Validate that we're only matching on unit struct for path pattern
Resolution doesn't validate that we only really take `CtorKind::Unit` in path patterns, since all it sees is `Res::SelfCtor(def_id)`. Check this instead during pattern typeck.
r? petrochenkov
Fixes#122809
Delegation: fix ICE on `bound_vars` divergence
Fixes https://github.com/rust-lang/rust/issues/122550.
Bug was caused by divergence between lowered type and corresponding `bound_vars` in `late_bound_vars_map`. In this patch `bound_vars` calculation for delegation item is moved from `lower_fn_ty` to `resolve_bound_vars` query.
r? `@petrochenkov`
Don't emit an error about failing to produce a file with a specific name if user never gave an explicit name
Fixes#122509
You can ask `rustc` to produce some intermediate results with `--emit foo`, this operation comes in two flavors: `--emit asm` and `--emit asm=foo.s`. First one produces one or more `.s` files without any name guarantees, second one renames it into `foo.s`. Second version only works when compiler produces a single file - for asm files this means using a single compilation unit for example.
In case compilation produced more than a single file `rustc` runs following check to emit some warnings:
```rust
if crate_output.outputs.contains_key(&output_type) {
// 2) Multiple codegen units, with `--emit foo=some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringEmitPath { extension });
} else if crate_output.single_output_file.is_some() {
// 3) Multiple codegen units, with `-o some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringOutput { extension });
} else {
// 4) Multiple codegen units, but no explicit name. We
// just leave the `foo.0.x` files in place.
// (We don't have to do any work in this case.)
}
```
Comment in the final `else` branch implies that if user didn't ask for a specific name - there's no need to emit warnings. However because of the internal representation of `crate_output.outputs` - this doesn't work as expected: if user asked to produce an asm file without giving it an implicit name it will contain `Some(None)`.
To fix the problem new code actually checks if user gave an explicit name. I think this was an original intentional behavior, at least comments imply that.
This makes `-Zprint-type-sizes`'s output easier to read, because the
name of an `async fn` is more immediately recognizable than its span.
I also deleted the comment "FIXME(eddyb) should use `def_span`." because
it appears to have already been fixed by commit 67727aa7c3.
CFI: Support complex receivers
Right now, we only support rewriting `&self` and `&mut self` into `&dyn MyTrait` and `&mut dyn MyTrait`. This expands it to handle the full gamut of receivers by calculating the receiver based on *substitution* rather than based on a rewrite. This means that, for example, `Arc<Self>` will become `Arc<dyn MyTrait>` appropriately with this change.
This approach also allows us to support associated type constraints as well, so we will correctly rewrite `&self` into `&dyn MyTrait<T=i32>`, for example.
r? ```@workingjubilee```
CFI: Handle dyn with no principal
In user-facing Rust, `dyn` always has at least one predicate following it. Unfortunately, because we filter out marker traits from receivers at callsites and `dyn Sync` is, for example, legal, this results in us having `dyn` types with no predicates on occasion in our alias set encoding. This patch handles cases where there are no predicates in a `dyn` type which are relevant to its alias set.
Fixes#122998
r? workingjubilee
Clean up unnecessary headers/flags in coverage mir-opt tests
During #122542, I noticed that some of the headers and flags I had copied over from `tests/mir-opt/instrument_coverage.rs` were unnecessary. And while working to remove those, I noticed even more that could be removed or replaced.
Replace `mir_built` query with a hook and use mir_const everywhere instead
A small perf improvement due to less dep graph handling.
Mostly just a cleanup to get rid of one of our many mir queries
Previously, we only rewrote `&self` and `&mut self` receivers. By
instantiating the method from the trait definition, we can make this
work work with arbitrary legal receivers instead.
In user-facing Rust, `dyn` always has at least one predicate following
it. Unfortunately, because we filter out marker traits from receivers at
callsites and `dyn Sync` is, for example, legal, this results in us
having `dyn` types with no predicates on occasion in our alias set
encoding. This patch handles cases where there are no predicates in a
`dyn` type which are relevant to its alias set.
