145:17
12: instance_mir
13: collect_items_of_instance
at ./compiler/rustc_monomorphize/src/collector.rs:1203:16
14: {closure#0}
at ./compiler/rustc_monomorphize/src/collector.rs:447:17
15: maybe_grow<(), rustc_monomorphize::collector::collect_items_rec::{closure_env#0}>
at /home/michael/.cargo/registry/src/index.crates.io-6f17d22bba15001f/stacker-0.1.15/src/lib.rs:55:9
16: ensure_sufficient_stack<(), rustc_monomorphize::collector::collect_items_rec::{closure_env#0}>
at ./compiler/rustc_data_structures/src/stack.rs:17:5
17: collect_items_rec
at ./compiler/rustc_monomorphize/src/collector.rs:446:13
18: collect_items_rec
at ./compiler/rustc_monomorphize/src/collector.rs:526:13
19: {closure#0}
at ./compiler/rustc_monomorphize/src/collector.rs:1597:17
20: {closure#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:182:34
21: call_once<(), rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure#0}::{closure_env#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>
at ./library/core/src/panic/unwind_safe.rs:272:9
22: do_call<core::panic::unwind_safe::AssertUnwindSafe<rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure#0}::{closure_env#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>, ()>
at ./library/std/src/panicking.rs:557:40
23: try<(), core::panic::unwind_safe::AssertUnwindSafe<rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure#0}::{closure_env#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>>
at ./library/std/src/panicking.rs:521:19
24: run<(), rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure#1}::{closure_env#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:28:9
25: {closure#1}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:186:21
26: {closure#0}<rustc_middle::mir::mono::MonoItem, rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure_env#1}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>
at ./library/core/src/iter/traits/iterator.rs:815:29
27: fold<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global, (), core::iter::traits::iterator::Iterator::for_each::call::{closure_env#0}<rustc_middle::mir::mono::MonoItem, rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure_env#1}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>>
at ./library/alloc/src/vec/into_iter.rs:317:25
28: for_each<alloc::vec::into_iter::IntoIter<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure#0}::{closure_env#1}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>
at ./library/core/src/iter/traits/iterator.rs:818:9
29: {closure#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:185:17
30: parallel_guard<(), rustc_data_structures::sync::parallel::enabled::par_for_each_in::{closure_env#0}<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:44:15
31: par_for_each_in<rustc_middle::mir::mono::MonoItem, alloc::vec::Vec<rustc_middle::mir::mono::MonoItem, alloc::alloc::Global>, rustc_monomorphize::collector::collect_crate_mono_items::{closure#1}::{closure_env#0}>
at ./compiler/rustc_data_structures/src/sync/parallel.rs:178:9
32: {closure#1}
at ./compiler/rustc_monomorphize/src/collector.rs:1595:13
33: run<(), rustc_monomorphize::collector::collect_crate_mono_items::{closure_env#1}>
at ./compiler/rustc_data_structures/src/profiling.rs:754:9
34: time<(), rustc_monomorphize::collector::collect_crate_mono_items::{closure_env#1}>
at ./compiler/rustc_session/src/utils.rs:16:9
35: collect_crate_mono_items
at ./compiler/rustc_monomorphize/src/collector.rs:1594:9
36: collect_and_partition_mono_items
at ./compiler/rustc_monomorphize/src/partitioning.rs:1124:30
37: {closure#0}
at ./compiler/rustc_query_impl/src/plumbing.rs:281:9
[... omitted 22 frames ...]
38: query_get_at<rustc_query_system::query::caches::SingleCache<rustc_middle::query::erase::Erased<[u8; 24]>>>
at ./compiler/rustc_middle/src/query/plumbing.rs:145:17
39: collect_and_partition_mono_items
at ./compiler/rustc_middle/src/query/plumbing.rs:423:31
40: collect_and_partition_mono_items
at ./compiler/rustc_middle/src/query/plumbing.rs:414:17
41: codegen_crate<rustc_codegen_llvm::LlvmCodegenBackend>
at ./compiler/rustc_codegen_ssa/src/base.rs:596:25
42: codegen_crate
at ./compiler/rustc_codegen_llvm/src/lib.rs:361:18
43: {closure#0}
at ./compiler/rustc_interface/src/passes.rs:1027:9
44: run<alloc::boxed::Box<dyn core::any::Any, alloc::alloc::Global>, rustc_interface::passes::start_codegen::{closure_env#0}>
at ./compiler/rustc_data_structures/src/profiling.rs:754:9
45: time<alloc::boxed::Box<dyn core::any::Any, alloc::alloc::Global>, rustc_interface::passes::start_codegen::{closure_env#0}>
at ./compiler/rustc_session/src/utils.rs:16:9
46: start_codegen
at ./compiler/rustc_interface/src/passes.rs:1026:19
47: codegen_and_build_linker
at ./compiler/rustc_interface/src/queries.rs:128:31
48: {closure#6}
at ./compiler/rustc_driver_impl/src/lib.rs:451:25
49: {closure#1}<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_middle/src/ty/context.rs:1336:37
50: {closure#0}<rustc_middle::ty::context::{impl#19}::enter::{closure_env#1}<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_middle/src/ty/context/tls.rs:82:9
51: try_with<core::cell::Cell<*const ()>, rustc_middle::ty::context::tls::enter_context::{closure_env#0}<rustc_middle::ty::context::{impl#19}::enter::{closure_env#1}<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./library/std/src/thread/local.rs:283:12
52: with<core::cell::Cell<*const ()>, rustc_middle::ty::context::tls::enter_context::{closure_env#0}<rustc_middle::ty::context::{impl#19}::enter::{closure_env#1}<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./library/std/src/thread/local.rs:260:9
53: enter_context<rustc_middle::ty::context::{impl#19}::enter::{closure_env#1}<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_middle/src/ty/context/tls.rs:79:5
54: enter<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure_env#6}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_middle/src/ty/context.rs:1336:9
55: <rustc_interface::queries::QueryResult<&rustc_middle::ty::context::GlobalCtxt>>::enter::<core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure#6}>
at ./compiler/rustc_interface/src/queries.rs:64:9
56: {closure#1}
at ./compiler/rustc_driver_impl/src/lib.rs:450:13
57: enter<rustc_driver_impl::run_compiler::{closure#0}::{closure_env#1}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_interface/src/queries.rs:209:19
58: {closure#0}
at ./compiler/rustc_driver_impl/src/lib.rs:388:22
59: {closure#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>
at ./compiler/rustc_interface/src/interface.rs:502:27
60: {closure#0}<rustc_interface::interface::run_compiler::{closure_env#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>, core::result::Result<(), rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_interface/src/util.rs:154:13
61: {closure#0}<rustc_interface::util::run_in_thread_pool_with_globals::{closure_env#0}<rustc_interface::interface::run_compiler::{closure_env#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>, core::result::Result<(), rustc_span::ErrorGuaranteed>>, core::result::Result<(), rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_interface/src/util.rs:106:21
62: set<rustc_span::SessionGlobals, rustc_interface::util::run_in_thread_with_globals::{closure#0}::{closure#0}::{closure_env#0}<rustc_interface::util::run_in_thread_pool_with_globals::{closure_env#0}<rustc_interface::interface::run_compiler::{closure_env#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>, core::result::Result<(), rustc_span::ErrorGuaranteed>>, core::result::Result<(), rustc_span::ErrorGuaranteed>>, core::result::Result<(), rustc_span::ErrorGuaranteed>>
at /home/michael/.cargo/registry/src/index.crates.io-6f17d22bba15001f/scoped-tls-1.0.1/src/lib.rs:137:9
63: create_session_globals_then<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_interface::util::run_in_thread_with_globals::{closure#0}::{closure#0}::{closure_env#0}<rustc_interface::util::run_in_thread_pool_with_globals::{closure_env#0}<rustc_interface::interface::run_compiler::{closure_env#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>, core::result::Result<(), rustc_span::ErrorGuaranteed>>, core::result::Result<(), rustc_span::ErrorGuaranteed>>>
at ./compiler/rustc_span/src/lib.rs:134:5
64: {closure#0}<rustc_interface::util::run_in_thread_pool_with_globals::{closure_env#0}<rustc_interface::interface::run_compiler::{closure_env#1}<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure_env#0}>, core::result::Result<(), rustc_span::ErrorGuaranteed>>, core::result::Result<(), rustc_span::ErrorGuaranteed>>
at ./compiler/rustc_interface/src/util.rs:105:17
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
error: the compiler unexpectedly panicked. this is a bug.
note: using internal features is not supported and expected to cause internal compiler errors when used incorrectly
note: rustc 1.82.0-dev running on x86_64-unknown-linux-gnu
query stack during panic:
#0 [optimized_mir] optimizing MIR for `<impl at /home/michael/test.rs:9:1: 9:32>::add`
#1 [collect_and_partition_mono_items] collect_and_partition_mono_items
end of query stack
```
Don't record trait aliases as marker traits
Don't record `#[marker]` on trait aliases, since we use that to check for the (non-presence of) associated types and other things which don't make sense of trait aliases. We already enforce this attr is only applied to a trait.
