This way we can call `cmp` instead of `partial_cmp` in the loop,
removing some burden of optimizing `Option`s away from the compiler.
PR #39538 introduced a regression where sorting slices suddenly became
slower, since `slice1.lt(slice2)` was much slower than
`slice1.cmp(slice2) == Less`. This problem is now fixed.
To verify, I benchmarked this simple program:
```rust
fn main() {
let mut v = (0..2_000_000).map(|x| x * x * x * 18913515181).map(|x| vec![x, x ^ 3137831591]).collect::<Vec<_>>();
v.sort();
}
```
Before this PR, it would take 0.95 sec, and now it takes 0.58 sec.
I also tried changing the `is_less` lambda to use `cmp` and
`partial_cmp`. Now all three versions (`lt`, `cmp`, `partial_cmp`) are
equally performant for sorting slices - all of them take 0.58 sec on the
benchmark.
Improve the slice iterator's searching methods
Improve all, any, find, position, rposition by explicitly unrolling the loop for the slice iterators.
- Introduce a few extension methods and functions for raw pointers make the new code easy to express
- Introduce helper methods `search_while, rsearch_while` that generalize all the searching methods
LLVM doesn't unroll the loop in `.find()` by default (clang is the same), so performance benefits a lot from explicit unrolling here. An iterator method without conditional exits (like `.fold()`) does not need this on the other hand.
One of the raw pointer extension methods is `fn post_inc(&mut self) -> Self` which is the rustic equivalent of “`ptr++`”, and it is a nice way to express the raw pointer loop (see commit 3).
Specific development notes about `search_while`: I tried both computing an end pointer "rounded" to 4, as well as the `ptrdistance >= 4` loop condition, ptrdistance was better. I tried handling the last 0-3 elements unrolled or with a while loop, the loop was better.
Use Borrow for binary_search and contains methods in the standard library
Fixes all standard library methods in #32822 that can be fixed without backwards compatibility issues.
Introduce a helper method .search_while() that generalizes internal
iteration (Iterator's all, find, position, fold and so on).
The compiler does not unroll loops with conditional exits; we can do
this manually instead to improve the performance of for example
Iterator::find and Iterator::position when used on the slice iterators.
The unrolling is patterned on libstdc++'s implementation of std::find_if.
Implement .zip() specialization for Map and Cloned.
The crucial thing for transparent specialization is that we want to
preserve the potential side effects.
The simplest example is that in this code snippet:
`(0..6).map(f).zip((0..4).map(g)).count()`
`f` will be called five times, and `g` four times. The last time for `f`
is when the other iterator is at its end, so this element is unused.
This side effect can be preserved without disturbing code generation for
simple uses of `.map()`.
The `Zip::next_back()` case is even more complicated, unfortunately.
Use primitive indexing in slice's Index/IndexMut
[T]'s Index implementation is normally not used for indexing, instead
the compiler supplied indexing is used.
Use the compiler supplied version in Index/IndexMut.
This removes an inconsistency:
Compiler supplied bound check failures look like this:
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 4'
If you convince Rust to use the Index impl for slices, bounds check
failure looks like this instead:
thread 'main' panicked at 'assertion failed: index < self.len()'
The latter is used if you for example use Index generically:
```rust
use std::ops::Index;
fn foo<T: ?Sized>(x: &T) where T: Index<usize> { &x[4]; }
foo(&[1, 2, 3][..])
```
[T]'s Index implementation is normally not used for indexing, instead
the compiler supplied indexing is used.
Use the compiler supplied version in Index/IndexMut.
This removes an inconsistency:
Compiler supplied bound check failures look like this:
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 4'
If you convince Rust to use the Index impl for slices, bounds check
failure looks like this instead:
thread 'main' panicked at 'assertion failed: index < self.len()'
The latter is used if you for example use Index generically::
use std::ops::Index;
fn foo<T: ?Sized>(x: &T) where T: Index<usize> { &x[4]; }
foo(&[1, 2, 3][..])
