This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
Output LLVM optimization remark kind in `-Cremark` output
Since https://github.com/rust-lang/rust/pull/90833, the optimization remark kind has not been printed. Therefore it wasn't possible to easily determine from the log (in a programmatic way) which remark kind was produced. I think that the most interesting remarks are the missed ones, which can lead users to some code optimization.
Maybe we could also change the format closer to the "old" one:
```
note: optimization remark for tailcallelim at /checkout/src/libcore/num/mod.rs:1:0: marked this call a tail call candidate
```
I wanted to programatically parse the remarks so that they could work e.g. with https://github.com/OfekShilon/optview2. However, now that I think about it, probably the proper solution is to tell rustc to output them to YAML and then use the YAML as input for the opt remark visualization tools. The flag for enabling this does not seem to work though (https://github.com/rust-lang/rust/issues/96705#issuecomment-1117632322).
Still I think that it's good to output the remark kind anyway, it's an important piece of information.
r? ```@tmiasko```
This updates object to 0.30 and fixes a bug where the symbol table
would be omitted for archives where there are object files yet none
that export any symbol. This bug could lead to linker errors for crates
like rustc_std_workspace_core which don't contain any code of their own
but exist solely for their dependencies. This is likely the cause of
the linker issues I was experiencing on Webassembly. It has been shown
to cause issues on other platforms too.
cc rust-lang/ar_archive_writer#5
Add `kernel-address` sanitizer support for freestanding targets
This PR adds support for KASan (kernel address sanitizer) instrumentation in freestanding targets. I included the minimal set of `x86_64-unknown-none`, `riscv64{imac, gc}-unknown-none-elf`, and `aarch64-unknown-none` but there's likely other targets it can be added to. (`linux_kernel_base.rs`?) KASan uses the address sanitizer attributes but has the `CompileKernel` parameter set to `true` in the pass creation.
Currently, LLVM profiling runtime counter relocation cannot be
used by rust during LTO because symbols are being internalized
before all symbol information is known.
This mode makes LLVM emit a __llvm_profile_counter_bias symbol
which is referenced by the profiling initialization, which itself
is pulled in by the rust driver here [1].
It is enabled with -Cllvm-args=-runtime-counter-relocation for
platforms which are opt-in to this mode like Linux. On these
platforms there will be no link error, rather just surprising
behavior for a user which request runtime counter relocation.
The profiling runtime will not see that symbol go on as if it
were never there. On Fuchsia, the profiling runtime must have
this symbol which will cause a hard link error.
As an aside, I don't have enough context as to why rust's LTO
model is how it is. AFAICT, the internalize pass is only safe
to run at link time when all symbol information is actually
known, this being an example as to why. I think special casing
this symbol as a known one that LLVM can emit which should not
have it's visbility de-escalated should be fine given how
seldom this pattern of defining an undefined symbol to get
initilization code pulled in is. From a quick grep,
__llvm_profile_runtime is the only symbol that rustc does this
for.
[1] 0265a3e93b/compiler/rustc_codegen_ssa/src/back/linker.rs (L598)
llvm: dwo only emitted when object code emitted
Fixes#103932.
`CompiledModule` should not think a DWARF object was emitted when a bitcode-only compilation has happened, this can confuse archive file creation (which expects to create an archive containing non-existent dwo files).
r? ``````@michaelwoerister``````
`CompiledModule` should not think a DWARF object was emitted when a
bitcode-only compilation has happened, this can confuse archive file
creation (which expects to create an archive containing non-existent dwo
files).
Signed-off-by: David Wood <david.wood@huawei.com>
Remove `-Ztime`
Because it has a lot of overlap with `-Ztime-passes` but is generally less useful. Plus some related cleanups.
Best reviewed one commit at a time.
r? `@davidtwco`
The compiler currently has `-Ztime` and `-Ztime-passes`. I've used
`-Ztime-passes` for years but only recently learned about `-Ztime`.
What's the difference? Let's look at the `-Zhelp` output:
```
-Z time=val -- measure time of rustc processes (default: no)
-Z time-passes=val -- measure time of each rustc pass (default: no)
```
The `-Ztime-passes` description is clear, but the `-Ztime` one is less so.
Sounds like it measures the time for the entire process?
No. The real difference is that `-Ztime-passes` prints out info about passes,
and `-Ztime` does the same, but only for a subset of those passes. More
specifically, there is a distinction in the profiling code between a "verbose
generic activity" and an "extra verbose generic activity". `-Ztime-passes`
prints both kinds, while `-Ztime` only prints the first one. (It took me
a close reading of the source code to determine this difference.)
In practice this distinction has low value. Perhaps in the past the "extra
verbose" output was more voluminous, but now that we only print stats for a
pass if it exceeds 5ms or alters the RSS, `-Ztime-passes` is less spammy. Also,
a lot of the "extra verbose" cases are for individual lint passes, and you need
to also use `-Zno-interleave-lints` to see those anyway.
Therefore, this commit removes `-Ztime` and the associated machinery. One thing
to note is that the existing "extra verbose" activities all have an extra
string argument, so the commit adds the ability to accept an extra argument to
the "verbose" activities.
Previously attempting to link universal libraries into libraries (but not binaries) would produce an error that "File too small to be an archive". This works around this by using `object` to extract a library for the target platform when passed a univeral library.
Fixes#55235
Use object instead of LLVM for reading bitcode from rlibs
Together with changes I plan to make as part of https://github.com/rust-lang/rust/pull/97485 this will allow entirely removing usage of LLVM's archive reader and thus allow removing `archive_ro.rs` and `ArchiveWrapper.cpp`.