Also do the same for `#[const_trait]`, which we also enforce is only applied to a trait. This is a drive-by change, but also worthwhile just in case.
Fixes#127222
Don't elaborate associated types with Sized bounds in `trait_object_ty` in cfi
The elaboration mechanism introduced in #123005 didn't filter for associated types with `Self: Sized` bounds, which since #112319 has excluded them from the object type.
Fixes#127881
cc `@maurer` `@rcvalle`
Perform instsimplify before inline to eliminate some trivial calls
I am currently working on #128081. In the current pipeline, we can get the following clone statements ([godbolt](https://rust.godbolt.org/z/931316fhP)):
```
bb0: {
StorageLive(_2);
_2 = ((*_1).0: i32);
StorageLive(_3);
_3 = ((*_1).1: u64);
_0 = Foo { a: move _2, b: move _3 };
StorageDead(_3);
StorageDead(_2);
return;
}
```
Analyzing such statements will be simple and fast. We don't need to consider branches or some interfering statements. However, this requires us to run `InstSimplify`, `ReferencePropagation`, and `SimplifyCFG` at least once. I can introduce a new pass, but I think the best place for it would be within `InstSimplify`.
I put `InstSimplify` before `Inline`, which takes some of the burden away from `Inline`.
r? `@saethlin`
Isolate the diagnostic code that expects `thir::Pat` to be printable
Currently, `thir::Pat` implements `fmt::Display` (and `IntoDiagArg`) directly, for use by a few diagnostics.
That makes it tricky to experiment with alternate representations for THIR patterns, because the patterns currently need to be printable on their own. That immediately rules out possibilities like storing subpatterns as a `PatId` index into a central list (instead of the current directly-owned `Box<Pat>`).
This PR therefore takes an incremental step away from that obstacle, by removing `thir::Pat` from diagnostic structs in `rustc_pattern_analysis`, and hiding the pattern-printing process behind a single public `Pat::to_string` method. Doing so makes it easier to identify and update the code that wants to print patterns, and gives a place to pass in additional context in the future if necessary.
---
I'm currently not sure whether switching over to `PatId` is actually desirable or not, but I think this change makes sense on its own merits, by reducing the coupling between `thir::Pat` and the pattern-analysis error types.
miri: fix offset_from behavior on wildcard pointers
offset_from wouldn't behave correctly when the "end" pointer was a wildcard pointer (result of an int2ptr cast) just at the end of the allocation. Fix that by expressing the "same allocation" check in terms of two `check_ptr_access_signed` instead of something specific to offset_from, which is both more canonical and works better with wildcard pointers.
The second commit just improves diagnostics: I wanted the "pointer is dangling (has no provenance)" message to say how many bytes of memory it expected to see (since if it were 0 bytes, this would actually be legal, so it's good to tell the user that it's not 0 bytes). And then I was annoying that the error looks so different for when you deref a dangling pointer vs an out-of-bounds pointer so I made them more similar.
Fixes https://github.com/rust-lang/miri/issues/3767
Update compiler_builtins to 0.1.114
The `weak-intrinsics` feature was removed from compiler_builtins in https://github.com/rust-lang/compiler-builtins/pull/598, so dropped the `compiler-builtins-weak-intrinsics` feature from alloc/std/sysroot.
In https://github.com/rust-lang/compiler-builtins/pull/593, some builtins for f16/f128 were added. These don't work for all compiler backends, so add a `compiler-builtins-no-f16-f128` feature and disable it for cranelift and gcc.
This gives a clearer view of the (diagnostic) code that expects to be able to
print THIR patterns, and makes it possible to experiment with requiring some
kind of context (for ID lookup) when printing patterns.
The `weak-intrinsics` feature was removed from compiler_builtins in
https://github.com/rust-lang/compiler-builtins/pull/598, so dropped the
`compiler-builtins-weak-intrinsics` feature from alloc/std/sysroot.
In https://github.com/rust-lang/compiler-builtins/pull/593, some
builtins for f16/f128 were added. These don't work for all compiler
backends, so add a `compiler-builtins-no-f16-f128` feature and disable
it for cranelift and gcc. Also disable it for LLVM targets that don't
support it.
As decided in rust-lang/compiler-team#750.
Use declarations are currently wildly inconsistent because rustfmt is
quite unopinionated about how they should be formatted. The
`rustfmt.toml` additions makes rustfmt more opinionated, which avoids
the need for any decision when adding new use declarations to a file.
This commit only updates `rustfmt.toml` and
`compiler/rustc_codegen_cranelift/rustfmt.toml`. The next commit will do
the reformatting.
deps: dedup object, wasmparser, wasm-encoder
* dedups one `object`, additional dupe will be removed, with next `thorin-dwp` update
* `wasmparser` pinned to minor versions, so full merge isn't possible
* same with `wasm-encoder`
Turned off some features for `wasmparser` (see features https://github.com/bytecodealliance/wasm-tools/blob/v1.208.1/crates/wasmparser/Cargo.toml) in `run-make-support`, looks working?
Don't manually implement `PartialEq` for some types in `rustc_type_ir`
> > As a follow-up, we should look at not manually implementing PartialEq for these types but instead going thru a derive
>
> I will try to tackle this later in a separate PR
https://github.com/rust-lang/rust/issues/127042#issuecomment-2218838446
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs
into branches if it comes from a `select` marked with an `unpredictable`
metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits
such a `select` and uses it in the implementation of `binary_search_by`.
Add migration lint for 2024 prelude additions
This adds the migration lint for the newly ambiguous methods `poll` and `into_future`. When these methods are used on types implementing the respective traits, it will be ambiguous in the future, which can lead to hard errors or behavior changes depending on the exact circumstances.
tracked by #121042
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
r? compiler-errors as the method prober
This adds the migration lint for the newly ambiguous methods `poll` and
`into_future`. When these methods are used on types implementing the
respective traits, it will be ambiguous in the future, which can lead to
hard errors or behavior changes depending on the exact circumstances.
`#[naked]`: report incompatible attributes
tracking issue: https://github.com/rust-lang/rust/issues/90957
this is a re-implementation of https://github.com/rust-lang/rust/pull/93809 by ``@bstrie`` which was closed 2 years ago due to inactivity.
This PR takes some of the final comments into account, specifically providing a little more context in error messages, and using an allow list to determine which attributes are compatible with `#[naked]`.
Notable attributes that are incompatible with `#[naked]` are:
* `#[inline]`
* `#[track_caller]`
* ~~`#[target_feature]`~~ (this is now allowed, see PR discussion)
* `#[test]`, `#[ignore]`, `#[should_panic]`
These attributes just directly conflict with what `#[naked]` should do.
Naked functions are still important for systems programming, embedded, and operating systems, so I'd like to move them forward.
Disable jump threading of float equality
Jump threading stores values as `u128` (`ScalarInt`) and does its comparisons for equality as integer comparisons.
This works great for integers. Sadly, not everything is an integer.
