Ensure io::Error's bitpacked repr doesn't accidentally impl UnwindSafe
Sadly, I'm not sure how to easily test that we don't impl a trait, though (or can libstd use `where io::Error: !UnwindSafe` or something).
Fixes#95203
Stabilize Termination and ExitCode
From https://github.com/rust-lang/rust/issues/43301
This PR stabilizes the Termination trait and associated ExitCode type. It also adjusts the ExitCode feature flag to replace the placeholder flag with a more permanent name, as well as splitting off the `to_i32` method behind its own permanently unstable feature flag.
This PR stabilizes the termination trait with the following signature:
```rust
pub trait Termination {
fn report(self) -> ExitCode;
}
```
The existing impls of `Termination` are effectively already stable due to the prior stabilization of `?` in main.
This PR also stabilizes the following APIs on exit code
```rust
#[derive(Clone, Copy, Debug)]
pub struct ExitCode(_);
impl ExitCode {
pub const SUCCESS: ExitCode;
pub const FAILURE: ExitCode;
}
impl From<u8> for ExitCode { /* ... */ }
```
---
All of the previous blockers have been resolved. The main ones that were resolved recently are:
* The trait's name: We decided against changing this since none of the alternatives seemed particularly compelling. Instead we decided to end the bikeshedding and stick with the current name. ([link to the discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Termination.2FExit.20Status.20Stabilization/near/269793887))
* Issues around platform specific representations: We resolved this issue by changing the return type of `report` from `i32` to the opaque type `ExitCode`. That way we can change the underlying representation without affecting the API, letting us offer full support for platform specific exit code APIs in the future.
* Custom exit codes: We resolved this by adding `From<u8> for ExitCode`. We choose to only support u8 initially because it is the least common denominator between the sets of exit codes supported by our current platforms. In the future we anticipate adding platform specific extension traits to ExitCode for constructors from larger or negative numbers, as needed.
Show ignore message in console and json output
- Provide ignore the message in console and JSON output
- Modify the ignore message style in the log file
related: #92714
Fix build on i686-apple-darwin systems
Replace `target_arch = "x86_64"` with `not(target_arch = "aarch64")` so that i686-apple-darwin systems dynamically choose implementation.
Refactor set_ptr_value as with_metadata_of
Replaces `set_ptr_value` (#75091) with methods of reversed argument order:
```rust
impl<T: ?Sized> *mut T {
pub fn with_metadata_of<U: ?Sized>(self, val: *mut U) -> *mut U;
}
impl<T: ?Sized> *const T {
pub fn with_metadata_of<U: ?Sized>(self, val: *const U) -> *const U;
}
```
By reversing the arguments we achieve several clarifications:
- The function closely resembles `cast` with an argument to
initialize the metadata. This is easier to teach and answers a long
outstanding question that had restricted cast to `Sized` pointee
targets. See multiples reviews of
<https://github.com/rust-lang/rust/pull/47631>
- The 'object identity', in the form of provenance, is now preserved
from the receiver argument to the result. This helps explain the method as
a builder-style, instead of some kind of setter that would modify
something in-place. Ensuring that the result has the identity of the
`self` argument is also beneficial for an intuition of effects.
- An outstanding concern, 'Correct argument type', is avoided by not
committing to any specific argument type. This is consistent with cast
which does not require its receiver to be a 'raw address'.
Hopefully the usage examples in `sync/rc.rs` serve as sufficient examples of the style to convince the reader of the readability improvements of this style, when compared to the previous order of arguments.
I want to take the opportunity to motivate inclusion of this method _separate_ from metadata API, separate from `feature(ptr_metadata)`. It does _not_ involve the `Pointee` trait in any form. This may be regarded as a very, very light form that does not commit to any details of the pointee trait, or its associated metadata. There are several use cases for which this is already sufficient and no further inspection of metadata is necessary.
- Storing the coercion of `*mut T` into `*mut dyn Trait` as a way to dynamically cast some an arbitrary instance of the same type to a dyn trait instance. In particular, one can have a field of type `Option<*mut dyn io::Seek>` to memorize if a particular writer is seekable. Then a method `fn(self: &T) -> Option<&dyn Seek>` can be provided, which does _not_ involve the static trait bound `T: Seek`. This makes it possible to create an API that is capable of utilizing seekable streams and non-seekable streams (instead of a possible less efficient manner such as more buffering) through the same entry-point.