Fixes#122998
panic-in-panic-hook: formatting a message that's just a string is risk-free
This slightly improves the output in the 'panic while processing panic' case if the panic message does not involve any formatting. Follow-up to https://github.com/rust-lang/rust/pull/122930.
r? ``@Amanieu``
Add a regression test for #117310Closes#117310
It seems to have been fixed in `rustc 1.79.0-nightly (1388d7a06 2024-03-20)` or before, so just adding a regression test for it.
Fixed the `private-dependency` bug
Fixed the private-dependency bug: If the directly dependent crate is loaded last and is not configured with `--extern`, it may be incorrectly set to `private-dependency`
Fixes#122756
Encode implied predicates for traits
In #112629, we decided to make associated type bounds in the "supertrait" AST position *implied* even though they're not supertraits themselves.
This means that the `super_predicates` and `implied_predicates` queries now differ for regular traits. The assumption that they didn't differ was hard-coded in #107614, so in cross-crate positions this means that we forget the implied predicates from associated type bounds.
This isn't unsound, just kind of annoying. This should be backported since associated type bounds are slated to stabilize for 1.78 -- either that, or associated type bounds can be reverted on beta and re-shipped in 1.79 with this patch.
Fixes#122859
CFI: Strip auto traits off Virtual calls
We already use `Instance` at declaration sites when available to glean additional information about possible abstractions of the type in use. This does the same when possible at callsites as well.
The primary purpose of this change is to allow CFI to alter how it generates type information for indirect calls through `Virtual` instances.
This is needed for the "separate machinery" version of my approach to the vtable issues (#122573), because we need to respond differently to a `Virtual` call to the same type as a non-virtual call, specifically [stripping auto traits off the receiver's `Self`](54b15b0c36) because there isn't a separate vtable for `Foo` vs `Foo + Send`.
This would also make a more general underlying mechanism that could be used by rcvalle's [proposed drop detection / encoding](edcd1e20a1) if we end up using his approach, as we could condition out on the `def_id` in the CFI code rather than requiring the generating code to explicitly note whether it was calling drop.
CFI: Support self_cell-like recursion
Current `transform_ty` attempts to avoid cycles when normalizing `#[repr(transparent)]` types to their interior, but runs afoul of this pattern used in `self_cell`:
```
struct X<T> {
x: u8,
p: PhantomData<T>,
}
#[repr(transparent)]
struct Y(X<Y>);
```
When attempting to normalize Y, it will still cycle indefinitely. By using a types-visited list, this will instead get expanded exactly one layer deep to X<Y>, and then stop, not attempting to normalize `Y` any further.
This PR was split off from #121962 as part of fixing the larger vtable compatibility issues.
r? ``````@workingjubilee``````
Mention Register Size in `#[warn(asm_sub_register)]`
Fixes#121593
Displays the register size information obtained from `suggest_modifier()` and `default_modifier()`.
Add test in higher ranked subtype
I'm a beginner in this repository, and there are some things I'm not sure about:
- Is it okay that there is a warning:
```
rustc_infer::infer::relate::generalize may incompletely handle alias type: AliasTy { args: [?1t, '^0.Named(DefId(0:15 ~ structually_relate_aliases[de75]::{impl#1}::'a), "'a")], def_id: DefId(0:5 ~ structually_relate_aliases[de75]::ToUnit::Unit) }
```
- Is it okay that there are two duplicate errors in the same line?
- Did I put the test in the right place?
Any suggestions would be appreciated.
Fixes#121649
`rustdoc --test`: Prevent reaching the maximum size of command-line by using files for arguments if there are too many
Fixes#122722.
Thanks to this I discovered that rust was using ``@`` to add arguments from a file, quite convenient.
If there are too many `cfg` arguments given to `rustdoc --test`, it'll now put them into a temporary file and passing it as argument to the rustc command.
I added a test with 100_000 `cfg` arguments to ensure it'll not break again.
r? `@notrid`
Handle str literals written with `'` lexed as lifetime
Given `'hello world'` and `'1 str', provide a structured suggestion for a valid string literal:
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-3.rs:2:26
|
LL | println!('hello world');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("hello world");
| ~ ~
```
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-1.rs:2:20
|
LL | println!('1 + 1');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("1 + 1");
| ~ ~
```
Fix#119685.