Floats famously have wonky equality semantcs, with `NaN!=NaN` and `0.0 == -0.0`. This does not match our beautiful integer bitpattern equality and therefore causes things to go horribly wrong.
While jump threading could be extended to support floats by remembering that they're floats in the value state and handling them properly, it's signficantly easier to just disable it for now.
fixes#128243
Remove logic to suggest clone of function output
I can't exactly tell, but I believe that this suggestion is operating off of a heuristic that the lifetime of a function's input is correlated with the lifetime of a function's output in such a way that cloning would fix an error. I don't think that actually manages to hit the bar of "actually provides useful suggestions" most of the time.
Specifically, I've hit false-positives due to this suggestion *twice* when fixing ICEs in the compiler, so I don't think it's worthwhile having this logic around. Neither of the two affected UI tests are actually fixed by the suggestion.
improve error message when `global_asm!` uses `asm!` options
specifically, what was
error: expected one of `)`, `att_syntax`, or `raw`, found `preserves_flags`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ expected one of `)`, `att_syntax`, or `raw`
is now
error: the `preserves_flags` option cannot be used with `global_asm!`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ the `preserves_flags` option is not meaningful for global-scoped inline assembly
mirroring the phrasing of the [reference](https://doc.rust-lang.org/reference/inline-assembly.html#options).
This is also a bit of a refactor for a future `naked_asm!` macro (for use in `#[naked]` functions). Currently this sort of error can come up when switching from inline to global asm, or when a user just isn't that experienced with assembly. With `naked_asm!` added to the mix hitting this error is more likely.
Jump threading stores values as `u128` (`ScalarInt`) and does its
comparisons for equality as integer comparisons.
This works great for integers. Sadly, not everything is an integer.
Floats famously have wonky equality semantcs, with `NaN!=NaN` and
`0.0 == -0.0`. This does not match our beautiful integer bitpattern
equality and therefore causes things to go horribly wrong.
While jump threading could be extended to support floats by remembering
that they're floats in the value state and handling them properly,
it's signficantly easier to just disable it for now.
Make `missing_fragment_specifier` an error in edition 2024
`missing_fragment_specifier` has been a future compatibility warning since 2017. Uplifting it to an unconditional hard error was attempted in 2020, but eventually reverted due to fallout.
Make it an error only in edition >= 2024, leaving the lint for older editions. This change will make it easier to support more macro syntax that relies on usage of `$`.
Fixes <https://github.com/rust-lang/rust/issues/40107>
---
It is rather late for the edition but since this change is relatively small, it seems worth at least bringing up. This follows a brief [Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/268952-edition/topic/.60.20DBD.20-.3E.20hard.20error) (cc `@tmandry).`
Making this an edition-dependent lint has come up before but there was not a strong motivation. I am proposing it at this time because this would simplify the [named macro capture groups](https://github.com/rust-lang/rfcs/pull/3649) RFC, which has had mildly positive response, and makes use of new `$` syntax in the matcher. The proposed syntax currently parses as metavariables without a fragment specifier; this warning is raised, but there are no errors.
It is obviously not known that this specific RFC will eventually be accepted, but forbidding `missing_fragment_specifier` should make it easier to support any new syntax in the future that makes use of `$` in different ways. The syntax conflict is also not impossible to overcome, but making it clear that unnamed metavariables are rejected makes things more straightforward and should allow for better diagnostics.
`@Mark-Simulacrum` suggested making this forbid-by-default instead of an error at https://github.com/rust-lang/rust/issues/40107#issuecomment-761727885, but I don't think this would allow the same level of syntax flexibility.
It is also possible to reconsider making this an unconditional error since four years have elapsed since the previous attempt, but this seems likely to hit the same pitfalls. (Possibly worth a crater run?)
Tracking:
- https://github.com/rust-lang/rust/issues/128143
- merge error codes
- use attribute name that is incompatible in error message
- add test for conditional incompatible attribute
- add `linkage` to the allowlist
`missing_fragment_specifier` has been a future compatibility warning
since 2017. Uplifting it to an unconditional hard error was attempted in
2020, but eventually reverted due to fallout.
Make it an error only in edition >= 2024, leaving the lint for older
editions. This change will make it easier to support more macro syntax
that relies on usage of `$`.
Fixes <https://github.com/rust-lang/rust/issues/40107>
Improve `extern "<abi>" unsafe fn()` error message
These errors were already reported in #87217, and fixed by #87235 but missed the case of an explicit ABI.
This PR does not cover multiple keywords like `extern "C" pub const unsafe fn()`, but I don't know what a good way to cover this would be. It also seems rarer than `extern "C" unsafe` which I saw happen a few times in workshops.
Remove unnecessary range replacements
This PR removes an unnecessary range replacement in `collect_tokens_trailing_token`, and does a couple of other small cleanups.
r? ````@petrochenkov````
Implement `Copy`/`Clone` for async closures
We can do so in the same cases that regular closures do.
For the purposes of cloning, coroutine-closures are actually precisely the same as regular closures, specifically in the aspect that `Clone` impls care about which is the upvars. The only difference b/w coroutine-closures and regular closures is the type that they *return*, but this type has not been *created* yet, so we don't really have a problem.
IDK why I didn't add this impl initially -- I went back and forth a bit on the internal representation for coroutine-closures before settling on a design which largely models regular closures. Previous (not published) iterations of coroutine-closures used to be represented as a special (read: cursed) kind of coroutine, which would probably suffer from the pitfalls that coroutines have that oli mentioned below in https://github.com/rust-lang/rust/pull/128201#issuecomment-2251230274.
r? oli-obk
Support ?Trait bounds in supertraits and dyn Trait under a feature gate
This patch allows `maybe` polarity bounds under a feature gate. The only language change here is that corresponding hard errors are replaced by feature gates. Example:
```rust
#![feature(allow_maybe_polarity)]
...
trait Trait1 : ?Trait { ... } // ok
fn foo(_: Box<(dyn Trait2 + ?Trait)>) {} // ok
fn bar<T: ?Sized + ?Trait>(_: &T) {} // ok
```
Maybe bounds still don't do anything (except for `Sized` trait), however this patch will allow us to [experiment with default auto traits](https://github.com/rust-lang/rust/pull/120706#issuecomment-1934006762).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727)
Let InstCombine remove Clone shims inside Clone shims
The Clone shims that we generate tend to recurse into other Clone shims, which gets very silly very quickly. Here's our current state: https://godbolt.org/z/E69YeY8eq
So I've added InstSimplify to the shims optimization passes, and improved `is_trivially_pure_clone_copy` so that it can delete those calls inside the shim. This makes the shim way smaller because most of its size is the required ceremony for unwinding.
This change also completely breaks the UI test added for https://github.com/rust-lang/rust/issues/104870. With this PR, that program ICEs in MIR type checking because `is_trivially_pure_clone_copy` and the trait solver disagree on whether `*mut u8` is `Copy`. And adding the requisite `Copy` impl to make them agree makes the test not generate any diagnostics. Considering that I spent most of my time on this PR fixing `#![no_core]` tests, I would prefer to just delete this one. The maintenance burden of `#![no_core]` is uniquely high because when they break they tend to break in very confusing ways.
try-job: x86_64-mingw
exhaustiveness: Explain why a given pattern is considered unreachable
This PR tells the user why a given pattern is considered unreachable. I reused the intersection information we were already computing; even though it's incomplete I convinced myself that it is sufficient to always get a set of patterns that cover the unreachable one.
I'm not a fan of the diagnostic messages I came up with, I'm open to suggestions.
Fixes https://github.com/rust-lang/rust/issues/127870. This is also the other one of the two diagnostic improvements I wanted to do before https://github.com/rust-lang/rust/pull/122792.
Note: the first commit is an unrelated drive-by tweak.
r? `@compiler-errors`
A fully imperative style is easier to read than a half-iterator,
half-imperative style. Also, rename `inner_attr` as `attr` because it
might be an outer attribute.
