Add `{into,from}_raw` to Rc and Arc
These methods convert to and from a `*const T` for `Rc` and `Arc` similar to the way they work on `Box`. The only slight complication is that `from_raw` needs to offset the pointer back to find the beginning of the `RcBox`/`ArcInner`.
I felt this is a fairly small addition, filling in a gap (when compared to `Box`) so it wouldn't need an RFC. The motivation is primarily for FFI.
(I'll create an issue and update a PR with the issue number if reviewers agree with the change in principle **Edit: done #37197**)
~~Edit: This was initially `{into,from}_raw` but concerns were raised about the possible footgun if mixed with the methods of the same name of `Box`.~~
Edit: This was went from `{into,from}_raw` to `{into,from}_inner_raw` then back to `{into,from}_raw` during review.
The original description suggests that the original `Rc<T>` itself is downgraded, which doesn't seem to be what the code does. At the same time, `Rc` is one of those types that can do weird things with only a shared reference, so I thought it would be good to be clear.
This allows printing pointers to unsized types with the {:p} formatting
directive. The following impls are extended to unsized types:
- impl<'a, T: ?Sized> Pointer for &'a T
- impl<'a, T: ?Sized> Pointer for &'a mut T
- impl<T: ?Sized> Pointer for *const T
- impl<T: ?Sized> Pointer for *mut T
- impl<T: ?Sized> fmt::Pointer for Box<T>
- impl<T: ?Sized> fmt::Pointer for Rc<T>
- impl<T: ?Sized> fmt::Pointer for Arc<T>
This hairy conditional doesn't need to be so. It _does_ need to be a
thin pointer, otherwise, it will fail to compile, so let's pull that out
into a temporary for future readers of the source.
/cc @nrc @SimonSapin @Gankro @durka , who brought this up on IRC
This hairy conditional doesn't need to be so. It _does_ need to be a
thin pointer, otherwise, it will fail to compile, so let's pull that out
into a temporary for future readers of the source.
Also, after a discussion with @pnkfelix and @gankro, we don't need these
null checks anymore, as zero-on-drop has been gone for a while now.
This is a standard "clean out libstd" commit which removes all 1.5-and-before
deprecated functionality as it's now all been deprecated for at least one entire
cycle.
Sometimes when writing generic code you want to abstract over
owning/pointer type so that calling code isn't restricted by one
concrete owning/pointer type. This commit makes possible such code:
```rust
fn i_will_work_with_arc<T: Into<Arc<MyTy>>>(t: T) {
let the_arc = t.into();
// Do something
}
i_will_work_with_arc(MyTy::new());
i_will_work_with_arc(Box::new(MyTy::new()));
let arc_that_i_already_have = Arc::new(MyTy::new());
i_will_work_with_arc(arc_that_i_already_have);
```
Please note that this patch doesn't work with DSTs.
Also to mention, I made those impls stable, and I don't know whether they should be actually stable from the beginning. Please tell me if this should be feature-gated.
Sometimes when writing generic code you want to abstract over
owning/pointer type so that calling code isn't restricted by one
concrete owning/pointer type. This commit makes possible such code:
```
fn i_will_work_with_arc<T: Into<Arc<MyTy>>>(t: T) {
let the_arc = t.into();
// Do something
}
i_will_work_with_arc(MyTy::new());
i_will_work_with_arc(Box::new(MyTy::new()));
let arc_that_i_already_have = Arc::new(MyTy::new());
i_will_work_with_arc(arc_that_i_already_have);
```
Please note that this patch doesn't work with DSTs.
`Rc::try_unwrap` and `Rc::make_mut` are stable since 1.4.0, but the example code still has `#![feature(rc_unique)]`. Ideally the stable and beta docs would be updated, but I don't think that's possible...
This change has two consequences:
1. It makes `Arc<T>` and `Rc<T>` covariant in `T`.
2. It causes the compiler to reject code that was unsound with respect
to dropck. See compile-fail/issue-29106.rs for an example of code that
no longer compiles. Because of this, this is a [breaking-change].