Fix validation on substituted callee bodies in MIR inliner
When inlining a coroutine, we will substitute the MIR body with the args of the call. There is code in the MIR validator that attempts to prevent query cycles, and will use the coroutine body directly when it detects that's the body that's being validated. That means that when inlining a coroutine body that has been substituted, it may no longer be parameterized over the original args of the coroutine, which will lead to substitution ICEs.
Fixes#119064
refactor check_{lang,library}_ub: use a single intrinsic
This enacts the plan I laid out [here](https://github.com/rust-lang/rust/pull/122282#issuecomment-1996917998): use a single intrinsic, called `ub_checks` (in aniticpation of https://github.com/rust-lang/compiler-team/issues/725), that just exposes the value of `debug_assertions` (consistently implemented in both codegen and the interpreter). Put the language vs library UB logic into the library.
This makes it easier to do something like https://github.com/rust-lang/rust/pull/122282 in the future: that just slightly alters the semantics of `ub_checks` (making it more approximating when crates built with different flags are mixed), but it no longer affects whether these checks can happen in Miri or compile-time.
The first commit just moves things around; I don't think these macros and functions belong into `intrinsics.rs` as they are not intrinsics.
r? `@saethlin`
Additional trait bounds beyond the principal trait and its implications
are not possible in the vtable. This means that if a receiver is
`&dyn Foo + Send`, the function will only be expecting `&dyn Foo`.
This strips those auto traits off before CFI encoding.
Rollup of 11 pull requests
Successful merges:
- #120577 (Stabilize slice_split_at_unchecked)
- #122698 (Cancel `cargo update` job if there's no updates)
- #122780 (Rename `hir::Local` into `hir::LetStmt`)
- #122915 (Delay a bug if no RPITITs were found)
- #122916 (docs(sync): normalize dot in fn summaries)
- #122921 (Enable more mir-opt tests in debug builds)
- #122922 (-Zprint-type-sizes: print the types of awaitees and unnamed coroutine locals.)
- #122927 (Change an ICE regression test to use the original reproducer)
- #122930 (add panic location to 'panicked while processing panic')
- #122931 (Fix some typos in the pin.rs)
- #122933 (tag_for_variant follow-ups)
r? `@ghost`
`@rustbot` modify labels: rollup
Change an ICE regression test to use the original reproducer
The ICE was fixed in PR https://github.com/rust-lang/rust/pull/122370, but the test used a different reproducer than the one originally reported. This PR changes it to the original one, giving us more confidence that the fix works.
Fixes#122199
-Zprint-type-sizes: print the types of awaitees and unnamed coroutine locals.
This should assist comprehending the size of coroutines. In particular, whenever a future is suspended while awaiting another future, the latter is given the special name `__awaitee`, and now the type of the awaited future will be printed, allowing identifying caller/callee — er, I mean, poller/pollee — relationships.
It would be possible to include the type name in more cases, but I thought that that might be overly verbose (`print-type-sizes` is already a lot of text) and ordinary named fields or variables are easier for readers to discover the types of.
This change will also synergize with my other PR #122923 which changes type printing to print the path of the `async fn` instead of the span.
Implementation note: I'm not sure if `Symbol::intern` is appropriate for this application, but it was the obvious way to not have to remove the `Copy` implementation from `FieldInfo`, or add a `'tcx` lifetime, while avoiding keeping a lot of possibly redundant strings in memory. I don't know what the proper tradeoff to make here is (though presumably it is not too important for a `-Z` debugging option).
Let codegen decide when to `mem::swap` with immediates
Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.
Thus this PR introduces a new `typed_swap` intrinsic with a fallback body, and replaces that fallback implementation when swapping immediates or scalar pairs.
r? oli-obk
Replaces #111744, and means we'll never need more libs PRs like #111803 or #107140
This should assist comprehending the size of coroutines.
In particular, whenever a future is suspended while awaiting another
future, the latter is given the special name `__awaitee`, and now the
type of the awaited future will be printed, allowing identifying
caller/callee — er, I mean, poller/pollee — relationships.
It would be possible to include the type name in more cases, but I
thought that that might be overly verbose (`print-type-sizes` is already
a lot of text) and ordinary named fields or variables are easier for
readers to discover the types of.