Imagine you have replace ranges (2..20,X) and (5..15,Y), and these tokens:
```
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x
```
If we replace (5..15,Y) first, then (2..20,X) we get this sequence
```
a,b,c,d,e,Y,_,_,_,_,_,_,_,_,_,p,q,r,s,t,u,v,w,x
a,b,X,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,u,v,w,x
```
which is what we want.
If we do it in the other order, we get this:
```
a,b,X,_,_,_,_,_,_,_,_,_,_,_,_,p,q,r,s,t,u,v,w,x
a,b,X,_,_,Y,_,_,_,_,_,_,_,_,_,_,_,_,_,_,u,v,w,x
```
which is wrong. So it's true that we need the `.rev()` but the comment
is wrong about why.
Make Clone::clone a lang item
I want to absorb all the logic for picking whether an Instance is LocalCopy or GloballyShared into one place. As part of this, I wanted to identify Clone shims inside `cross_crate_inlinable` and found that rather tricky. `@compiler-errors` suggested that I add a lang item for `Clone::clone` because that would produce other cleanups in the compiler.
That sounds good to me, but I have looked and I've only been able to find one.
r? compiler-errors
Extend rules of dead code analysis for impls for adts to impls for types refer to adts
The rules of dead code analysis for impl blocks can be extended to self types which refer to adts.
So that we can lint the following unused struct and trait:
```rust
struct Foo; //~ ERROR struct `Foo` is never constructed
trait Trait { //~ ERROR trait `Trait` is never used
fn foo(&self) {}
}
impl Trait for &Foo {}
```
r? `@pnkfelix`
Make it crystal clear what lint `type_alias_bounds` actually signifies
This is part of my work on https://github.com/rust-lang/rust/labels/F-lazy_type_alias ([tracking issue](#112792)).
---
To recap, the lint `type_alias_bounds` detects bounds on generic parameters and where clauses on (eager) type aliases. These bounds should've never been allowed because they are currently neither enforced[^1] at usage sites of type aliases nor thoroughly checked for correctness at definition sites due to the way type aliases are represented in the compiler. Allowing them was an oversight.
Explicitly label this as a known limitation of the type checker/system and establish the experimental feature `lazy_type_alias` as its eventual proper solution.
Where this becomes a bit tricky (for me as a rustc dev) are the "secondary effects" of these bounds whose existence I sadly can't deny. As a matter of fact, type alias bounds do play some small roles during type checking. However, after a lot of thinking over the last two weeks I've come to the conclusion (not without second-guessing myself though) that these use cases should not trump the fact that these bounds are currently *inherently broken*. Therefore the lint `type_alias_bounds` should and will continue to flag bounds that may have subordinate uses.
The two *known* secondary effects are:
1. They may enable the use of "shorthand" associated type paths `T::Assoc` (as opposed to fully qualified paths `<T as Trait>::Assoc`) where `T` is a type param bounded by some trait `Trait` which defines that assoc ty.
2. They may affect the default lifetime of trait object types passed as a type argument to the type alias. That concept is called (trait) object lifetime default.
The second one is negligible, no question asked. The first one however is actually "kinda nice" (for writability) and comes up in practice from time to time.
So why don't I just special-case trait bounds that "define" shorthand assoc type paths as originally planned in #125709?
1. Starting to permit even a tiny subset of bounds would already be enough to send a signal to users that bounds in type aliases have been legitimized and that they can expect to see type alias bounds in the wild from now on (proliferation). This would be actively misleading and dangerous because those bounds don't behave at all like one would expect, they are *not real*[^2]!
1. Let's take `type A<T: Trait> = T::Proj;` for example. Everywhere else in the language `T: Trait` means `T: Trait + Sized`. For type aliases, that's not the case though: `T: Trait` and `T: Trait + ?Sized` for that matter do neither mean `T: Trait + Sized` nor `T: Trait + ?Sized` (for both!). Instead, whether `T` requires `Sized` or not entirely depends on the definition of `Trait`[^2]. Namely, whether or not it is bounded by `Sized`.
2. Given `type A<T: Trait<AssocA = ()>> = T::AssocB;`, while `X: Trait` gets checked given `A<X>` (by virtue of projection wfchecking post alias expansion[^2]), the associated type constraint `AssocA = ()` gets dropped entirely! While we could choose to warn on such cases, it would inevitably lead to a huge pile of special cases.
3. While it's common knowledge that the body / aliased type / RHS of an (eager) type alias does not get checked for well-formedness, I'm not sure if people would realize that that extends to bounds as well. Namely, `type A<T: Trait<[u8]>> = T::Proj;` compiles even if `Trait`'s generic parameter requires `Sized`. Of course, at usage sites `[u8]: Sized` would still end up getting checked[^2], so it's not a huge problem if you have full control over `A`. However, imagine that `A` was actually part of a public API and was never used inside the defining crate (not unreasonable). In such a scenario, downstream users would be presented with an impossible to use type alias! Remember, bounds may grow arbitrarily complex and nuanced in practice.
4. Even if we allowed trait bounds that "define" shorthand assoc type paths, we would still need to continue to warn in cases where the assoc ty comes from a supertrait despite the fact that the shorthand syntax can be used: `type A<T: Sub> = T::Assoc;` does compile given `trait Sub: Super {}` and `trait Super { type Assoc; }`. However, `A<X>` does not enforce `X: Sub`, only `X: Super`[^2]. All that to say, type alias bounds are simply not real and we shouldn't pretend they are!
5. Summarizing the points above, we would be legitimizing bounds that are completely broken!
2. It's infeasible to implement: Due to the lack of `TypeckResults` in `ItemCtxt` (and a way to propagate it to other parts of the compiler), the resolution of type-dependent paths in non-`Body` items (most notably type aliases) is not recoverable from the HIR alone which would be necessary because the information of whether an associated type path (projection) is a shorthand is only present pre&in-HIR and doesn't survive HIR ty lowering. Of course, I could rerun parts of HIR ty lowering inside the lint `type_alias_bounds` (namely, `probe_single_ty_param_bound_for_assoc_ty` which would need to be exposed or alternatively a stripped-down version of it). This likely has a performance impact and introduces complexity. In short, the "benefits" are not worth the costs.
---
* 3rd commit: Update a diagnostic to avoid suggesting type alias bounds
* 4th commit: Flag type alias bounds even if the RHS contains inherent associated types.
* I started to allow them at some point in the past which was not correct (see commit for details)
* 5th commit: Allow type alias bounds if the RHS contains const projections and GCEs are enabled
* (and add a `FIXME(generic_const_exprs)` to be revisited before (M)GCE's stabilization)
* As a matter of fact type alias bounds are enforced in this case because the contained AnonConsts do get checked for well-formedness and crucially they inherit the generics and predicates of their parent item (here: the type alias)
* Remaining commits: Improve the lint `type_alias_bounds` itself
---
Fixes#125789 (sugg diag fix).
Fixes#125709 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#104918 (sugg diag applic fix).
Fixes#100270 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#94398 (true fix).
r? `@compiler-errors` `@oli-obk`
[^1]: From the perspective of the trait solver.
[^2]: Given `type A<T: Trait> = T::Proj;`, the reason why the trait bound "`T: Trait`" gets *seemingly* enforced at usage sites of the type alias `A` is simply because `A<X>` gets expanded to "`<X as Trait>::Proj`" very early on and it's the *expansion* that gets checked for well-formedness, not the type alias reference.
The current code is this:
```
self.capture_state.replace_ranges.push((start_pos..end_pos, Some(target)));
self.capture_state.replace_ranges.extend(inner_attr_replace_ranges);
```
What's not obvious is that every range in `inner_attr_replace_ranges`
must be a strict sub-range of `start_pos..end_pos`. Which means, in
`LazyAttrTokenStreamImpl::to_attr_token_stream`, they will be done
first, and then the `start_pos..end_pos` replacement will just overwrite
them. So they aren't needed.
This has been bugging me for a while. I find complex "if any of these
are true" conditions easier to think about than complex "if all of these
are true" conditions, because you can stop as soon as one is true.
