Fix coroutine validation for mixed panic strategy
Validation introduced in #113124 allows `UnwindAction::Continue` and `TerminatorKind::Resume` to occur only in functions with ABI that can unwind. The function ABI depends on the panic strategy, which can vary across crates.
Usually MIR is built and validated in the same crate. The coroutine drop glue thus far was an exception. As a result validation could fail when mixing different panic strategies.
Avoid the problem by executing `AbortUnwindingCalls` along with the validation.
Fixes#116953.
Eagerly return `ExprKind::Err` on `yield`/`await` in wrong coroutine context
This PR does 2 things:
1. Refuses to lower `.await` or `yield` when we are outside of the right coroutine context for the operator. Instead, we lower to `hir::ExprKind::Err`, to silence subsequent redundant errors.
2. Reworks a bit of the span tracking in `LoweringContext` to fix a bad span when we have something like `let x = [0; async_fn().await]` where the `await` is inside of an anon const. The span for the "item" still kinda sucks, since it overlaps with the `await` span, but at least it's accurate.
Rollup of 6 pull requests
Successful merges:
- #118193 (Add missing period in `std::process::Command` docs)
- #118222 (unify read_to_end and io::copy impls for reading into a Vec)
- #118323 (give dev-friendly error message for incorrect config profiles)
- #118378 (Perform LTO optimisations with wasm-ld + -Clinker-plugin-lto)
- #118399 (Clean dead codes in miri)
- #118410 (update test for new LLVM 18 codegen)
r? `@ghost`
`@rustbot` modify labels: rollup
Validation introduced in #113124 allows UnwindAction::Continue and
TerminatorKind::Resume to occur only in functions with ABI that can
unwind. The function ABI depends on the panic strategy, which can vary
across crates.
Usually MIR is built and validated in the same crate. The coroutine drop
glue thus far was an exception. As a result validation could fail when
mixing different panic strategies.
Avoid the problem by executing AbortUnwindingCalls along with the
validation.
effects: Run `enforce_context_effects` for all method calls
So that we also perform checks when overloaded `PartialEq`s are called.
r? `@compiler-errors`
rustc_span: Use correct edit distance start length for suggestions
Otherwise the suggestions can be off-base for non-ASCII identifiers. For example suggesting that `Ok` is a name similar to `读文`.
Closes https://github.com/rust-lang/rust/issues/72553.
Added linker_arg(s) Linker trait methods for link-arg to be prefixed "-Wl," for cc-like linker args and not verbatim
https://github.com/rust-lang/rust/issues/99427#issuecomment-1234443468
> here's one possible improvement to -l link-arg making it more portable between linkers and useful - befriending it with the verbatim modifier (https://github.com/rust-lang/rust/issues/99425).
>
> -l link-arg:-verbatim=-foo would add -Wl,-foo (or equivalent) when C compiler is used as a linker, and just -foo when bare linker is used.
> -l link-arg:+verbatim=-bar on the other hand would always pass just -bar.
Account for `!` arm in tail `match` expr
On functions with a default return type that influences the coerced type of `match` arms, check if the failing arm is actually of type `!`. If so, suggest changing the return type so the coercion against the prior arms is successful.
```
error[E0308]: `match` arms have incompatible types
--> $DIR/match-tail-expr-never-type-error.rs:9:13
|
LL | fn bar(a: bool) {
| - help: try adding a return type: `-> i32`
LL | / match a {
LL | | true => 1,
| | - this is found to be of type `{integer}`
LL | | false => {
LL | | never()
| | ^^^^^^^
| | |
| | expected integer, found `()`
| | this expression is of type `!`, but it get's coerced to `()` due to its surrounding expression
LL | | }
LL | | }
| |_____- `match` arms have incompatible types
```
Fix#24157.
Do not erase late bound regions when selecting inherent associated types
In the fix for #97156 we would want the following code:
```rust
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Foo<T>(T);
impl Foo<fn(&'static ())> {
type Assoc = u32;
}
trait Other {}
impl Other for u32 {}
// FIXME(inherent_associated_types): Avoid emitting two diagnostics (they only differ in span).