Current `transform_ty` attempts to avoid cycles when normalizing
`#[repr(transparent)]` types to their interior, but runs afoul of this
pattern used in `self_cell`:
```
struct X<T> {
x: u8,
p: PhantomData<T>,
}
#[repr(transparent)]
struct Y(X<Y>);
```
When attempting to normalize Y, it will still cycle indefinitely. By
using a types-visited list, this will instead get expanded exactly
one layer deep to X<Y>, and then stop, not attempting to normalize `Y`
any further.
Suggest `_` for missing generic arguments in turbofish
The compiler may suggest unusable generic type names for missing generic arguments in an expression context:
```rust
fn main() {
(0..1).collect::<Vec>()
}
```
> help: add missing generic argument
>
> (0..1).collect::<Vec<T>>()
but `T` is not a valid name in this context, and this suggestion won't compile.
I've changed it to use `_` inside method calls (turbofish), so it will suggest `(0..1).collect::<Vec<_>>()` which _may_ compile.
It's possible that the suggested `_` will be ambiguous, but there is very extensive E0283 that will help resolve that, which is more helpful than a basic "cannot find type `T` in this scope" users would get otherwise.
Out of caution to limit scope of the change I've limited it to just turbofish, but I suspect `_` could be the better choice in more cases. Perhaps in all expressions?
Note that the caller chooses a type for type param
```
error[E0308]: mismatched types
--> $DIR/return-impl-trait.rs:23:5
|
LL | fn other_bounds<T>() -> T
| - -
| | |
| | expected `T` because of return type
| | help: consider using an impl return type: `impl Trait`
| expected this type parameter
...
LL | ()
| ^^ expected type parameter `T`, found `()`
|
= note: expected type parameter `T`
found unit type `()`
= note: the caller chooses the type of T which can be different from ()
```
Tried to see if "expected this type parameter" can be replaced, but that goes all the way to `rustc_infer` so seems not worth the effort and can affect other diagnostics.
Revives #112088 and #104755.
compiler: allow transmute of ZST arrays with generics
Extend the `SizeSkeleton` evaluator to shortcut zero-sized arrays, thus considering `[T; 0]` to have a compile-time fixed-size of 0.
The existing evaluator already deals with generic arrays under the feature-guard `transmute_const_generics`. However, it merely allows comparing fixed-size types with fixed-size types, and generic types with generic types. For generic types, it merely compares whether their arguments match (ordering them first). Even if their exact sizes are not known at compile time, it can ensure that they will eventually be the same.
This patch extends this by shortcutting the size-evaluation of zero sized arrays and thus allowing size comparisons of `()` with `[T; 0]`, where one contains generics and the other does not.
This code is guarded by `transmute_const_generics` (#109929), even though it is unclear whether it should be. However, this assumes that a separate stabilization PR is required to move this out of the feature guard.
Initially reported in #98104.
With associated type bounds enabled, the implied_predicates and super_predicates
queries may differ for traits, since associated type bounds are also
implied but are not counted as super predicates.
"Handle" calls to upstream monomorphizations in compiler_builtins
This is pretty cooked, but I think it works.
compiler-builtins has a long-standing problem that at link time, its rlib cannot contain any calls to `core`. And yet, in codegen we _love_ inserting calls to symbols in `core`, generally from various panic entrypoints.
I intend this PR to attack that problem as completely as possible. When we generate a function call, we now check if we are generating a function call from `compiler_builtins` and whether the callee is a function which was not lowered in the current crate, meaning we will have to link to it.
If those conditions are met, actually generating the call is asking for a linker error. So we don't. If the callee diverges, we lower to an abort with the same behavior as `core::intrinsics::abort`. If the callee does not diverge, we produce an error. This means that compiler-builtins can contain panics, but they'll SIGILL instead of panicking. I made non-diverging calls a compile error because I'm guessing that they'd mostly get into compiler-builtins by someone making a mistake while working on the crate, and compile errors are better than linker errors. We could turn such calls into aborts as well if that's preferred.
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting binary.
coverage: Clean up marker statements that aren't needed later
Some of the marker statements used by coverage are added during MIR building for use by the InstrumentCoverage pass (during analysis), and are not needed afterwards.
```@rustbot``` label +A-code-coverage
Gracefully handle `AnonConst` in `diagnostic_hir_wf_check()`
Instead of running the WF check on the `AnonConst` itself we run it on the `ty` of the generic param of which the `AnonConst` is the default value.
