Added an associated `const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED`
to the `StableOrd` trait to ensure that implementors carefully consider
whether the trait's contract is upheld, as incorrect implementations can
cause miscompilations.
Avoid specialization in the metadata serialization code
With the exception of a perf-only specialization for byte slices and byte vectors.
This uses the same trick of introducing a new trait and having the Encodable and Decodable derives add a bound to it as used for TyEncoder/TyDecoder. The new code is clearer about which encoder/decoder uses which impl and it reduces the dependency of rustc on specialization, making it easier to remove support for specialization entirely or turn it into a construct that is only allowed for perf optimizations if we decide to do this.
Instead, we store just the local crate hash as a bare u64. On decoding,
we recombine it with the crate's stable crate ID stored separately in
metadata. The end result is that we save ~8 bytes/DefIndex in metadata
size.
One key detail here is that we no longer distinguish in encoded metadata
between present and non-present DefPathHashes. It used to be highly
likely we could distinguish as we used DefPathHash::default(), an
all-zero representation. However in theory even that is fallible as
nothing strictly prevents the StableCrateId from being zero.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
Remove the `..` from the body, only a few invocations used it and it's
inconsistent with rust syntax.
Use `;` instead of `,` between consts. As the Rust syntax gods inteded.
This removes the `custom` format functionality as its only user was
trivially migrated to using a normal format.
If a new use case for a custom formatting impl pops up, you can add it
back.
`DefId` uses different field orders on 64-bit big-endian vs. others, in
order to optimize its `Hash` implementation. However, that also made it
derive different lexical ordering for `PartialOrd` and `Ord`. That
caused spurious differences wherever `DefId`s are sorted, like the
candidate sources list in `report_method_error`.
Now we manually implement `PartialOrd` and `Ord` on 64-bit big-endian to
match the same lexical ordering as other targets, fixing at least one
test, `src/test/ui/methods/method-ambig-two-traits-cross-crate.rs`.
There are two impls of the `Encoder` trait: `opaque::Encoder` and
`opaque::FileEncoder`. The former encodes into memory and is infallible, the
latter writes to file and is fallible.
Currently, standard `Result`/`?`/`unwrap` error handling is used, but this is a
bit verbose and has non-trivial cost, which is annoying given how rare failures
are (especially in the infallible `opaque::Encoder` case).
This commit changes how `Encoder` fallibility is handled. All the `emit_*`
methods are now infallible. `opaque::Encoder` requires no great changes for
this. `opaque::FileEncoder` now implements a delayed error handling strategy.
If a failure occurs, it records this via the `res` field, and all subsequent
encoding operations are skipped if `res` indicates an error has occurred. Once
encoding is complete, the new `finish` method is called, which returns a
`Result`. In other words, there is now a single `Result`-producing method
instead of many of them.
This has very little effect on how any file errors are reported if
`opaque::FileEncoder` has any failures.
Much of this commit is boring mechanical changes, removing `Result` return
values and `?` or `unwrap` from expressions. The more interesting parts are as
follows.
- serialize.rs: The `Encoder` trait gains an `Ok` associated type. The
`into_inner` method is changed into `finish`, which returns
`Result<Vec<u8>, !>`.
- opaque.rs: The `FileEncoder` adopts the delayed error handling
strategy. Its `Ok` type is a `usize`, returning the number of bytes
written, replacing previous uses of `FileEncoder::position`.
- Various methods that take an encoder now consume it, rather than being
passed a mutable reference, e.g. `serialize_query_result_cache`.
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.