// FIXME(inherent_associated_types): Enhancement: Spruce up the diagnostic by saying something like
// "implementation is not general enough" as is done for traits via
// `try_report_trait_placeholder_mismatch`.
fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
//~^ ERROR mismatched types
//~| ERROR mismatched types
fn main() {}
```
to fail with ...
```
error[E0220]: associated type `Assoc` not found for `Foo<for<'a> fn(&'a ())>` in the current scope
--> tests/ui/associated-inherent-types/issue-109789.rs:18:36
|
4 | struct Foo<T>(T);
| ------------- associated item `Assoc` not found for this struct
...
18 | fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
| ^^^^^ associated item not found in `Foo<for<'a> fn(&'a ())>`
|
= note: the associated type was found for
- `Foo<fn(&'static ())>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.
```
This PR fixes the ICE we are currently getting "was a subtype of Foo<Binder(fn(&ReStatic ()), [])> during selection but now it is not"
Also fixes#112631
r? `@lcnr`
On functions with a default return type that influences the coerced type
of `match` arms, check if the failing arm is actually of type `!`. If
so, suggest changing the return type so the coercion against the prior
arms is successful.
```
error[E0308]: `match` arms have incompatible types
--> $DIR/match-tail-expr-never-type-error.rs:9:13
|
LL | fn bar(a: bool) {
| - help: try adding a return type: `-> i32`
LL | / match a {
LL | | true => 1,
| | - this is found to be of type `{integer}`
LL | | false => {
LL | | never()
| | ^^^^^^^
| | |
| | expected integer, found `()`
| | this expression is of type `!`, but it get's coerced to `()` due to its surrounding expression
LL | | }
LL | | }
| |_____- `match` arms have incompatible types
```
Fix#24157.
Suggest swapping the order of `ref` and `box`
It is not valid grammar to write `ref box <ident>` in patterns, but `box ref <ident>` is.
This patch adds a diagnostic to suggest swapping them, analogous to what we do for `mut let`.
Add `debug_assert_nounwind` and convert `assert_unsafe_precondition`
`assert_unsafe_precondition` checks non-CTFE-evaluable conditions in runtime and performs no-op in compile time, while many of its current usage can be checked during const eval.
Rewrite exhaustiveness in one pass
This is at least my 4th attempt at this in as many years x) Previous attempts were all too complicated or too slow. But we're finally here!
The previous version of the exhaustiveness algorithm computed reachability for each arm then exhaustiveness of the whole match. Since each of these steps does roughly the same things, this rewrites the algorithm to do them all in one go. I also think this makes things much simpler.
I also rewrote the documentation of the algorithm in depth. Hopefully it's up-to-date and easier to follow now. Plz comment if anything's unclear.
r? `@oli-obk` I think you're one of the rare other people to understand the exhaustiveness algorithm?
cc `@varkor` I know you're not active anymore, but if you feel like having a look you might enjoy this :D
Fixes https://github.com/rust-lang/rust/issues/79307
Don't ICE when encountering placeholders in implied bounds computation
I *could* fix this the right way, though I don't really want to think about the implications of the change. This should have minimal side-effects.
r? `@aliemjay`
Fixes#118286
coverage: Simplify building coverage expressions based on sums
This is a combination of some interlinked changes to the code that creates coverage counters/expressions for nodes and edges in the coverage graph:
- Some preparatory cleanups in `MakeBcbCounters::make_branch_counters`
- Use `BcbCounter` (instead of `CovTerm`) when building coverage expressions
- This makes it easier to introduce a fold for building sums
- Simplify the creation of coverage expressions based on sums, by having `Iterator::fold` do much of the work
- Get rid of the awkward `BcbBranch` enum, and replace it with graph edges represented as `(from_bcb, to_bcb)`
- This further simplifies the body of the fold
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.