Fixes#29037.
Fixes#29106.
These common traits were left off originally by accident from these smart
pointers, and a past attempt (#26008) to add them was later reverted (#26160)
due to unexpected breakge (#26096) occurring. The specific breakage in worry is
the meaning of this return value changed:
let a: Box<Option<T>> = ...;
a.as_ref()
Currently this returns `Option<&T>` but after this change it will return
`&Option<T>` because the `AsRef::as_ref` method shares the same name as
`Option::as_ref`. A [crater report][crater] of this change, however, has shown
that the fallout of this change is quite minimal. These trait implementations
are "the right impls to add" to these smart pointers and would enable various
generalizations such as those in #27197.
[crater]: https://gist.github.com/anonymous/0ba4c3512b07641c0f99
This commit is a breaking change for the above reasons mentioned, and the
mitigation strategies look like any of:
Option::as_ref(&a)
a.as_ref().as_ref()
(*a).as_ref()
* Add `Rc::would_unwrap(&Self) -> bool` to introspect whether try_unwrap would succeed,
because it's destructive (unlike get_mut).
* Move `rc.downgrade()` to `Rc::downgrade(&Self)` per conventions.
* Deprecate `Rc::weak_count` and `Rc::strong_count` for questionable utility.
* Deprecate `Rc::is_unique` for questionable semantics (there are two kinds of
uniqueness with Weak pointers in play).
* Rename `rc.make_unique()` to `Rc::make_mut(&mut Self)` per conventions, to
avoid uniqueness terminology, and to clarify the relation to `Rc::get_mut`.
This commit removes all unstable and deprecated functions in the standard
library. A release was recently cut (1.3) which makes this a good time for some
spring cleaning of the deprecated functions.
This commit is an implementation of [RFC 1184][rfc] which tweaks the behavior of
the `#![no_std]` attribute and adds a new `#![no_core]` attribute. The
`#![no_std]` attribute now injects `extern crate core` at the top of the crate
as well as the libcore prelude into all modules (in the same manner as the
standard library's prelude). The `#![no_core]` attribute disables both std and
core injection.
[rfc]: https://github.com/rust-lang/rfcs/pull/1184
This removes a footgun, since it is a reasonable assumption to make that
pointers to `T` will be aligned to `align_of::<T>()`. This also matches
the behaviour of C/C++. `min_align_of` is now deprecated.
Closes#21611.
This commit moves the free functions in the `rc`, `arc`, and `boxed` modules to
associated functions on their respective types, following the recent trend
towards this pattern. The previous free functions are all left in-place with
`#[deprecated]` pointers towards the new locations.
This commit also deprecates `arc::get_mut` and `Arc::make_unique` with no
replacement as they are racy in the face of weak pointers.
Use stable code in doc examples (libcollections)
Main task is to change from String::from_str to String::from in examples for String
(the latter constructor is stable). While I'm at it, also remove redundant feature flags,
fix some other instances of unstable code in examples (in examples for stable
methods), and remove some use of usize in examples too.
Prefer String::from over from_str; String::from_str is unstable while
String::from is stable. Promote the latter by using it in examples.
Simply migrating unstable function to the closest alternative.
* segfault due to not copying drop flag when coercing
* fat pointer casts
* segfault due to not checking drop flag properly
* debuginfo for DST smart pointers
* unreachable code in drop glue
Refactored code so that the drop-flag values for initialized
(`DTOR_NEEDED`) versus dropped (`DTOR_DONE`) are given explicit names.
Add `mem::dropped()` (which with `DTOR_DONE == 0` is semantically the
same as `mem::zeroed`, but the point is that it abstracts away from
the particular choice of value for `DTOR_DONE`).
Filling-drop needs to use something other than `ptr::read_and_zero`,
so I added such a function: `ptr::read_and_drop`. But, libraries
should not use it if they can otherwise avoid it.