- Enabling more generic forms of unsizing for no-`std` smart pointers. Using the stable APIs only few concrete cases are available. One can unsize arrays to `[T]` by `ptr::slice_from_raw_parts` but unsizing a custom smart pointer to, e.g., `dyn Iterator`, `dyn Future`, `dyn Debug`, can't easily be done generically. Exposing `with_metadata_of` would allow smart pointers to offer their own `unsafe` escape hatch with similar parameters where the caller provides the unsized metadata. This is particularly interesting for embedded where `dyn`-trait usage can drastically reduce code size.
Inline u8::is_utf8_char_boundary
Since Rust beta, Rust is incapable of inlining this function in the following example function.
```rust
pub fn safe_substr_to(s: &str, mut length: usize) -> &str {
loop {
if let Some(s) = s.get(..length) {
return s;
}
length -= 1;
}
}
```
When compiled with beta or nightly compiler on Godbolt with `-C opt-level=3` flag it prints the following assembly.
```asm
example::safe_substr_to:
push r15
push r14
push r12
push rbx
push rax
mov r14, rdi
test rdx, rdx
je .LBB0_8
mov rbx, rdx
mov r15, rsi
mov r12, qword ptr [rip + core::num::<impl u8>::is_utf8_char_boundary@GOTPCREL]
jmp .LBB0_4
.LBB0_2:
je .LBB0_9
.LBB0_3:
add rbx, -1
je .LBB0_8
.LBB0_4:
cmp rbx, r15
jae .LBB0_2
movzx edi, byte ptr [r14 + rbx]
call r12
test al, al
je .LBB0_3
mov r15, rbx
jmp .LBB0_9
.LBB0_8:
xor r15d, r15d
.LBB0_9:
mov rax, r14
mov rdx, r15
add rsp, 8
pop rbx
pop r12
pop r14
pop r15
ret
```
`qword ptr [rip + core::num::<impl u8>::is_utf8_char_boundary@GOTPCREL]` is not inlined. `-C remark=all` outputs the following message:
```
note: /rustc/7bccde19767082c7865a12902fa614ed4f8fed73/library/core/src/str/mod.rs:214:25: inline: _ZN4core3num20_$LT$impl$u20$u8$GT$21is_utf8_char_boundary17hace9f12f5ba07a7fE will not be inlined into _ZN4core3str21_$LT$impl$u20$str$GT$16is_char_boundary17hf2587e9a6b8c5e43E because its definition is unavailable
```
Stable compiler outputs more reasonable code:
```asm
example::safe_substr_to:
mov rcx, rdx
mov rax, rdi
test rdx, rdx
je .LBB0_9
mov rdx, rsi
jmp .LBB0_4
.LBB0_2:
cmp rdx, rcx
je .LBB0_7
.LBB0_3:
add rcx, -1
je .LBB0_9
.LBB0_4:
cmp rcx, rdx
jae .LBB0_2
cmp byte ptr [rax + rcx], -64
jl .LBB0_3
mov rdx, rcx
.LBB0_7:
ret
.LBB0_9:
xor edx, edx
ret
```
Link to std::io's platform-specific behavior disclaimer
This PR adds some links in standard library documentation to point to https://doc.rust-lang.org/std/io/index.html#platform-specific-behavior.
> ### Platform-specific behavior
>
> Many I/O functions throughout the standard library are documented to indicate what various library or syscalls they are delegated to. This is done to help applications both understand what’s happening under the hood as well as investigate any possibly unclear semantics. Note, however, that this is informative, not a binding contract. The implementation of many of these functions are subject to change over time and may call fewer or more syscalls/library functions.
Many of the `std::fs` APIs already link to this disclaimer when discussing system calls.
Allow comparing `Vec`s with different allocators using `==`
See https://stackoverflow.com/q/71021633/7884305.
I did not changed the `PartialOrd` impl too because it was not generic already (didn't support `Vec<T> <=> Vec<U> where T: PartialOrd<U>`).
Does it needs tests?
I don't think this will hurt type inference much because the default allocator is usually not inferred (`new()` specifies it directly, and even with other allocators, you pass the allocator to `new_in()` so the compiler usually knows the type).
I think this requires FCP since the impls are already stable.