Various notes on match lowering
This is an assortment of comments for things that I found unclear or confusing when I was learning how match lowering works.
This PR only adds/modifies comments, so there are no functional changes.
I have tried to avoid touching code that would conflict with #127159.
r? `@Nadrieril`
Use `#[rustfmt::skip]` on some `use` groups to prevent reordering.
`use` declarations will be reformatted in #125443. Very rarely, there is a desire to force a group of `use` declarations together in a way that auto-formatting will break up. E.g. when you want a single comment to apply to a group. #126776 dealt with all of these in the codebase, ensuring that no comments intended for multiple `use` declarations would end up in the wrong place. But some people were unhappy with it.
This commit uses `#[rustfmt::skip]` to create these custom `use` groups in an idiomatic way for a few of the cases changed in #126776. This works because rustfmt treats any `use` item annotated with `#[rustfmt::skip]` as a barrier and won't reorder other `use` items around it.
r? `@cuviper`
Graciously handle `Drop` impls introducing more generic parameters than the ADT
Follow up to #110577Fixes#126378Fixes#126889
## Motivation
A current issue with the way we check drop impls do not specialize any of their generic parameters is that when the `Drop` impl introduces *more* generic parameters than are present on the ADT, we fail to prove any bounds involving those parameters. This can be demonstrated with the following [code on stable](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=139b65e4294634d7286a3282bc61e628) which fails due to the fact that `<T as Trait>::Assoc == U` is not present in `Foo`s `ParamEnv` even though arguably there is no reason it cannot compiler:
```rust
struct Foo<T: Trait>(T);
trait Trait {
type Assoc;
}
impl<T: Trait<Assoc = U>, U: ?Sized> Drop for Foo<T> {
//~^ ERROR: `Drop` impl requires `<T as Trait>::Assoc == U` but the struct ...
fn drop(&mut self) {}
}
fn main() {}
```
I think the motivation for supporting this code is somewhat lacking, it might be useful in practice for deeply nested associated types where you might want to be able to write:
`where T: Trait<Assoc: Other<AnotherAssoc: MoreTrait<YetAnotherAssoc: InnerTrait<Final = U>>>>`
in order to be able to just use `U` in the function body instead of writing out the whole nested associated type. Regardless I don't think there is really any reason to *not* support this code and it is relatively easy to support it.
What I find slightly more compelling is the fact that when defining a const parameter `const N: u8` we desugar that to having a where clause requiring the constant `N` is typed as `u8` (`ClauseKind::ConstArgHasType`). As we *always* desugar const parameters to have these bounds, if we attempt to prove that some const parameter `N` is of type `u8` and there is no bound on `N` in the enviroment that generally indicates usage of an incorrect `ParamEnv` (this has caught a bug already).
Given that, if we write the following code:
```rust
#![feature(associated_const_equality)]
struct Foo<T: Trait>(T);
trait Trait {
const ASSOC: usize;
}
impl<T: Trait<ASSOC = N>, const N: usize> Drop for Foo<T> {
fn drop(&mut self) {}
}
fn main() {}
```
The `Drop` impl would have this desugared where clause about `N` being of type `usize`, and if we were to try to prove that where clause in `Foo`'s `ParamEnv` we would ICE as there would not be any `ConstArgHasType` in the environment (which generally indicates improper `ParamEnv` usage. As this is otherwise well formed code (the `T: Trait<ASSOC = N>` causes `N` to be constrained) we have to handle this *somehow* and I believe the only principled way to support this is the changes I have made to `dropck.rs` that would cause these code examples to compiler (Perhaps we could just throw out all `ConstArgHasType` where clauses from the predicates we prove but that makes me nervous even if it might actually be okay).
## The changes
Currently the way `dropck.rs` works is that take the `ParamEnv` of the ADT and instantiate it with the generic arguments used on the self ty of the `impl`. We then instantiate the predicates of the drop impl with the identity params to the impl, e.g. in the original example `<T as Trait>::Assoc == U` stays as `<T as Trait>::Assoc == U`. We then attempt to prove all the where clauses in the instantiated env of the self type ADT.
This PR changes us to first instantiate the impl with infer vars, then we equate the self type (with infer vars as its generic arguments) with the self type as written by the user. This causes all generic parameters on the impl that are constrained via associated type/const equality bounds to be left as inference variables while all other parameters are still `Ty`/`Const`/`Region`
Finally when instantiating the predicates on the impl, instead of using the identity arguments, we use the list of inference variables of which some have been inferred to the impl parameters. In practice this means that we wind up proving `<T as Trait>::Assoc == ?x` which can succeed just fine. In the const generics example we would wind up trying to prove `ConstArgHasType(?x: usize)` instead of `ConstArgHasType(N: usize)` which avoids the ICE as it is expected to encounter goals of the form `?x: usize`.
At a higher level the way I justify/think about this is that as we are proving goals in the environment of the ADT (`Foo` in the above examples), we do not expect to encounter generic parameters from a different environment so we must "deal with them" somehow. In this PR we handle them by replacing them with inference variables as they should either *actually* be unconstrained (and we will error later) or they are constrained to be equal to some associated type/const.
To go along with this it would be nice if we were not instantiating the adt's env with the generic arguments to the ADT in the `Drop` impl as it would make it clearer we are proving bounds in the adt's env instead of the `Drop` impl's. Instead we would map the predicates on the drop impl to be valid in the environment of the adt. In practice this causes diagnostic regressions as all of the generic parameters in errors refer to the ones defined on the adt; attempting to map these back to the ones on the impl, while possible, is involved as writing a `TypeFolder` over `FulfillmentError` is non trivial.
## Edge cases
There are some subtle interactions here:
One is that we should not allow `<T as Trait>::Assoc == U` to be present on the `Drop` if `U` is constrained by the self type of the impl and the bound is not present in the ADT's environment. demonstrated with the [following code](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=af839e2c3e43e03a624825c58af84dff):
```rust
trait Trait {
type Assoc;
}
struct Foo<T: Trait, U: ?Sized>(T, U);
impl<T: Trait<Assoc = U>, U: ?Sized> Drop for Foo<T, U> {
//~^ ERROR: `Drop` impl requires `<T as Trait>::Assoc == U`
fn drop(&mut self) {}
}
fn main() {}
```
This is tested at `tests/ui/dropck/constrained_by_assoc_type_equality_and_self_ty.rs`.
Another weirdness is that we permit the following code to compile now:
```rust
struct Foo<T>(T);
impl<'a, T: 'a> Drop for Foo<T> {
fn drop(&mut self) {}
}
```
This is caused by the fact that we permit unconstrained lifetime parameters in trait implementations as long as they are not used in associated types (so we do not wind up erroring on this code like we perhaps ought to), combined with the fact that as we are now proving `T: '?x` instead of `T: 'a` which allows proving the bound via `'?x= 'empty` wheras previously it would have failed.
This is tested as part of `tests/ui/dropck/reject-specialized-drops-8142.rs`.
---
r? `@compiler-errors`
Fix supertrait associated type unsoundness
### What?
Object safety allows us to name `Self::Assoc` associated types in certain positions if they come from our trait or one of our supertraits. When this check was implemented, I think it failed to consider that supertraits can have different args, and it was only checking def-id equality.
This is problematic, since we can sneak different implementations in by implementing `Supertrait<NotActuallyTheSupertraitSubsts>` for a `dyn` type. This can be used to implement an unsound transmute function. See the committed test.
### How do we fix it?
We consider the whole trait ref when checking for supertraits. Right now, this is implemented using equality *without* normalization. We erase regions since those don't affect trait selection.
This is a limitation that could theoretically affect code that should be accepted, but doesn't matter in practice -- there are 0 crater regression. We could make this check stronger, but I would be worried about cycle issues. I assume that most people are writing `Self::Assoc` so they don't really care about the trait ref being normalized.
---
### What is up w the stacked commit
This is built on top of https://github.com/rust-lang/rust/pull/122804 though that's really not related, it's just easier to make this modification with the changes to the object safety code that I did in that PR. The only thing is that PR may make this unsoundness slightly easier to abuse, since there are more positions that allow self-associated-types -- I am happy to stall that change until this PR merges.
