Add gpu-kernel calling convention
The amdgpu-kernel calling convention was reverted in commit f6b21e90d1 (#120495 and https://github.com/rust-lang/rust-analyzer/pull/16463) due to inactivity in the amdgpu target.
Introduce a `gpu-kernel` calling convention that translates to `ptx_kernel` or `amdgpu_kernel`, depending on the target that rust compiles for.
Tracking issue: #135467
amdgpu target tracking issue: #135024
[cfg_match] Adjust syntax
A year has passed since the creation of #115585 and the feature, as expected, is not moving forward. Let's change that.
This PR proposes changing the arm's syntax from `cfg(SOME_CONDITION) => { ... }` to `SOME_CODITION => {}`.
```rust
match_cfg! {
unix => {
fn foo() { /* unix specific functionality */ }
}
target_pointer_width = "32" => {
fn foo() { /* non-unix, 32-bit functionality */ }
}
_ => {
fn foo() { /* fallback implementation */ }
}
}
```
Why? Because after several manual migrations in https://github.com/rust-lang/rust/pull/116342 it became clear, at least for me, that `cfg` prefixes are unnecessary, verbose and redundant.
Again, everything is just a proposal to move things forward. If the shown syntax isn't ideal, feel free to close this PR or suggest other alternatives.
The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Adds `#[rustc_force_inline]` which is similar to always inlining but
reports an error if the inlining was not possible, and which always
attempts to inline annotated items, regardless of optimisation levels.
It can only be applied to free functions to guarantee that the MIR
inliner will be able to resolve calls.
There are a few locations where the crate name is checked against an
enumerated list of `std`, `core`, `alloc`, and `proc_macro`, or some
subset thereof. In most of these cases, all four crates should likely be
treated the same. Change this so the crates are listed in one place, and
that list is used wherever a list of `std` crates is needed.
`test` could be considered relevant in some of these cases, but
generally treating it separate from the others seems preferable while it
is unstable.
There are also a few places that Clippy will be able to use this.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.
stabilize const_swap
libs-api FCP passed in https://github.com/rust-lang/rust/issues/83163.
However, I only just realized that this actually involves an intrinsic. The intrinsic could be implemented entirely with existing stable const functionality, but we choose to make it a primitive to be able to detect more UB. So nominating for `@rust-lang/lang` to make sure they are aware; I leave it up to them whether they want to FCP this.
While at it I also renamed the intrinsic to make the "nonoverlapping" constraint more clear.
Fixes#83163
Skip parenthesis around tuple struct field calls
The pretty-printer previously did not distinguish between named vs unnamed fields when printing a function call containing a struct field. It would print the call as `(self.fun)()` for a named field which is correct, and `(self.0)()` for an unnamed field which is redundant.
This PR changes function calls of tuple struct fields to print without parens.
**Before:**
```rust
struct Tuple(fn());
fn main() {
let tuple = Tuple(|| {});
(tuple.0)();
}
```
**After:**
```rust
struct Tuple(fn());
fn main() {
let tuple = Tuple(|| {});
tuple.0();
}
```
Begin to implement type system layer of unsafe binders
Mostly TODOs, but there's a lot of match arms that are basically just noops so I wanted to split these out before I put up the MIR lowering/projection part of this logic.
r? oli-obk
Tracking:
- https://github.com/rust-lang/rust/issues/130516
This commit splits the `#[rustc_deny_explicit_impl(implement_via_object = ...)]` attribute
into two attributes `#[rustc_deny_explicit_impl]` and `#[rustc_do_not_implement_via_object]`.
This allows us to have special traits that can have user-defined impls but do not have the
automatic trait impl for trait objects (`impl Trait for dyn Trait`).
`gen` is an edition-specific keyword used in unstable Rust, and so
belongs with `try` (as `is_unused_keyword_conditional` indicates).
Also, the cases in `is_unused_keyword_conditional` should be in
alphabetical order, to match the keyword list.
These changes don't affect the behaviour of any of the `Symbol::is_*`
functions.
`rustc_symbol` is the source of truth for keywords.
rustdoc has its own implicit definition of keywords, via the
`is_doc_keyword`. It (presumably) intends to include all keywords, but
it omits `yeet`.
rustfmt has its own explicit list of Rust keywords. It also (presumably)
intends to include all keywords, but it omits `await`, `builtin`, `gen`,
`macro_rules`, `raw`, `reuse`, `safe`, and `yeet`. Also, it does linear
searches through this list, which is inefficient.
This commit fixes all of the above problems by introducing a new
predicate `is_any_keyword` in rustc and using it in rustdoc and rustfmt.
It documents that it's not the right predicate in most cases.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
`CheckAttrVisitor::check_doc_keyword` checks `#[doc(keyword = "..")]`
attributes to ensure they are on an empty module, and that the value is
a non-empty identifier.
