Add x86_64-unknown-linux-ohos target
This complements the existing `aarch64-unknown-linux-ohos` and `armv7-unknown-linux-ohos` targets.
This should be covered by the existing MCP (https://github.com/rust-lang/compiler-team/issues/568), but I can also create a new MCP if that is preferred.
Add a sparc-unknown-none-elf target.
# `sparc-unknown-none-elf`
**Tier: 3**
Rust for bare-metal 32-bit SPARC V7 and V8 systems, e.g. the Gaisler LEON3.
## Target maintainers
- Jonathan Pallant, `jonathan.pallant@ferrous-systems.com`, https://ferrous-systems.com
## Requirements
> Does the target support host tools, or only cross-compilation?
Only cross-compilation.
> Does the target support std, or alloc (either with a default allocator, or if the user supplies an allocator)?
Only tested with `libcore` but I see no reason why you couldn't also support `liballoc`.
> Document the expectations of binaries built for the target. Do they assume
specific minimum features beyond the baseline of the CPU/environment/etc? What
version of the OS or environment do they expect?
Tested by linking with a standard SPARC bare-metal toolchain - specifically I used the [BCC2] toolchain from Gaisler (both GCC and clang variants, both pre-compiled for x64 Linux and compiling my own SPARC GCC from source to run on `aarch64-apple-darwin`).
The target is set to use the lowest-common-denominator `SPARC V7` architecture (yes, they started at V7 - see [Wikipedia](https://en.wikipedia.org/wiki/SPARC#History)).
[BCC2]: https://www.gaisler.com/index.php/downloads/compilers
> Are there notable `#[target_feature(...)]` or `-C target-feature=` values that
programs may wish to use?
`-Ctarget-cpu=v8` adds the instructions added in V8.
`-Ctarget-cpu=leon3` adds the V8 instructions and sets up scheduling to suit the Gaisler LEON3.
> What calling convention does `extern "C"` use on the target?
I believe this is defined by the SPARC architecture reference manuals and V7, V8 and V9 are all compatible.
> What format do binaries use by default? ELF, PE, something else?
ELF
## Building the target
> If Rust doesn't build the target by default, how can users build it? Can users
just add it to the `target` list in `config.toml`?
Yes. I did:
```toml
target = ["aarch64-apple-darwin", "sparc-unknown-none-elf"]
```
## Building Rust programs
> Rust does not yet ship pre-compiled artifacts for this target. To compile for
this target, you will either need to build Rust with the target enabled (see
"Building the target" above), or build your own copy of `core` by using
`build-std` or similar.
Correct.
## Testing
> Does the target support running binaries, or do binaries have varying
expectations that prevent having a standard way to run them?
No - it's a bare metal platform.
> If users can run binaries, can they do so in some common emulator, or do they need native
hardware?
But if you use [BCC2] as the linker, you get default memory map suitable for the LEON3, and a default BSP for the LEON3, and so you can run the binaries in the `tsim-leon3` simulator from Gaisler.
```console
$ cat .cargo/config.toml | grep runner
runner = "tsim-leon3 -c sim-commands.txt"
$ cat sim-commands.txt
run
quit
$ cargo +sparcrust run --targe=sparc-unknown-none-elf
Compiling sparc-demo-rust v0.1.0 (/work/sparc-demo-rust)
Finished dev [unoptimized + debuginfo] target(s) in 3.44s
Running `tsim-leon3 -c sim-commands.txt target/sparc-unknown-none-elf/debug/sparc-demo-rust`
TSIM3 LEON3 SPARC simulator, version 3.1.9 (evaluation version)
Copyright (C) 2023, Frontgrade Gaisler - all rights reserved.
This software may only be used with a valid license.