Clarify that ManuallyDrop<T> has same layout as T
This PR implements the documentation change under discussion in https://github.com/rust-lang/unsafe-code-guidelines/issues/302. It should not be approved or merged until the discussion there is resolved.
Fix typo in `String::try_reserve_exact` docs
Copying the pattern from `Vec::try_reserve_exact` and `String::try_reserve`,
it looks like this doc comment is intending to refer to the currently-being-documented
function.
Copying the pattern from `Vec::try_reserve_exact` and `String::try_reserve`,
it looks like this doc comment is intending to refer to the currently-being-documented
function.
By reversing the arguments we achieve several clarifications:
- The function closely resembles `cast` but with an argument to
initialized the metadata. This is easier to teach and answers an long
outstanding question that had restricted cast to `Sized` targets
initially. See multiples reviews of
<https://github.com/rust-lang/rust/pull/47631>
- The 'object identity', in the form or provenance, is now preserved
from the call receiver to the result. This helps explain the method as
a builder-style, instead of some kind of setter that would modify
something in-place. Ensuring that the result has the identity of the
`self` argument is also beneficial for an intuition of effects.
- An outstanding concern, 'Correct argument type', is avoided by not
committing to any specific argument type. This is consistent with cast
which does not require its receiver to be a raw address.
Rename `~const Drop` to `~const Destruct`
r? `@oli-obk`
Completely switching to `~const Destructible` would be rather complicated, so it seems best to add it for now and wait for it to be backported to beta in the next release.
The rationale is to prevent complications such as #92149 and #94803 by introducing an entirely new trait. And `~const Destructible` reads a bit better than `~const Drop`. Name Bikesheddable.
Move std::sys::{mutex, condvar, rwlock} to std::sys::locks.
This cleans up the the std::sys modules a bit by putting the locks in a single module called `locks` rather than spread over the three modules `mutex`, `condvar`, and `rwlock`. This makes it easier to organise lock implementations, which helps with https://github.com/rust-lang/rust/issues/93740.
Add u16::is_utf16_surrogate
Right now, there are methods in the standard library for encoding and decoding UTF-16, but at least for the moment, there aren't any methods specifically for `u16` to help work with UTF-16 data. Since the full logic already exists, this wouldn't really add any code, just expose what's already there.
This method in particular is useful for working with the data returned by Windows `OsStrExt::encode_wide`. Initially, I was planning to also offer a `TryFrom<u16> for char`, but decided against it for now. There is plenty of code in rustc that could be rewritten to use this method, but I only checked within the standard library to replace them.
I think that offering more UTF-16-related methods to u16 would be useful, but I think this one is a good start. For example, one useful method might be `u16::is_pattern_whitespace`, which would check if something is the Unicode `Pattern_Whitespace` category. We can get away with this because all of the `Pattern_Whitespace` characters are in the basic multilingual plane, and hence we don't need to check for surrogates.
add perf side effect docs to `Iterator::cloned()`
Now that #90209 has been closed, as the current state of affairs is neither here nor there, this at least adds a paragraph + example on what to expect performance-wise and how to deal with it to the .cloned() docs.
cc `@the8472`
Fold aarch64 feature +fp into +neon
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
I am... pretty sure no one is relying on this.
An argument could be made that, as we are not an "entirely proprietary" toolchain, we should not support AArch64 without floats at all. I think that's a bit excessive. However, I want to recognize the intent: programming for AArch64 should be simplified where possible. For x86-64, programmers regularly set up illegal feature configurations because it's hard to understand them, see https://github.com/rust-lang/rust/issues/89586. And per the above notes, plus the discussion in https://github.com/rust-lang/rust/issues/86941, there should be no real use cases for leaving these features split: the two should in fact always go together.
- Fixesrust-lang/rust#95002.
- Fixesrust-lang/rust#95064.
- Fixesrust-lang/rust#95122.
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
Preserve the Windows `GetLastError` error in `HandleOrInvalid`.
In the `TryFrom<HandleOrInvalid> for OwnedHandle` and
`TryFrom<HandleOrNull> for OwnedHandle` implemenations, `forget` the
owned handle on the error path, to avoid calling `CloseHandle` on an
invalid handle. It's harmless, except that it may overwrite the
thread's `GetLastError` error.
r? `@joshtriplett`