`AsRef` is designed for conversions that are "cheap" (as per
the API docs). It is the case that retrieving the underlying
data of `std::slice::Iter` is cheap. In my opinion, there's no
ambiguity about what slice data will be returned, otherwise,
I would be more cautious about implementing `AsRef`.
core: check pointer equality when comparing byte slices
If pointer address and length are the same, it should be the same slice.
In experiments, I've seen that this doesn't happen as often in debug builds, but release builds seem to optimize to using a single pointer more often.
This method adds to the family of `_by_key` methods, and is the
counterpart of `slice::sort_by_key`. It was mentioned on #30423 but
was not implemented at that time.
Refs #30423
std: Stabilize APIs for the 1.9 release
This commit applies all stabilizations, renamings, and deprecations that the
library team has decided on for the upcoming 1.9 release. All tracking issues
have gone through a cycle-long "final comment period" and the specific APIs
stabilized/deprecated are:
Stable
* `std::panic`
* `std::panic::catch_unwind` (renamed from `recover`)
* `std::panic::resume_unwind` (renamed from `propagate`)
* `std::panic::AssertUnwindSafe` (renamed from `AssertRecoverSafe`)
* `std::panic::UnwindSafe` (renamed from `RecoverSafe`)
* `str::is_char_boundary`
* `<*const T>::as_ref`
* `<*mut T>::as_ref`
* `<*mut T>::as_mut`
* `AsciiExt::make_ascii_uppercase`
* `AsciiExt::make_ascii_lowercase`
* `char::decode_utf16`
* `char::DecodeUtf16`
* `char::DecodeUtf16Error`
* `char::DecodeUtf16Error::unpaired_surrogate`
* `BTreeSet::take`
* `BTreeSet::replace`
* `BTreeSet::get`
* `HashSet::take`
* `HashSet::replace`
* `HashSet::get`
* `OsString::with_capacity`
* `OsString::clear`
* `OsString::capacity`
* `OsString::reserve`
* `OsString::reserve_exact`
* `OsStr::is_empty`
* `OsStr::len`
* `std::os::unix::thread`
* `RawPthread`
* `JoinHandleExt`
* `JoinHandleExt::as_pthread_t`
* `JoinHandleExt::into_pthread_t`
* `HashSet::hasher`
* `HashMap::hasher`
* `CommandExt::exec`
* `File::try_clone`
* `SocketAddr::set_ip`
* `SocketAddr::set_port`
* `SocketAddrV4::set_ip`
* `SocketAddrV4::set_port`
* `SocketAddrV6::set_ip`
* `SocketAddrV6::set_port`
* `SocketAddrV6::set_flowinfo`
* `SocketAddrV6::set_scope_id`
* `<[T]>::copy_from_slice`
* `ptr::read_volatile`
* `ptr::write_volatile`
* The `#[deprecated]` attribute
* `OpenOptions::create_new`
Deprecated
* `std::raw::Slice` - use raw parts of `slice` module instead
* `std::raw::Repr` - use raw parts of `slice` module instead
* `str::char_range_at` - use slicing plus `chars()` plus `len_utf8`
* `str::char_range_at_reverse` - use slicing plus `chars().rev()` plus `len_utf8`
* `str::char_at` - use slicing plus `chars()`
* `str::char_at_reverse` - use slicing plus `chars().rev()`
* `str::slice_shift_char` - use `chars()` plus `Chars::as_str`
* `CommandExt::session_leader` - use `before_exec` instead.