For latest updates, go to https://www.gaisler.com/
Comments or bug-reports to support@gaisler.com
This TSIM evaluation version will expire 2023-11-28
Number of CPUs: 2
system frequency: 50.000 MHz
icache: 1 * 4 KiB, 16 bytes/line (4 KiB total)
dcache: 1 * 4 KiB, 16 bytes/line (4 KiB total)
Allocated 8192 KiB SRAM memory, in 1 bank at 0x40000000
Allocated 32 MiB SDRAM memory, in 1 bank at 0x60000000
Allocated 8192 KiB ROM memory at 0x00000000
section: .text, addr: 0x40000000, size: 104400 bytes
section: .rodata, addr: 0x400197d0, size: 15616 bytes
section: .data, addr: 0x4001d4d0, size: 1176 bytes
read 1006 symbols
Initializing and starting from 0x40000000
Hello, this is Rust!
PANIC: PanicInfo { payload: Any { .. }, message: Some(I am a panic), location: Location { file: "src/main.rs", line: 33, col: 5 }, can_unwind: true }
Program exited normally on CPU 0.
```
> Does the target support running the Rust testsuite?
I don't think so, the testsuite requires `libstd` IIRC.
## Cross-compilation toolchains and C code
> Does the target support C code?
Yes.
> If so, what toolchain target should users use to build compatible C code? (This may match the target triple, or it may be a toolchain for a different target triple, potentially with specific options or caveats.)
I suggest [BCC2] from Gaisler. It comes in both GCC and Clang variants.
alignment of `byval` on x86 in the process.
Commit 88e4d2c291 from five years ago removed
support for alignment on indirectly-passed arguments because of problems with
the `i686-pc-windows-msvc` target. Unfortunately, the `memcpy` optimizations I
recently added to LLVM 16 depend on this to forward `memcpy`s. This commit
attempts to fix the problems with `byval` parameters on that target and now
correctly adds the `align` attribute.
The problem is summarized in [this comment] by @eddyb. Briefly, 32-bit x86 has
special alignment rules for `byval` parameters: for the most part, their
alignment is forced to 4. This is not well-documented anywhere but in the Clang
source. I looked at the logic in Clang `TargetInfo.cpp` and tried to replicate
it here. The relevant methods in that file are
`X86_32ABIInfo::getIndirectResult()` and
`X86_32ABIInfo::getTypeStackAlignInBytes()`. The `align` parameter attribute
for `byval` parameters in LLVM must match the platform ABI, or miscompilations
will occur. Note that this doesn't use the approach suggested by eddyb, because
I felt it was overkill to store the alignment in `on_stack` when special
handling is really only needed for 32-bit x86.
As a side effect, this should fix#80127, because it will make the `align`
parameter attribute for `byval` parameters match the platform ABI on LLVM
x86-64.
[this comment]: https://github.com/rust-lang/rust/pull/80822#issuecomment-829985417
linker flavors
- only the stable values for `-Clink-self-contained` can be used on stable until we
have more feedback on the interface
- `-Zunstable-options` is required to use unstable linker flavors
Fix unset e_flags in ELF files generated for AVR targets
Closes#106576
~~Sort-of blocked by gimli-rs/object#500~~ (merged)
I'm not sure whether the list of AVR CPU names is okay here. Maybe it could be moved out-of-line to improve the readability of the function.
loongarch64-unknown-none*: Set default relocation model to static
This PR sets the default relocation model to `static` for `loongarch64-unknown-none*` targets. This change aims to streamline the development of the bare-metal project by removing the need for the executable program loader to implement relocation.
Force all native libraries to be statically linked when linking a static binary
Previously, `#[link]` without an explicit `kind = "static"` would confuse the linker and end up producing a dynamically linked library because of the `-Bdynamic` flag. However this binary would not work correctly anyways since it was linked with startup code for a static binary.
This PR solves this by forcing all native libraries to be statically linked when the output is a static binary that cannot link to dynamic libraries anyways.