---
Fixes#126079
r? lcnr
Switch from `derivative` to `derive-where`
This is a part of the effort to get rid of `syn 1.*` in compiler's dependencies: #109302
Derivative has not been maintained in nearly 3 years[^1]. It also depends on `syn 1.*`.
This PR replaces `derivative` with `derive-where`[^2], a not dead alternative, which uses `syn 2.*`.
A couple of `Debug` formats have changed around the skipped fields[^3], but I doubt this is an issue.
[^1]: https://github.com/mcarton/rust-derivative/issues/117
[^2]: https://lib.rs/crates/derive-where
[^3]: See the changes in `tests/ui`
Add basic Serde serialization capabilities to Stable MIR
This PR adds basic Serde serialization capabilities to Stable MIR. It is intentionally minimal (just wrapping all stable MIR types with a Serde `derive`), so that any important design decisions can be discussed before going further. A simple test is included with this PR to validate that JSON can actually be emitted.
## Notes
When I wrapped the Stable MIR error types in `compiler/stable_mir/src/error.rs`, it caused test failures (though I'm not sure why) so I backed those out.
## Future Work
So, this PR will support serializing basic stable MIR, but it _does not_ support serializing interned values beneath `Ty`s and `AllocId`s, etc... My current thinking about how to handle this is as follows:
1. Add new `visited_X` fields to the `Tables` struct for each interned category of interest.
2. As serialization is occuring, serialize interned values as usual _and_ also record the interned value we referenced in `visited_X`.
(Possibly) In addition, if an interned value recursively references other interned values, record those interned values as well.
3. Teach the stable MIR `Context` how to access the `visited_X` values and expose them with wrappers in `stable_mir/src/lib.rs` to users (e.g. to serialize and/or further analyze them).
### Pros
This approach does not commit to any specific serialization format regarding interned values or other more complex cases, which avoids us locking into any behaviors that may not be desired long-term.
### Cons
The user will need to manually handle serializing interned values.
### Alternatives
1. We can directly provide access to the underlying `Tables` maps for interned values; the disadvantage of this approach is that it either requires extra processing for users to filter out to only use the values that they need _or_ users may serialize extra values that they don't need. The advantage is that the implementation is even simpler. The other pros/cons are similar to the above.
2. We can directly serialize interned values by expanding them in-place. The pro is that this may make some basic inputs easier to consume. However, the cons are that there will need to be special provisions for dealing with cyclical values on both the producer and consumer _and_ global values will possibly need to be de-duplicated on the consumer side.
Previously these would be treated like integer literals and default to
`i32` if a type could not be determined. To allow for
forward-compatibility with `str` constants in the future, this PR
changes type inference to use an unbound type variable instead.
The actual type checking is deferred until after typeck where we still
ensure that the final type for the `const` operand is an integer type.
Rollup of 6 pull requests
Successful merges:
- #126908 (Use Cow<'static, str> for InlineAsmTemplatePiece::String)
- #127999 (Inject arm32 shims into Windows metadata generation)
- #128137 (CStr: derive PartialEq, Eq; add test for Ord)
- #128185 (Fix a span error when parsing a wrong param of function.)
- #128187 (Fix 1.80.0 version in RELEASES.md)
- #128189 (Turn an unreachable code path into an ICE)
r? `@ghost`
`@rustbot` modify labels: rollup
Turn an unreachable code path into an ICE
We're probably replacing the resolution with a `Res::Err` nowadays instead of just erroring but keeping the `Res`, so this code path should be unreachable
Fix a span error when parsing a wrong param of function.
fixes#128042
Before this change, the span of param `*mut Self` in `fn oof(*mut Self)` contains `(` before it, so the suggestion in E0424 will be error.
Don't ICE if HIR and middle types disagree in borrowck error reporting
We try to match up the `middle::ty::Ty` and `hir::Ty` types in borrowck error reporting, but due to things like `Self` self type alias, or regular type aliases, these might not match up. Don't ICE.
This PR also tries to recover the error by looking up the self type of the impl in case we see `Self`. The diagnostic is frankly quite confusing, but I also didn't really want to look at it because I don't understand the conflict error reporting logic. 🤷Fixes#121816
Make sure that args are compatible in `resolve_associated_item`
Implements a similar check to the one that we have in projection for GATs (#102488, #123240), where we check that the args of an impl item are compatible before returning it. This is done in `resolve_assoc_item`, which is backing `Instance::resolve`, so this is conceptually generalizing the check from GATs to methods/assoc consts. This is important to make sure that the inliner will only visit and substitute MIR bodies that are compatible w/ their trait definitions.
This shouldn't happen in codegen, but there are a few ways to get the inliner to be invoked (via calls to `optimized_mir`) before codegen, namely polymorphization and CTFE.
Fixes#121957Fixes#120792Fixes#120793Fixes#121063
`#[naked]`: use an allowlist for allowed options on `asm!` in naked functions
tracking issue: https://github.com/rust-lang/rust/issues/90957
this is mostly just a refactor, but using an allowlist (rather than a denylist) for which asm options are allowed in naked functions is a little safer.
These options are disallowed because naked functions are effectively global asm, but defined using inline asm.
Implement lint against ambiguous negative literals
This PR implements a lint against ambiguous negative literals with a literal and method calls right after it.
## `ambiguous_negative_literals`
(deny-by-default)
The `ambiguous_negative_literals` lint checks for cases that are confusing between a negative literal and a negation that's not part of the literal.
### Example
```rust,compile_fail
-1i32.abs(); // equals -1, while `(-1i32).abs()` equals 1
```
### Explanation
Method calls take precedence over unary precedence. Setting the precedence explicitly makes the code clearer and avoid potential bugs.
<details>
<summary>Old proposed lint</summary>
## `ambiguous_unary_precedence`
(deny-by-default)
The `ambiguous_unary_precedence` lint checks for use the negative unary operator with a literal and method calls.
### Example
```rust
-1i32.abs(); // equals -1, while `(-1i32).abs()` equals 1
```
### Explanation
Unary operations take precedence on binary operations and method calls take precedence over unary precedence. Setting the precedence explicitly makes the code clearer and avoid potential bugs.
</details>
-----
Note: This is a strip down version of https://github.com/rust-lang/rust/pull/117161, without the binary op precedence.
Fixes https://github.com/rust-lang/rust/issues/117155
`@rustbot` labels +I-lang-nominated
cc `@scottmcm`
r? compiler
compiler: Never debug_assert in codegen
In the name of Turing and his Hoarey heralds, assert our truths before creating a monster!
The `rustc_codegen_llvm` and `rustc_codegen_ssa` crates are fairly critical for rustc's correctness. Small mistakes here can easily result in undefined behavior, since a "small mistake" can mean something like "link and execute the wrong code". We should probably run any and all asserts in these modules unconditionally on whether this is a "debug build", and damn the costs in performance.
...Especially because the costs in performance seem to be *nothing*. It is not clear how much correctness we gain here, but I'll take free correctness improvements.
Don't ICE when auto trait has assoc ty in old solver
Kinda a pointless change to make, but it's observable w/o the feature gate, so let's just fix it. I reintroduced this ICE when I removed the "auto impl" kind from `ImplSource` in #112687.
Fixes#117829Fixes#127746
Do not use question as label
We don't want to have questions in the diagnostic output. Instead, we use wording that communicates uncertainty, like "might":
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ you might be missing crate `spam`
|
= help: consider adding `extern crate spam` to use the `spam` crate
```
Replace ASCII control chars with Unicode Control Pictures
Replace ASCII control chars like `CR` with Unicode Control Pictures like `␍`:
```
error: bare CR not allowed in doc-comment
--> $DIR/lex-bare-cr-string-literal-doc-comment.rs:3:32
|
LL | /// doc comment with bare CR: '␍'
| ^
```
Centralize the checking of unicode char width for the purposes of CLI display in one place. Account for the new replacements. Remove unneeded tracking of "zero-width" unicode chars, as we calculate these in the `SourceMap` as needed now.