Closes#27719
cc #27751 (deprecating the `Slice` bits)
Closes#27754Closes#27780Closes#27809Closes#27811Closes#27830Closes#28050Closes#29453Closes#29791Closes#29935Closes#30014Closes#30752Closes#31262
cc #31398 (still need to deal with `before_exec`)
Closes#31405Closes#31572Closes#31755Closes#31756
This commit applies all stabilizations, renamings, and deprecations that the
library team has decided on for the upcoming 1.9 release. All tracking issues
have gone through a cycle-long "final comment period" and the specific APIs
stabilized/deprecated are:
Stable
* `std::panic`
* `std::panic::catch_unwind` (renamed from `recover`)
* `std::panic::resume_unwind` (renamed from `propagate`)
* `std::panic::AssertUnwindSafe` (renamed from `AssertRecoverSafe`)
* `std::panic::UnwindSafe` (renamed from `RecoverSafe`)
* `str::is_char_boundary`
* `<*const T>::as_ref`
* `<*mut T>::as_ref`
* `<*mut T>::as_mut`
* `AsciiExt::make_ascii_uppercase`
* `AsciiExt::make_ascii_lowercase`
* `char::decode_utf16`
* `char::DecodeUtf16`
* `char::DecodeUtf16Error`
* `char::DecodeUtf16Error::unpaired_surrogate`
* `BTreeSet::take`
* `BTreeSet::replace`
* `BTreeSet::get`
* `HashSet::take`
* `HashSet::replace`
* `HashSet::get`
* `OsString::with_capacity`
* `OsString::clear`
* `OsString::capacity`
* `OsString::reserve`
* `OsString::reserve_exact`
* `OsStr::is_empty`
* `OsStr::len`
* `std::os::unix::thread`
* `RawPthread`
* `JoinHandleExt`
* `JoinHandleExt::as_pthread_t`
* `JoinHandleExt::into_pthread_t`
* `HashSet::hasher`
* `HashMap::hasher`
* `CommandExt::exec`
* `File::try_clone`
* `SocketAddr::set_ip`
* `SocketAddr::set_port`
* `SocketAddrV4::set_ip`
* `SocketAddrV4::set_port`
* `SocketAddrV6::set_ip`
* `SocketAddrV6::set_port`
* `SocketAddrV6::set_flowinfo`
* `SocketAddrV6::set_scope_id`
* `<[T]>::copy_from_slice`
* `ptr::read_volatile`
* `ptr::write_volatile`
* The `#[deprecated]` attribute
* `OpenOptions::create_new`
Deprecated
* `std::raw::Slice` - use raw parts of `slice` module instead
* `std::raw::Repr` - use raw parts of `slice` module instead
* `str::char_range_at` - use slicing plus `chars()` plus `len_utf8`
* `str::char_range_at_reverse` - use slicing plus `chars().rev()` plus `len_utf8`
* `str::char_at` - use slicing plus `chars()`
* `str::char_at_reverse` - use slicing plus `chars().rev()`
* `str::slice_shift_char` - use `chars()` plus `Chars::as_str`
* `CommandExt::session_leader` - use `before_exec` instead.
Closes#27719
cc #27751 (deprecating the `Slice` bits)
Closes#27754Closes#27780Closes#27809Closes#27811Closes#27830Closes#28050Closes#29453Closes#29791Closes#29935Closes#30014Closes#30752Closes#31262
cc #31398 (still need to deal with `before_exec`)
Closes#31405Closes#31572Closes#31755Closes#31756
Where T is a type that can be compared for equality bytewise, we can use
memcmp. We can also use memcmp for PartialOrd, Ord for [u8] and by
extension &str.
This is an improvement for example for the comparison [u8] == [u8] that
used to emit a loop that compared the slices byte by byte.
One worry here could be that this introduces function calls to memcmp
in contexts where it should really inline the comparison or even
optimize it out, but llvm takes care of recognizing memcmp specifically.
Removes all unstable and deprecated APIs prior to the 1.8 release. All APIs that
are deprecated in the 1.8 release are sticking around for the rest of this
cycle.
Some notable changes are:
* The `dynamic_lib` module was moved into `rustc_back` as the compiler still
relies on a few bits and pieces.
* The `DebugTuple` formatter now special-cases an empty struct name with only
one field to append a trailing comma.