Fixes to tests to accommodate filling-drop.
This is the kind of change that one is expected to need to make to
accommodate overloaded-`box`.
----
Note that this is not *all* of the changes necessary to accommodate
Issue 22181. It is merely the subset of those cases where there was
already a let-binding in place that made it easy to add the necesasry
type ascription.
(For unnamed intermediate `Box` values, one must go down a different
route; `Box::new` is the option that maximizes portability, but has
potential inefficiency depending on whether the call is inlined.)
----
There is one place worth note, `run-pass/coerce-match.rs`, where I
used an ugly form of `Box<_>` type ascription where I would have
preferred to use `Box::new` to accommodate overloaded-`box`. I
deliberately did not use `Box::new` here, because that is already done
in coerce-match-calls.rs.
----
Precursor for overloaded-`box` and placement-`in`; see Issue 22181.
... to convert between Box and raw pointers. E. g. use
```
let b: Box<Foo> = Box::from_raw(p);
```
instead of
```
let b: Box<Foo> = mem::transmute(p);
```
Patch also changes closure release code in `src/libstd/sys/unix/thread.rs`
when `pthread_create` failed. Raw pointer was transmuted to box of
`FnOnce()` instead of `Thunk`. This code was probably never executed,
because `pthread_create` rarely fails in practice.
This commit stabilizes `std::borrow`, making the following modifications
to catch up the API with language changes:
* It renames `BorrowFrom` to `Borrow`, as was originally intended (but
blocked for technical reasons), and reorders the parameters
accordingly.
* It moves the type parameter of `ToOwned` to an associated type. This
is somewhat less flexible, in that each borrowed type must have a
unique owned type, but leads to a significant simplification for
`Cow`. Flexibility can be regained by using newtyped slices, which is
advisable for other reasons anyway.
* It removes the owned type parameter from `Cow`, making the type much
less verbose.
* Deprecates the `is_owned` and `is_borrowed` predicates in favor of
direct matching.
The above API changes are relatively minor; the basic functionality
remains the same, and essentially the whole module is now marked
`#[stable]`.
[breaking-change]
This commit is an implementation of [RFC 823][rfc] which is another pass over
the `std::hash` module for stabilization. The contents of the module were not
entirely marked stable, but some portions which remained quite similar to the
previous incarnation are now marked `#[stable]`. Specifically:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0823-hash-simplification.md
* `std::hash` is now stable (the name)
* `Hash` is now stable
* `Hash::hash` is now stable
* `Hasher` is now stable
* `SipHasher` is now stable
* `SipHasher::new` and `new_with_keys` are now stable
* `Hasher for SipHasher` is now stable
* Many `Hash` implementations are now stable
All other portions of the `hash` module remain `#[unstable]` as they are less
commonly used and were recently redesigned.
This commit is a breaking change due to the modifications to the `std::hash` API
and more details can be found on the [RFC][rfc].
Closes#22467
[breaking-change]
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
The reference count can never be 0, unless we're about to drop the data
completely. Using the `assume` intrinsic allows us to inform LLVM about
that invariant, meaning it can avoid unnecessary drops.
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This commit performs a pass over the implementations of the new `String` trait
in the formatting module. Some implementations were removed as a conservative
move pending an upcoming convention about `String` implementations, and some
were added in order to retain consistency across the libraries. Specifically:
* All "smart pointers" implement `String` now, adding missing implementations
for `Arc` and `Rc`.
* The `Vec<T>` and `[T]` types no longer implement `String`.
* The `*const T` and `*mut T` type no longer implement `String`.
* The `()` type no longer implements `String`.
* The `Path` type's `Show` implementation does not surround itself with `Path
{}` (a minor tweak).
All implementations of `String` in this PR were also marked `#[stable]` to
indicate that the types will continue to implement the `String` trait regardless
of what it looks like.
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]