Reorder trait bound modifiers *after* `for<...>` binder in trait bounds
This PR suggests changing the grammar of trait bounds from:
```
[CONSTNESS] [ASYNCNESS] [?] [BINDER] [TRAIT_PATH]
const async ? for<'a> Sized
```
to
```
([BINDER] [CONSTNESS] [ASYNCNESS] | [?]) [TRAIT_PATH]
```
i.e., either
```
? Sized
```
or
```
for<'a> const async Sized
```
(but not both)
### Why?
I think it's strange that the binder applies "more tightly" than the `?` trait polarity. This becomes even weirder when considering that we (or at least, I) want to have `async` trait bounds expressed like:
```
where T: for<'a> async Fn(&'a ()) -> i32,
```
and not:
```
where T: async for<'a> Fn(&'a ()) -> i32,
```
### Fallout
No crates on crater use this syntax, presumably because it's literally useless. This will require modifying the reference grammar, though.
### Alternatives
If this is not desirable, then we can alternatively keep parsing `for<'a>` after the `?` but deprecate it with either an FCW (or an immediate hard error), and begin parsing `for<'a>` *before* the `?`.
We don't want to have questions in the diagnostic output. Instead, we use wording that communicates uncertainty, like "might":
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ you might be missing crate `spam`
|
= help: consider adding `extern crate spam` to use the `spam` crate
```
Mark `missing_fragment_specifier` as `FutureReleaseErrorReportInDeps`
We are moving toward forbidding `missing_fragment_specifier` either in edition 2024 or unconditionally. Make a first step toward this by ensuring crates that rely on the old behavior are reported when used as dependencies.
Tracking issue: <https://github.com/rust-lang/rust/issues/128143>
Fix malformed suggestion for repeated maybe unsized bounds
Fixes#127441
Now when we encounter something like `foo(a : impl ?Sized + ?Sized)`, instead of suggesting removal of both bounds and leaving `foo(a: impl )` behind, we suggest changing the first bound to `Sized` and removing the second bound, resulting in `foo(a: impl Sized)`.
Although the issue was reported for impl trait types, it also occurred with regular param bounds. So if we encounter `foo<T: ?Sized + ?Sized>(a: T)` we now detect that all the bounds are `?Sized` and therefore emit the suggestion to remove the entire predicate `: ?Sized + ?Sized` resulting in `foo<T>(a: T)`.
Lastly, if we encounter a situation where some of the bounds are something other than `?Sized`, then we emit separate removal suggestions for each `?Sized` bound. E.g. if we see `foo(a: impl ?Sized + Bar + ?Sized)` or `foo<T: ?Sized + Bar + ?Sized>(a: T)` we emit suggestions such that the user will be left with `foo(a : impl Bar)` or `foo<T: Bar>(a: T)` respectively.
Do not try to reveal hidden types when trying to prove auto-traits in the defining scope
fixes#99793
this avoids the cycle error by just causing a selection error, which is not fatal. We pessimistically assume that freeze does not hold, which is always a safe assumption.
We are moving toward forbidding `missing_fragment_specifier` either in
edition 2024 or unconditionally. Make a first step toward this by
ensuring crates that rely on the old behavior are reported when used as
dependencies.
Tracking issue: <https://github.com/rust-lang/rust/issues/128143>
Improve spans on evaluated `cfg_attr`s.
When converting something like `#![cfg_attr(cond, attr)]` into `#![attr]`, we currently duplicate the `#` token and the `!` token. But weirdly, there is also this comment:
// We don't really have a good span to use for the synthesized `[]`
// in `#[attr]`, so just use the span of the `#` token.
Maybe that comment used to be true? But now it is false: we can duplicate the existing delimiters (and their spans and spacing), much like we do for the `#` and `!`.
This commit does that, thus removing the incorrect comment, and improving the spans on `Group`s in a few proc-macro tests.
`@petrochenkov`
Gate `AsyncFn*` under `async_closure` feature
T-lang has not come to a consensus on the naming of async closure callable bounds, and as part of allowing the async closures RFC merge, we agreed to place `AsyncFn` under the same gate as `async Fn` so that these syntaxes can be evaluated in parallel.
See https://github.com/rust-lang/rfcs/pull/3668#issuecomment-2246435537
r? oli-obk
Since LLVM 19, it is necessary to set not only module flags, but
also function attributes for branch protection on aarch64. See
e15d67cfc2
for the relevant LLVM change.
Do not use global caches if opaque types can be defined
fixes#119272
r? `@lcnr`
This is certainly a crude way to make the cache sound wrt opaque types, but since perf lets us get away with this, let's do it in the old solver and let the new solver fix this correctly once and for all.
cc https://github.com/rust-lang/rust/pull/122192#issuecomment-2149252655
When converting something like `#![cfg_attr(cond, attr)]` into
`#![attr]`, we currently duplicate the `#` token and the `!` token. But
weirdly, there is also this comment:
// We don't really have a good span to use for the synthesized `[]`
// in `#[attr]`, so just use the span of the `#` token.
Maybe that comment used to be true? But now it is false: we can
duplicate the existing delimiters (and their spans and spacing), much
like we do for the `#` and `!`.
This commit does that, thus removing the incorrect comment, and
improving the spans on `Group`s in a few proc-macro tests.
Make ast `MutVisitor` have the same method name and style as `Visitor`
It doesn't map 100% because some `MutVisitor` methods can filter or even expand to multiple items, but consistency seems nicer.
tracking issue: https://github.com/rust-lang/rust/issues/127615
Note closure captures when reporting cast to fn ptr failed
Fixes#128078
We already had logic to point out a closure having captures when that's possibly the source of a coercion error to `fn()`, but we weren't reporting it during an explicit `as` cast.
Reword E0626 to mention static coroutine, add structured suggestion for adding `static`
Not certain how to make the example feel less artificial. 🤷
My main point though is that we should probably emphasize that the first solution to making a coroutine allow a borrow across an await is making it `static`.
Also adds a structured suggestion.
treat `&raw (const|mut) UNSAFE_STATIC` implied deref as safe
Fixesrust-lang/rust#125833
As reported in that and related issues, `static mut STATIC_MUT: T` is very often used in embedded code, and is in many ways equivalent to `static STATIC_CELL: SyncUnsafeCell<T>`. The Rust expression of `&raw mut STATIC_MUT` and `SyncUnsafeCell::get(&STATIC_CELL)` are approximately equal, and both evaluate to `*mut T`. The library function is safe because it has *declared itself* to be safe. However, the raw ref operator is unsafe because all uses of `static mut` are considered unsafe, even though the static's value is not used by this expression (unlike, for example, `&STATIC_MUT`).
We can fix this unnatural difference by simply adding the proper exclusion for the safety check inside the THIR unsafeck, so that we do not declare it unsafe if it is not.
While the primary concern here is `static mut`, this change is made for all instances of an "unsafe static", which includes a static declared inside `extern "abi" {}`. Hypothetically, we could go as far as generalizing this to all instances of `&raw (const|mut) *ptr`, but today we do not, as we have not actually considered the range of possible expressions that use a similar encoding. We do not even extend this to thread-local equivalents, because they have less clear semantics.
Add NuttX based targets for RISC-V and ARM
Apache NuttX is a real-time operating system (RTOS) with an emphasis on standards compliance and small footprint. It is scalable from 8-bit to 64-bit microcontroller environments. The primary governing standards in NuttX are POSIX and ANSI standards.
NuttX adopts additional standard APIs from Unix and other common RTOSs, such as VxWorks. These APIs are used for functionality not available under the POSIX and ANSI standards. However, some APIs, like fork(), are not appropriate for deeply-embedded environments and are not implemented in NuttX.
For brevity, many parts of the documentation will refer to Apache NuttX as simply NuttX.
I'll be adding libstd support for NuttX in the future, but for now I'll just add the targets.