Fixes#122199
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
Some of the marker statements used by coverage are added during MIR building
for use by the InstrumentCoverage pass (during analysis), and are not needed
afterwards.
CFI: Skip non-passed arguments
Rust will occasionally rely on fn((), X) -> Y being compatible with fn(X) -> Y, since () is a non-passed argument. Relax CFI by choosing not to encode non-passed arguments.
This PR was split off from #121962 as part of fixing the larger vtable compatibility issues.
r? `@workingjubilee`
Several (doc) comments were super outdated or didn't provide enough context.
Some doc comments shoved everything in a single paragraph without respecting
the fact that the first paragraph should be a single sentence because rustdoc
treats these as item descriptions / synopses on module pages.
Remove SpecOptionPartialEq
With the recent LLVM bump, the specialization for Option::partial_eq on types with niches is no longer necessary. I kept the manual implementation as it still gives us better codegen than the derive (will look at this seperately).
Also implemented PartialOrd/Ord by hand as it _somewhat_ improves codegen for #49892: https://godbolt.org/z/vx5Y6oW4Y
Add tests for shortcomings of associated type bounds
Adds the test in https://github.com/rust-lang/rust/pull/122791#issuecomment-2011433015
Turns out that #121123 is what breaks `tests/ui/associated-type-bounds/cant-see-copy-bound-from-child-rigid.rs` (passes on nightly), but given that associated type bounds haven't landed anywhere yet, I'm happy with breaking it.
This is unrelated to #122791, which just needed that original commit e6b64c6194 stacked on top of it so that it wouldn't have tests failing.
r? lcnr
Rust will occasionally rely on fn((), X) -> Y being compatible with
fn(X) -> Y, since () is a non-passed argument. Relax CFI by choosing not
to encode non-passed arguments.
Implement macro-based deref!() syntax for deref patterns
Stop using `box PAT` syntax for deref patterns, and instead use a perma-unstable macro.
Blocked on #122222
r? `@Nadrieril`
Interpolated cleanups
Various cleanups I made while working on attempts to remove `Interpolated`, that are worth merging now. Best reviewed one commit at a time.
r? `@petrochenkov`
Strip placeholders from hidden types before remapping generic parameter
When remapping generic parameters in the hidden type to the generic parameters of the definition of the opaque, we assume that placeholders cannot exist. Instead of just patching that site, I decided to handle it earlier, directly in `infer_opaque_types`, where we are already doing all the careful lifetime handling.
fixes#122694
the reason that ICE now occurred was that we stopped treating `operation` as being in the defining scope, so the TAIT became part of the hidden type of the `async fn`'s opaque type instead of just bailing out as ambiguos
I think
```rust
use std::future::Future;
mod foo {
type FutNothing<'a> = impl 'a + Future<Output = ()>;
//~^ ERROR: unconstrained opaque type
}
async fn operation(_: &mut ()) -> () {
//~^ ERROR: concrete type differs from previous
call(operation).await
//~^ ERROR: concrete type differs from previous
}
async fn call<F>(_f: F)
where
for<'any> F: FnMut(&'any mut ()) -> foo::FutNothing<'any>,
{
//~^ ERROR: expected generic lifetime parameter, found `'any`
}
```
would have already had the same ICE before https://github.com/rust-lang/rust/pull/121796
Make `#[diagnostic::on_unimplemented]` format string parsing more robust
This commit fixes several issues with the format string parsing of the `#[diagnostic::on_unimplemented]` attribute that were pointed out by `@ehuss.`
In detail it fixes:
* Appearing format specifiers (display, etc). For these we generate a warning that the specifier is unsupported. Otherwise we ignore them
* Positional arguments. For these we generate a warning that positional arguments are unsupported in that location and replace them with the format string equivalent (so `{}` or `{n}` where n is the index of the positional argument)
* Broken format strings with enclosed }. For these we generate a warning about the broken format string and set the emitted message literally to the provided unformatted string
* Unknown format specifiers. For these we generate an additional warning about the unknown specifier. Otherwise we emit the literal string as message.
This essentially makes those strings behave like `format!` with the minor difference that we do not generate hard errors but only warnings. After that we continue trying to do something unsuprising (mostly either ignoring the broken parts or falling back to just giving back the literal string as provided).
Fix#122391
r? `@compiler-errors`