The `rustc::existing_doc_keyword` lint checks these attributes to ensure
that the value is the name of a keyword.
It's silly to have two different checking mechanisms for these
attributes. This commit does the following.
- Changes `check_doc_keyword` to check that the value is the name of a
keyword (avoiding the need for the identifier check, which removes a
dependency on `rustc_lexer`).
- Removes the lint.
- Updates tests accordingly.
There is one hack: the `SelfTy` FIXME case used to used to be handled by
disabling the lint, but now is handled with a special case in
`is_doc_keyword`. That hack will go away if/when the FIXME is fixed.
Co-Authored-By: Guillaume Gomez <guillaume1.gomez@gmail.com>
Remove support for specializing ToString outside the standard library
This is the only trait specializable outside of the standard library. Before stabilizing specialization we will probably want to remove support for this. It was originally made specializable to allow a more efficient ToString in libproc_macro back when this way the only way to get any data out of a TokenStream. We now support getting individual tokens, so proc macros no longer need to call it as often.
Bounds-check with PtrMetadata instead of Len in MIR
Rather than emitting `Len(*_n)` in array index bounds checks, emit `PtrMetadata(copy _n)` instead -- with some asterisks for arrays and `&mut` that need it to be done slightly differently.
We're getting pretty close to removing `Len` entirely, actually. I think just one more PR after this (for slice drop shims).
r? mir
Rollup of 7 pull requests
Successful merges:
- #133900 (Advent of `tests/ui` (misc cleanups and improvements) [1/N])
- #133937 (Keep track of parse errors in `mod`s and don't emit resolve errors for paths involving them)
- #133938 (`rustc_mir_dataflow` cleanups, including some renamings)
- #134058 (interpret: reduce usage of TypingEnv::fully_monomorphized)
- #134130 (Stop using driver queries in the public API)
- #134140 (Add AST support for unsafe binders)
- #134229 (Fix typos in docs on provenance)
r? `@ghost`
`@rustbot` modify labels: rollup
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
This is the only trait specializable outside of the standard library.
Before stabilizing specialization we will probably want to remove
support for this. It was originally made specializable to allow a more
efficient ToString in libproc_macro back when this way the only way to
get any data out of a TokenStream. We now support getting individual
tokens, so proc macros no longer need to call it as often.
Add unpolished, experimental support for AFIDT (async fn in dyn trait)
This allows us to begin messing around `async fn` in `dyn Trait`. Calling an async fn from a trait object always returns a `dyn* Future<Output = ...>`.
To make it work, Implementations are currently required to return something that can be coerced to a `dyn* Future` (see the example in `tests/ui/async-await/dyn/works.rs`). If it's not the right size, then it'll raise an error at the coercion site (see the example in `tests/ui/async-await/dyn/wrong-size.rs`). Currently the only practical way of doing this is wrapping the body in `Box::pin(async move { .. })`.
This PR does not implement a helper type like a "`Boxing`"[^boxing] adapter, and I'll probably follow-up with another PR to improve the error message for the `PointerLike` trait (something that explains in just normal prose what is happening here, rather than a trait error).
[^boxing]: https://rust-lang.github.io/async-fundamentals-initiative/explainer/user_guide_future.html#the-boxing-adapter
This PR also does not implement new trait solver support for AFIDT; I'll need to think how best to integrate it into candidate assembly, and that's a bit of a matter of taste, but I don't think it will be difficult to do.
This could also be generalized:
* To work on functions that are `-> impl Future` (soon).
* To work on functions that are `-> impl Iterator` and other "dyn rpitit safe" traits. We still need to nail down exactly what is needed for this to be okay (not soon).
Tracking:
* https://github.com/rust-lang/rust/issues/133119
allow `symbol_intern_string_literal` lint in test modules
Since #133545, `x check compiler --stage 1` no longer works because compiler test modules trigger `symbol_intern_string_literal` lint errors. Bootstrap shouldn't control when to ignore or enable this lint in the compiler tree (using `Kind != Test` was ineffective for obvious reasons).
Also, conditionally adding this rustflag invalidates the build cache between `x test` and other commands.
This PR removes the `Kind` check from bootstrap and handles it directly in the compiler tree in a more natural way.
Pass end position of span through inline ASM cookie
Before this PR, only the start position of the span was passed though the inline ASM cookie to diagnostics. LLVM 19 has full support for 64-bit inline ASM cookies; this PR uses that to pass the end position of the span in the upper 32 bits, meaning inline ASM diagnostics now point at the entire line the error occurred on, not just the first character of it.
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
A bunch of cleanups
These are all extracted from a branch I have to get rid of driver queries. Most of the commits are not directly necessary for this, but were found in the process of implementing the removal of driver queries.
Previous PR: https://github.com/rust-lang/rust/pull/132410