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
I will be the target maintainer for this target on matters that pertain to the NuttX part of the triple. For matters pertaining to the riscv or arm part of the triple, there should be no difference from all other targets. If there are issues, I will address issues regarding the target.
> Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
This is a new supported OS, so I have taken the origin target like `riscv32imac-unknown-none-elf` or `thumbv7m-none-eabi` and changed the `os` section to `nuttx`.
> Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
I feel that the target name does not introduce any ambiguity.
> Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
The only unusual requirement for building the compiler-builtins crate is a standard RISC-V or ARM C compiler supported by cc-rs, and using this target does not require any additional software beyond what is shipped by rustup.
> The target must not introduce license incompatibilities.
All of the additional code will use Apache-2.0.
> Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
Agreed, and there is no problem here.
> The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
No new dependencies are added.
> Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
Linking is performed by rust-lld
> "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
There are no terms. NuttX is distributed under the Apache 2.0 license.
> Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
Again I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
> The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
Building is described in platform support doc, but libstd is not supported now, I'll implement it later.
> Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
> Tier 3 targets must be able to produce assembly using at least one of
> rustc's supported backends from any host target. (Having support in a fork
> of the backend is not sufficient, it must be upstream.)
Yes, it use standard RISCV or ARM backend to generate assembly.
match exhaustiveness: Expand or-patterns as a separate step
To compute exhaustiveness, we must expand or-patterns. Previously, we expanded them at the same time that we pushed patterns into the matrix. This made it harder to track pattern reachability, because the or-pattern itself would never show up in the matrix so we had to recover missing information.
This PR changes that: we no longer expand or-patterns as we push them into the matrix. Instead, if we find an or-pattern in the matrix we expand them in a step very much like the specialization we already do. This simplifies a bunch of things, and should greatly simplify the implementation of https://github.com/rust-lang/rust/issues/127870.
r? `@compiler-errors`
The implied deref to statics introduced by HIR->THIR lowering is only
used to create place expressions, it lacks unsafe semantics.
It is also confusing, as there is no visible `*ident` in the source.
For both classes of "unsafe static" (extern static and static mut)
allow this operation.
We lack a clear story around `thread_local! { static mut }`, which
is actually its own category of item that reuses the static syntax but
has its own rules. It's possible they should be similarly included, but
in the absence of a good reason one way or another, we do not bless it.
Rollup of 9 pull requests
Successful merges:
- #117932 (Correct rustdoc section where we talk about rustdoc emitting errors on invalid code)
- #125990 (Rename `deprecated_safe` lint to `deprecated_safe_2024`)
- #127506 (rustc_target: add known safe s390x target features)
- #127820 (Rewrite and rename `issue-14698`. `issue-33329` and `issue-107094` `run-make` tests to rmake or ui)
- #127923 (Use reuse tool 4.0)
- #128008 (Start using `#[diagnostic::do_not_recommend]` in the standard library)
- #128036 (add more tests)
- #128051 (rustdoc: revert spacing change in item-table)
- #128059 (Add regression test for items list size (#128023))
r? `@ghost`
`@rustbot` modify labels: rollup
rustc_target: add known safe s390x target features
This pull request adds known safe target features for s390x (aka IBM Z systems).
Currently, these features are unstable since stabilizing the target features requires submitting proposals.
The `vector` feature was added in IBM Z13 (`arch11`), and this is a SIMD feature for the newer IBM Z systems.
The `backchain` attribute is the IBM Z way of adding frame pointers like unwinding capabilities (the "frame-pointer" switch on IBM Z and IBM POWER platforms will add _emulated_ frame pointers to the binary, which profilers can't use for unwinding the stack).
Both attributes can be applied at the LLVM module or function levels. However, the `backchain` attribute has to be enabled for all the functions in the call stack to get a successful unwind process.
Uplift most type-system related error reporting from `rustc_infer` to `rustc_trait_selection`
Completes the major part of #127492. The only cleanup that's needed afterwards is to actually use normalization in favor of the callback where needed, and deleting `can_eq_shallow`.
r? lcnr
Sorry for the large diff! Would prefer if comments can be handled in a follow-up (unless they're absolutely dealbreakers) because it seems bitrotty to let this sit.
Try to fix ICE from re-interning an AllocId with different allocation contents
As far as I can tell, based on my investigation in https://github.com/rust-lang/rust/issues/126741, the racy decoding scheme implemented here was never fully correct, but the arrangement of Allocations that's required to ICE the compiler requires some very specific MIR optimizations to create. As far as I can tell, GVN likes to create the problematic pattern, which is why we're noticing this problem now.
So the solution here is to not do racy decoding. If two threads race to decoding an AllocId, one of them is going to sit on a lock until the other is done.
Explain why we require `_` for empty patterns
This adds a note to the "non-exhaustive patterns" diagnostic to explain why we sometimes require extra `_` patterns on empty types. This is one of the two diagnostic improvements I wanted to do before [stabilizing `min_exhaustive_patterns`](https://github.com/rust-lang/rust/pull/122792).
r? ``@compiler-errors``
Just totally fully deny late-bound consts
Kinda don't care about supporting this until we have where clauses on binders. They're super busted and should be reworked in due time, and they are approximately 100% useless until then 😸Fixes#127970Fixes#127009
r? ``@BoxyUwU``
Remove unnecessary impl sorting in queries and metadata
Removes unnecessary impl sorting because queries already return their keys in HIR definition order: https://github.com/rust-lang/rust/issues/120371#issuecomment-1926422838
r? `@cjgillot` or `@lcnr` -- unless I totally misunderstood what was being asked for here? 😆fixes#120371
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
match lowering: Split `finalize_or_candidate` into more coherent methods
I noticed that `finalize_or_candidate` was responsible for several different postprocessing tasks, making it difficult to understand.
This PR aims to clean up some of the confusion by:
- Extracting `remove_never_subcandidates` from `merge_trivial_subcandidates`
- Extracting `test_remaining_match_pairs_after_or` from `finalize_or_candidate`
- Taking what remains of `finalize_or_candidate`, and inlining it into its caller
---
Reviewing individual commits and ignoring whitespace is recommended.
Most of the large-looking changes are just moving existing code around, mostly unaltered.
r? ``@Nadrieril``
Add a hook for `should_codegen_locally`
This PR lifts the module-local function `should_codegen_locally` to `TyCtxt` as a hook.
In addition to monomorphization, this function is used for checking the dependency of `compiler_builtins` on other libraries. Moving this function to the hooks also makes overriding it possible for the tools that use the rustc interface.
More accurate suggestion for `-> Box<dyn Trait>` or `-> impl Trait`
When encountering `-> Trait`, suggest `-> Box<dyn Trait>` (instead of `-> Box<Trait>`.
If there's a single returned type within the `fn`, suggest `-> impl Trait`.
Avoid ref when using format! in compiler
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
See also https://github.com/rust-lang/rust-clippy/issues/10851
Replace a long inline "autoref" comment with method docs
This comment has two problems:
- It is very long, making the flow of the enclosing method hard to follow.
- It starts by talking about an `autoref` flag that hasn't existed since #59114.
- This makes it hard to trust that the information in the comment is accurate or relevant, even though much of it still seems to be true.
This PR therefore replaces the long inline comment with a revised doc comment on `bind_matched_candidate_for_guard`, and some shorter inline comments.
For readers who want more historical context, we also link to the PR that added the old comment, and the PR that removed the `autoref` flag.
When encountering `-> Trait`, suggest `-> Box<dyn Trait>` (instead of `-> Box<Trait>`.
If there's a single returned type within the `fn`, suggest `-> impl Trait`.
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
Rollup of 6 pull requests
Successful merges:
- #127295 (CFI: Support provided methods on traits)
- #127814 (`C-cmse-nonsecure-call`: improved error messages)
- #127949 (fix: explain E0120 better cover cases when its raised)
- #127966 (Use structured suggestions for unconstrained generic parameters on impl blocks)
- #127976 (Lazy type aliases: Diagostics: Detect bivariant ty params that are only used recursively)
- #127978 (Avoid ref when using format! for perf)
r? `@ghost`
`@rustbot` modify labels: rollup