Fixes#108878Fixes#102993
Improved std support for ps vita target
Fixed a couple of things in std support for ps vita via Vita SDK newlib oss implementation:
- Added missing hardware features to target spec
- Compile in thumb by default (newlib is also compiled in thumb)
- Fixed fs calls. Vita newlib has a not-very-posix dirent. Also vita does not expose inodes, it's stubbed as 0 in stat, and I'm stubbing it here for dirent (because vita newlibs's dirent doesn't even have that field)
- Enabled signal handlers for panic unwinding
- Dropped static link requirement from the platform support md. Also, rearranged sections to better stick with the template.
Support 128-bit atomics on all x86_64 Apple targets
On x86_64, we currently set `max_atomic_width` to 128 only on macOS.
ad8304a0d5/compiler/rustc_target/src/spec/x86_64_apple_darwin.rs (L8)
However, other x86_64 Apple targets (iOS, tvOS, and watchOS) are also core2+ and support cmpxchg16b.
ad8304a0d5/compiler/rustc_target/src/spec/apple_base.rs (L71-L76)
```console
# Script to get targets that support cmpxchg16b by default:
$ (for target in $(rustc --print target-list); do [[ $target == "x86_64"* ]] && rustc --print cfg --target "$target" | grep -q cmpxchg16b && echo "$target"; done)
x86_64-apple-darwin
x86_64-apple-ios
x86_64-apple-ios-macabi
x86_64-apple-tvos
x86_64-apple-watchos-sim
x86_64h-apple-darwin
```
r? `@Amanieu`
linker: Report linker flavors incompatible with the current target
The linker flavor is checked for target compatibility even if linker is never used (e.g. we are producing a rlib).
If it causes trouble, we can move the check to `link.rs` so it will run if the linker (flavor) is actually used.
And also feature gate explicitly specifying linker flavors for tier 3 targets.
The next step is supporting all the internal linker flavors in user-visible interfaces (command line and json).
Go through an intermediate pair of `cc`and `lld` hints instead of mapping CLI options to `LinkerFlavor` directly, and use the target's default linker flavor as a reference.
Adds support for LLVM [SafeStack] which provides backward edge control
flow protection by separating the stack into two parts: data which is
only accessed in provable safe ways is allocated on the normal stack
(the "safe stack") and all other data is placed in a separate allocation
(the "unsafe stack").
SafeStack support is enabled by passing `-Zsanitizer=safestack`.
[SafeStack]: https://clang.llvm.org/docs/SafeStack.html
Fix linking Mac Catalyst by including LC_BUILD_VERSION in object files
Hello. My first rustc PR!
Issue #106021 prevents Rust code from being linked into Mac Catalyst applications. Apple's LD has started requiring object files to contain version information about the platform they were built for, such as:
* the "deployment target" (minimum supported OS version),
* the SDK version
* the type of the platform (macOS/iOS/catalyst/tvOS/watchOS all have a different number).
This is currently only enforced when building for Mac Catalyst.
Rust uses the `object` crate which added support for including this information starting with `0.31.0`. ~~I upgraded it along with `thorin-dwp` so that everything depends on 0.31.
Apparently 0.31 [pulls in](https://github.com/gimli-rs/object/issues/463) `ruzstd` due to a [new ELF standard](https://maskray.me/blog/2022-09-09-zstd-compressed-debug-sections) because its `compression` feature is enabled by thorin. If you find this objectionable, let me know what the best way to avoid pulling in those dependencies might be.~~
**(`object` upgraded in https://github.com/rust-lang/rust/pull/111413)**
I then added two commits:
* The first one adds very basic, hard-coded support for calling `set_macho_build_version` for `-macabi` (Catalyst) targets, where it claims deployment target of Catalyst 14.0 and SDK of 16.2.
* The second weaves the versioning through `rust_target::spec::TargetOptions`, so that we can stick to specifying all target-related info in one place.
Kudos to ``@ara4n`` for writing [this gist](https://gist.github.com/ara4n/320a53ea768aba51afad4c9ed2168536).